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Outlier detection is an essential problem that has been studied in a wide range of 

applications in diverse fields. One common approach to outlier detection is using statis-
tical models, but these methods have inherent challenges and drawbacks. For instance, in 
providing optimal solutions that will enable the idea of detecting outliers more effective-
ly with a high detection rate and in minimizing the computational cost. Many statistical 
techniques that have been proposed are classified into mainly parametric and non-para- 
metric methods, and to the best of our knowledge, evaluating and deciphering the effects 
of these methods against each other remains to be an open research direction, and most of 
these statistical methods proposed earlier have not shown high outlier detection accuracy. 
In this paper, under the umbrella and generalization of statistical approach, we propose 
Gaussian Mixture Model for Outlier Detection (GMMOD) for the parametric approach 
and Kernel Density Estimation for Outlier Detection (KDEOD) algorithms for the 
non-parametric approach, for solving the problem of detecting outliers more effectively 
and in improving the outlier detection accuracy. The proposed methods are applied to re-
al-world datasets, and our experimental results show that even though both techniques 
perform well, KDEOD shows favorable by a smaller margin in most cases when com-
pared to GMMOD and both show improved performance over their similar comparative 
algorithms.      
 
Keywords: outlier detection, parametric, non-parametric, Gaussian mixture model, kernel 
density estimate 
 
 

1. INTRODUCTION 
 

In recent times, detecting outliers remains to be a significant and all-embracing re- 
search branch in data mining due to its extensive use in a broad range of applications 
such as in RFID [14], sensor networks [1], trajectories [12] and health diagnosis in 
medicine [6]. Despite the ambiguity in giving a clear definition of outliers, it is pre- 
dominantly considered as a data point, which is notably different from others or does not 
heed to the expected normal behavior [2].  

Over the years, several techniques have been proposed to detect outliers. In our 
prior review work [41], we classified outlier detection techniques into various categories, 
namely: statistical-, distance-, density-, clustering-, ensemble-, and learning-based tech- 
niques. In this paper, we focus mainly on statistical-based techniques which are classified 
into parametric and non-parametric methods. They are generally faced with inherent 
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challenges and setbacks such as reliability of the quality of results produced, adaptation 
in multidimensional scenarios, challenges for real-time applications, the high compu- 
tational cost in dealing with multivariate data and the scalability with respect to increase- 
ing data dimensionality.  

At the onset of outlier detection research, outlier detection was predominantly based 
on assumptions regarding the statistical distribution. Such assumptions are difficult to 
embrace because of the large and complex state of current data. The challenges of de- 
signing an effective statistical model and the evaluation of these models continues to be a 
significant problem since large datasets or databases demand practical, efficient, scalable 
and flexible tests for the process of detecting outliers without fully modelling the whole 
data initially. In addition to designing suitable models for the data, it is also significant 
that these models can correctly detect outliers with higher detection accuracy, which has 
been the shortcomings of some previous methods [15, 20, 34]. For our base-line algo- 
rithms [15, 20], even though they are designed for outlier detection problems whose 
most significant evaluation metric is the improved detection accuracy, still fail to give 
optimal detection accuracy. 

With the above challenges and problems, it is thus clear that the importance of ac-
curately detecting outliers is a significant step in data analytics as this can help discover 
vital knowledge and make better decisions about the data. An improved detection accu-
racy gives data with fewer outliers, which are significant for building reliable systems 
and in improving the output performance of applications making use of data. Therefore, 
among the challenges faced with this technique, we focus on addressing two key con-
cerns  (1) to enable the idea of detecting outliers more effectively with improved detec-
tion accuracy, and (2) to design a suitable outlier detection model to fit real-world da-
taset.  

To achieve the above goals, since the foundational concept of our paper is to eva- 
luate the effect of parametric and non-parametric methods against each other, we first 
propose two methods for each case to extend our focus and then solve the above 
challenges mentioned earlier and evaluate the approaches against each other with some 
baseline algorithms. For the parametric instance, we choose the Gaussian mixture model 
which has been used in a wide range of application areas [16, 21, 26] including the 
detection of outliers [15, 34, 37]. However, using this model to solve the outlier detec- 
tion problem remains to be a cumbersome one because it has inherent disabilities. For 
instance, it is faced with high computational complexity, performance issues for in- 
creased dimensional data, and in correctly detecting outliers with improved accuracy. 
Using these drawbacks as our motivation, we propose a Gaussian Mixture Model for 
Outlier Detection (GMMOD) as a suitable model to fit the dataset and to detecting 
outliers effectively with improved detection accuracy. To achieve the above goal, for a 
given observed dataset, we apply the expectation maximization algorithm that helps to 
learn the parameters of the distribution and optimize the model parameters to maximize 
the likelihood. This is then used to fit in our Gaussian mixture model. We use the pos- 
terior probabilities, which are the responsibility of each cluster for a single observation 
and then calculate the probability density function for a single representation in each 
cluster. The points that are flagged as outliers are considered as those with low likelihood 
under a chosen prior, and these are detected by investigating each data point’s pro- 
bability. 
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While for the non-parametric method, we choose kernel density estimate model 
which has been used to solve various issues for instance in improving the quality of 
density-based outliers, since the grid-based density estimation does not show optimal 
performance [20]. Another area is in solving the problem of the curse of dimensionality 
when the samples are large. Over the years, the primary focus of most literature is using 
this technique to enhance higher detection accuracy for outlier detection problems [7, 9, 
20]. Using similar motivation, we propose Kernel Density Estimation for Outlier de- 
tection (KDEOD) as a suitable model to fit the dataset and to improve on the outlier 
detection quality and accuracy. We adopt the optimal bandwidth selected and use the 
Gaussian kernel function as our kernel type among the many others. Also, we use the 
kernel estimate to perform the density estimation to estimate the ground-truth density. 
The points that are identified as outliers are points that are not created by the bulk of the 
data points. 

The proposed methods are heavily based on existing techniques mentioned earlier; 
however, to the best of our knowledge, this paper is different from others. We are the 
first to propose a comparative statistical-based approach that experimentally evaluates 
and compares the performance of parametric and non-parametric methods against each 
other on several real-world datasets. Also, we simultaneously address the challenges of 
fitting the data to a suitable model and in effectively detecting outliers with improved 
detection accuracy. The two proposed methods will contribute to the goal of outlier 
detection correctly and efficiently. They will also serve as significant contributions to 
existing works that try to design statistical-outlier detection models to fit current large 
and complex data with improved outlier detection accuracy. It will further serve as an 
evaluation in understanding the comparative performance of two popular statistical- 
based classification methods. The paper will undoubtedly give researchers an accurate 
understanding of the effects of both approaches to outlier detection problems and aid 
them in understanding the areas that these techniques are most feasible.  

The remaining section of this article is organized as follows: In Section 2, we 
introduce the key definitions of parametric and non-parametric methods and then give 
the related works as a build-up to our study. We then introduce in Sections 3 and 4 our 
two proposed approaches, the GMMOD and KDEOD. In Section 5, we give the per- 
formance evaluation of the two methods through experimental analysis using real-world 
dataset and further discuss the results. Finally, the conclusion is given in Section 6. 

2. RELATED WORKS 

Detecting outliers using statistical techniques can be done in supervised, semi-su- 
pervised, and unsupervised style [4, 11]. Several methods have been proposed using 
wide varieties of models [3, 8, 33, 41], but we limit our discussion to those related to our 
work. The Local Outlier Factor (LOF) [22], which is one of the baseline algorithms 
makes use of the k-nearest neighbor. In the KNN set of each point, LOF makes use of 
local reachability density (lrd) and compares it with those of the neighbors of each 
participant of that KNN set. LOF requires the computation for all objects in the dataset, 
which is expensive and might miss possible outliers whose local neighborhood density is 
very close to that of its neighbors. A technique that is in contrast with LOF was later 



MOHAMED JAWARD BAH AND HONGZHI WANG 

 

444

 

proposed by Yang et al. [15], which instead of focusing solely on local properties, extend 
its focus on global features. Here, the authors introduced an unsupervised outlier detect- 
ion method with globally optimal Exemplar-Based GMM (OEGMM). In their technique, 
they first realized the global optimal expectation maximization (EM) algorithm to fit the 
GMM to a given data set. The outlier factor for every data point is considered as the sum 
of the weighted mixture proportions with the weight signifying the relationship with 
other data points. In later years, for a more robust approach to outlier detection, the use 
of GMM with locality preserving projections was proposed by Tang et al. [37]. They 
combined the use of GMM and subspace learning for robust outlier detection in energy 
disaggregation. This method addresses the research gap in [22] that fails to detect out- 
liers in multiple state processes and multi-Gaussian states. 

For the non-parametric literature, Latecki et al. [9] using kernel functions proposed 
an unsupervised approach to outlier detection. The outlier detection process is performed 
by comparing each point’s local density to that of the neighbor’s local density. The 
experimental evaluation of the proposed techniques when compared to [22] results in 
better detection performance in most cases. However, the method still lacks applicability 
in very large and high dimensional real-life databases. In [20], one of the baseline al- 
gorithms (KDEOS), the authors follow a similar trend by proposing a method that re- 
presents a similar pattern to local outlier detection [13]. Just like in previous methods [9, 
22], it also performs density estimation and compares them with the local neighbor- 
hoods. The only difference lies in applying the standard KDE directly instead of testing 
non-standard kernels. Later, Gao et al. [10] proposed a more robust approach to address 
some of the previous shortcomings. The method shows improved performance and good 
scalability for large data sets using kernel-based techniques with less computational time 
when compared to [22]. 

3. PARAMETRIC APPROACH 

In this section, we introduce the fundamental concepts and algorithm of the pro-
posed parametric approach and then give a comprehensive explanation of how the 
method works. 

3.1 Gaussian Mixture Model for Outlier Detection (GMMOD) 

In the parametric case for which there is an explicit assumption for a given under-
lying distribution model for a specified dataset, we choose the Gaussian mixture model 
which over the years has shown improved performance in many areas when compared to 
others [38] in the same category for outlier detection problems. This is because it is easy 
to implement and is considered as one of the most popular methods used for data analy-
sis since it gives a better explanation of the real data. For learning mixture models, it has 
proven to be one of the fastest algorithms. In addition to its simplicity, it is also recog-
nized as being able to fit in most datasets, unlike other parametric types. For example, 
regression techniques are not always suitable to support every kind of data, more espe-
cially complex and high dimensional subspace data. Adopting the GMM model by opti-
mizing it shows improved detection accuracy in previous techniques as well as in our 
experimental study. GMM-based techniques have been used in various application areas 



PARAMETRIC AND NON-PARAMETRIC APPROACH FOR OUTLIER DETECTION 445

[16, 21, 26], and it is not the first time to be used in the detection of outliers [15, 34, 37]. 
For instance, Yang et al. [15] use this technique to solve the challenges of knowing 

the number of clusters beforehand and in solving the problems encounter with datasets 
that are characterized by inconsistent densities. The authors address a similar problem as 
ours to detect outliers, and they proposed a new method created by using a global opti-
mal modification of EM. Their target is bringing global information to each data point. 
Unlike ours, which focus on local neighborhood information of each data point, it helps 
in the correct detection of the outliers. Also, their method of estimating the EM results in 
convex optimization, whereas our method focused on the simple EM optimization. Tang 
et al. [37] and Reddy et al. [34] both proposed novel outlier detection approaches using 
GMM combining with other techniques. In [34], they used the GMM model to detect 
outliers in seasonal univariate network traffic and [37] used a hybrid technique of this 
model with subspace learning (GMM and subspace learning combined) to improve the 
performance of outlier detection methods in energy disaggregation. For the former and 
later methods, although their methods showed improved performance as claimed by the 
authors, however, it is application specific and only designed for univariate network traf-
fic and energy disaggregation, respectively. These techniques lack extensive comparison 
for other application areas and therefore no guarantee to conclude that they perform ef-
fectively well in other scenarios. Our method, on the other hand, is a general-purpose 
outlier detection method that can be adopted in different scenarios. In our experiments, 
we tested our method with ten different benchmark datasets, unlike in [37], which only 
used a single dataset to prove the accuracy of their method. Our work is different from 
others since it is designed to embrace different real-world dataset. In contrast, other 
techniques that have been combined with other methods to detect outliers, ours is a 
straight forward approach. Our technique is purely GMM through the optimization of the 
EM to detect outliers more effectively and to compare the performance of parametric and 
non-parametric methods.  

Even though existing works have used and modified the model before to fit outlier 
detection problems, however, adopting this model for outlier detection problems remains 
to be a challenging one because of its intrinsic disabilities. In addition, these methods 
whose main objective is to detect outliers correctly, yet fall short in some areas such as 
with high computational complexity, performance issues for increased dimensional data 
and in correctly detecting outliers with higher accuracy. Owing to all these challenges, it 
is imperative to design new techniques that can be able to address these issues. Therefore, 
similar to the motivation in [37], we also try to improve the outlier detection accuracy 
except that our method is not limited to only energy disaggregation problems but to a 
broader range of datasets. We proposed a Gaussian Mixture Model for Outlier Detection 
(GMMOD) as a suitable model to fit the data and applied it in the process of detecting 
outliers. In our method, to improve the GMM to effectively detect outliers with improved 
accuracy for a given observed dataset, we first approach the learning problem by 
applying the expectation maximization algorithm that helps to learn the parameters of the 
distribution and optimize the model parameters to maximize the likelihood. This learning 
technique dramatically improves detection accuracy while reducing the report of false 
positive cases. This is then used to fit our Gaussian mixture model. The points that are 
flagged as outliers are those considered with low likelihood under a chosen prior, and 
these are detected by investigating each data point’s probability. Calculating each data 
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point’s probability will result in increased computational demand. However, it ensures 
that the outliers are detected correctly with improved accuracy, which is the overall ob- 
jective of the paper.  

The Gaussian mixture models are unsupervised probabilistic learning methodology 
for representing normal distribution in data. They are known to be models that sup- 
posedly explain that data points are produced from a mixture of a definite number of 
Gaussian distributions that has unknown parameters [20]. They are usually represented 
as the weighted sum of M component Gaussian densities. 

Mathematically, for a univariate case, suppose we have an observation X = {x (1), …, 
x(N)} for a mixture of M components with parameter ϑ, we represent the one-dimensional 
model equation as: 

 
1

( | ) | .
M

i i
i

p x N x  


      (1) 

Where N = (x|ϑi) is the distribution and ωi is consider as the prior probability of choos- 
ing each ith component. It serves as the positive mixing component that satisfies this 
condition:       
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With the assumption that each observation is from M components  the component of the 
mixture is represented as the Gaussian density ωi > 0 and ϑi = (i, i), with i as the 
mean and i as the variance. ϑ = (ω1, …, ωm, ϑ1, ..., ϑm) is the collection of the model 
parameters, and the distribution N = (x| ϑ) is represented as:   
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In our case, we adopt the multivariate approach. For a mixture of M components with 
mean i and covariance matrix i, we represent the multi-dimensional model equation as: 
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     (5) 

We use the posterior probabilities, which are the responsibility of each cluster for a 
single observation and then calculate the probability density function for a single ob- 
servation in each cluster. This is explained in details in our subsequent section. Our 
approach does not only estimate the  of the Gaussian kernel but the set of the mixture 
component parameters. The points that are flagged as outliers are considered as those 
with low likelihood under a chosen prior, and these are detected by investigating each 
data point’s probability.   
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3.2 Learning Model and Algorithms 

In our proposed approach, given each Gaussian density with its mean  and covari-
ance ∑, referred to as the components of the mixture M, we use the Expectation Maxi-
mization (EM) which is the most prevalent used method for estimating the mixture mod-
el’s parameters. The EM with respect to GMMOD can be defined as: 
 
Definition 1: Expectation Maximization, EM 

EM is a kind of numerical method that estimates the parameters of a mixture given a 
fixed amount of mixture components, and it also computes the maximum likelihood 
estimate of parameters of parametric kind of mixture distribution models [20]. It is an 
iterative algorithm that comprises two steps. The expectation step (E-step) and the maxi- 
mization step (M-step). In Example 1, we give a clear step by step procedure of how we 
applied EM in GMMOD. 

 
Example 1: Let consider Fig. 1 (a) with three Gaussians to compute the mean and 
variance of each distribution. Such an approach can fairly give a good estimate as can be 
seen from the histogram in Fig. 1 (b). From our intuition, we estimate that the mean of 
g1, g2, and g3 from the distribution are 0.15, 0.55, and 1.0, respectively. However, these 
estimates might not be accurate, and the method of estimation can be improved with a 
better estimate of the mean and variance. In order to do this, we need to apply the EM 
algorithm to generate the best hypothesis for each distribution. The best hypothesis, in 
this case, is the maximum likelihood that maximizes the probability that a particular data 
point stems from M distribution with mean m, and variance m

2. The estimated mean and 
variance are defined respectively as in Eqs. (6) and (7). 
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Step 1: To start, we randomly assign the estimated values from the histogram plot in Fig. 
1 (a), to estimate the initial value of each mean m and variance m

2.   

 

  
               (a)                                            (b) 

Fig. 1. (a) A scatter plot; and (b) A histogram drawn from three normal distributions. 
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Step 2: We then consider each data point from the distribution and then check the likeli- 
hood that the data point was generated from the mean m and variance m

2 for each set of 
the distribution parameter. Since we have three parameters, we create a response thrice. 
That is, the probability that x(i), …, x(N), were drawn from N(1, 1

2), N(1, 2
2), and N(1, 

3
2). We then substitute i = 1, 2, 3 in Eq. (2), to obtain the normal density function for 

each. The probability of xi belonging to N(1, i
2), 
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Step 3: Since each of the probabilities from Step 2 gives us only the partial result, we 
then consider the likelihood of choosing N(1, 1

2), N(2, 2
2), and N(3, 3

2). This step 
helps us to check the likelihood of a data point, for instance, xi belonging to a particular 
class Cm. This is referred to as the responsibilities of each distribution for every data 
point, and we represent it as: 
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Step 4: We then repeat this probabilistic assignment for each data point until it gives the 
initial data into M number of clusters, which will then let us update the initial estimate 
hypothesis to the subsequent hypothesis. 
 
Step 5: The estimation step and updating step are repeated until they converge to the 
final hypothesis value. 

Although the major trouble in learning Gaussian mixture models is with unlabeled 
data in which we are often not aware of which data points is from which hidden 
component. However, in our case, adopting the EM algorithms serves as an advantage in 
addressing this drawback. The EM algorithms ensure that even though the convergence 
towards the peak takes time, however, for each iteration, the likelihood is improved. The 
algorithm does not demand more effort to be implemented, and the parameter constraints 
are addressed indirectly. When we compare the improved EM with gradient methods, 
which is a direct maximization of the likelihood functions, we notice that such methods 
entail more analytical preliminary work to get the gradient of the likelihood function. 
Also, challenges like memory constrain, instabilities, and converge issues will all arise, 
especially when the estimated number of parameters is high. This result in numerical 
difficulties. Owing to these disadvantages, we can see that EM has more advantages, and 
thus, we adopt it in our method to enhance the outlier detection accuracy to produce 
better results.   

 
3.3 The GMMOD Algorithm 

 Algorithm 1 first describes how the proposed GMMOD algorithm works in our 
experiment. From the selected dataset, we split the data into 80% for training and 20% 
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for testing. We selected the features that best describe the data and then normalized the 
values. To apply the algorithm to fit the model, we first selected the number of com- 
ponents, which was chosen carefully to create a useful model. This is because we want to 
avoid overfitting and not to lose the generalization of the distribution model’s behavior 
and also to prevent the use of few Gaussians which will result in losing flexibility in 
describing the normal state. Usually, too few components signify inaccurate modeling of 
the data, i.e. underfitting the data whereas, too many components result in an over-fit 
model with singular covariance matrices. 
    We then applied the EM technique in Algorithm 2, which helps us to estimate the 
model’s parameters and to know the number of components that are better suited for the 
GMMOD fit. We applied the E-Step to calculate the expectation of the task of the 
component given the model parameters for each data point, while the M-Step entails 
updating the values got from our E-step; that is the maximization of the expectation in 
the E-Step. In synopsis, the two key steps in the EM Algorithm are as follows:  

E-step: During this step, we calculated the expected value of the cluster assignments 
based on the hypothesis of the distribution class parameters. For each point, we found 
the weights by encoding the probability of the membership in each cluster. For all values 
of i we have a case in which im is considered to be the probability that xi is generated by 
Cm. Therefore,    ( | , , , )im m ip C x     
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M-step: During this step, we calculated the new maximum likelihood for our hypothesis. 
For each model’s parameter from the E-step, we maximized and updated them. The 
updated values are calculated as follows1:  
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For a univariate scenario, the updated variance is 
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1 https://brilliant.org/wiki/gaussian-mixture-model 
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Algorithm 1: The GMMOD Algorithm 
Input: 

- X = {x(1), ..., x(n)}, n = 1, …, N: dataset 
- tr and ts: training & test data 
- M, M, and ωM: model parameters 
- diag: covariance type 
- K: number of components 

Output: 
- Process 

1.    for each dataset X = {x(1), ..., x(n)}, n = 1, …, N do 
2.       if elements in X  0 then 
3.           Read X  
4.           Split X into tr and ts   
5.       else 
6.           Preprocess or Clean X  
7.       end if 
8.    end for 
9.    for each feature in X do 
10.            Normalize data 
11. end for 
12. for each class in X do 
13.      if class count == min then 
14.            Mark outlier 
15.      else 
16.            Mark inlier  
17.      end if 
18. end for 
19. Select/Assign: 

- The number of components. If K is known, use Algorithm 2. 
- Covariance type = diag 
- Number of iterations 

20. Train the model 
21. Fit tr into the model 
22. Return the generated prediction of ts 

 

Notably, we know that training the parameters of the model heavily relies on max-
imizing the log-likelihood of the data. In EM, the successive iteration does not in any 
way affect the likelihood as compared to other gradient maximization methods [25] that 
have this limitation. Some of the disadvantages of the EM algorithm that we found are 
that it is a first-order kind, so it converges slowly for a fixed-point solution, and it also 
tends to ascertain the local maxima and the initial values sensitivity spuriously. If the 
model that best suits the trade-off between the fit and the number of components is found; 
they are usually retained. Both Akaike’s Information Criterion (AIC) [23] and Bayesian 
Information Criterion (BIC) [24] can be used to get insight or determine a suitable num-
ber of components for the model when the number of components is not specified. From 
our experiment, we found out that it can be quite tedious to tell whether we need two, 
three, four, or even more components. In many cases, as the number of components M 
increases, so does the complexity.   
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Algorithm 2: The EM Algorithm 
Input: 

- X = {x(1), ..., x(n)}, n = 1, ..., N: dataset 
- ωM, M, M, and : model parameters & convergence threshold  
- M, CM: number of components and components assignment 
- ik: probability of xi generated by CM 

Output:  
-  = (x| i, i), for i = 1, ..., M. 

1.    At, t  0, initialize ϑ 
2.    for each i in samples X do 
3.         Randomly assign and obtain ̂1, …, ̂M 

4.         Set i, X,  covariance estimates  ̂  2 
1, …,  ̂  2 

M  

5.         Set component distribution ̂1, …, ̂M   
6.    end for  
7.    E-step 
8.    Given ωM, M, M, 
9.    for each data point xiX do  
10.          Calculate i, X, expectation of assignment CM as in Eq. (10) 
11. end for 
12. M-step  
13. Maximize E-step i.e. update ϑ at time t, ωM, M, and M, as in Eqs. (11)-(13) 
14. Repeat E-step and M-step until it converges ( )  
15.      if it converges then  
16.           Get the Maximum Likelihood 
17.      else   
18.           Repeat until it converges 
19.      end if  
20. Return ϑ 

 

In our experiment, upon completing the EM algorithm in Algorithm 2, we fit the 
model to perform a clustering inference on the GMMOD model. We used Bayes’ 
theorem together with the assumed estimated model parameters to estimate the posterior 
component assignment probability. So, given the model’s parameters for a multivariate 
case, we inferred from using Baye’s theorem that the probability of a particular data 
point is from the component Cm by 

1

( | , )
( | )

( | , )
m i m m

m i M

j i j jJ

N x
p C x

N x

 
 







.     (15) 

Algorithm 1 shows our proposed GMMOD algorithm for a multivariate case for 
outlier detection and Algorithm 2 shows the EM Algorithm, which is specifically used or 
needed when the number of components M is unknown a priori. The EM algorithm for 
GMMOD starts with an initialization step where we assigned reasonable model para- 
meters based on our data. It then iterates over the E-step and M-step until the parameter 
estimates converge at some defined threshold for all parameters at iteration time t, |ϑt – 
ϑt-1| ≤ . The inferring of p(Cm | xi) becomes simpler by knowing ωM, M, and M. 
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4. NON-PARAMETRIC APPROACH 

In this section, we introduce the fundamental concept and algorithm of the proposed 
non-parametric approach and then give a comprehensive explanation of how the method 
works. 

4.1 Kernel Density Estimation for Outlier Detection (KDEOD) 

For the non-parametric method, we choose the kernel density estimate over histo-
gram [40] as our case study. Besides the histogram, kernel density estimate is probably 
the most frequently used estimator and is one of the most studied mathematically [39]. 
KDE, despite its potential for better performance, it mostly comes at the risk of high cost, 
and it is generally accepted as quadratic complexity [7]. This technique has been used to 
solve various issues and is not the first proposed method for outlier detection problems 
as other methods have already been applied using KDE technique [7, 9, 20]. Unlike the 
others, it is the first non-parametric method we are aware of that simultaneously tries to 
improve the outlier detection accuracy and used as a case study for comparing non- 
parametric and parametric approach for outlier detection problems. The proposed tech-
nique [9] decline in performance because of the inheritance of LOF’s naïve density esti-
mation. They modify the estimates in accordance with LOF deficiency and lose the sta-
tistical foundation of the method. Different from their approach, we modified the stand-
ard KDE without losing the statistical knowledge and simultaneously maintained it. In 
our method, to improve on the detection accuracy, we modified the standard KDE by 
fine-tuning and using an optimal bandwidth selection technique. This is further explained 
in Section 4.2. We selected the optimal bandwidth for our algorithm and used the 
Gaussian kernel function as our kernel type among the many others. In [20], KDE has 
been adopted for instance in improving the quality of detecting density-based outliers in 
low dimensional datasets and also in solving the problem of the curse of dimensionality 
when the samples are large. While in [7], the authors focus on improving the computa-
tional efficiency by proposing fastKDE method. Their key objective focuses on the 
computational speed, while we address the effectiveness in accurately detecting outliers 
even as the expense of its computational speed. We plan to solve the problem of compu-
tation cost; as stated for our future studies.  
    In addition, our technique differs from the others as the existing techniques [7, 9, 20] 
have not been compared with parametric methods, and those studies do not focus on 
studying the effect of the dimensionality of the datasets. Since over the years, the prima-
ry aim of most literature is to enhance the quality and detection accuracy for outlier de-
tection problems using this technique. With similar motivation, we propose Kernel Den-
sity Estimation for Outlier detection (KDEOD) as a suitable model to fit the dataset and 
to improve on the outlier detection quality and accuracy. KDEOD focuses on local 
neighbors similar to [9, 22] but a bit different from [9] that only take into consideration 
the solid statistical foundation. It has the flexibility of comparing the estimate of the local 
properties as well as taking into accounts those will firm statistical foundation. The 
points that as outliers are points that are not created by the bulk of the data points. We 
improved and contributed to the process by selecting the optimal bandwidth and use the 
Gaussian kernel function as our kernel type among the many others. Also, we use the 
kernel estimate to perform the density estimation to estimate the ground-truth density. 
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The points that are identified as outliers are points that are not created by the bulk of the 
data points 

Kernel density estimation is a prevalent non-parametric approach that is used to 
estimate or visualize the probability density function (pdf) of a continuous random 
variable, and it is a data smoothing problem [27]. It is non-parametric because it does not 
assume any underlying distribution for the variable. In our proposed method, to robustly 
identify outliers in a given data set of sample x = {x(1), ..., x(N)}, we chose a suitable 
bandwidth to provide a more robust density probability estimate. Usually, the probability 
estimate does not mirror the actual estimate for the data points if the data is contaminated 
with outliers and noise. The kernel function describes the contribution of sample points 
to the density values, and it must be non-negative, even and real-valued. Given n data 
samples, the multivariate KDE [30] drawn from an unknown density ̂, is generally 
defined for n samples of dimension D as:  


1

1 n
i

D
i

x x
K

h n h




   
 

      (16) 

where K is the kernel, n is the sample size, x = {x(1), ..., x(N)}, x = {xid, ..., xid}T, D is the 
dimension and h is the bandwidth also referred to as a smoothing parameter, which 
usually tends to zero when the number of samples(x) tend to ∞. K should satisfy the 
following conditions   

 K(x)  0, and ( ) 1.K x dx



        (17) 

Among the different kinds of the kernel (uniform, normal, biweight, triangular, Epanech- 
nikov and tri weight), we use the multivariate normal kernel Gaussian function defined 
in Eqs. (18) and (19), where the norm vector is denoted as ||x||. It is important to note that 
choosing the Gaussian as our kernel function is not the same as fitting the distribution to 
the Gaussian model because the kernel only represents the weighted function of each 
point; which is very prudent for the estimation of the unknown distribution. We applied a 
similar approach as in [9] by using the kernel estimate to determine the ground truth of 
the density, which is also known as the majority data points of ̂(x). However, methods 
in [9, 20] focus on the local density outlier detection. In our case, the potential outliers 
will be points that will be un-generated by the data samples ̂(x). We performed the 
density estimation using the Gaussian kernel. 

21 || ||
( ) exp

(2 ) 2D
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K x


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     (18) 

For n number of points, the kernel density will be 
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4.2 Bandwidth Selection 

One of the most challenging procedure in producing a good kernel density estimate  
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is how to use a suitable bandwidth; as it is computationally intensive. A plethora of 
methods have been proposed to choose the optimal bandwidth [31, 32, 43], but still, a 
vast majority of these techniques have accepted that there is no ideal approach in 
selecting the optimal bandwidth. However, there is still a possibility of deciding a 
reasonable bandwidth for a specific problem at hand. A common way to choose the 
optimal bandwidth is using the bandwidth that minimizes the optimality criterion (which 
is a function of the optimal bandwidth). Initially, the Asymptotic Mean Integrated 
Squared Error (AMISE) was the most commonly used, but its formula can’t be used 
directly since they involve the unknown density function . From many reviews, the 
consensus that the plug-in selectors [28] and cross-validation selectors [29] are the most 
useful over a wide range of the dataset. In recent years also, one of the most successful 
state-of-the-art technique is to estimate the general integrated squared density derivative 
functions [7]. 

In our work, we consider the following guidelines to choose the bandwidth. From 
intuition, a smaller h will result in a lower standard deviation, while conversely, a larger 
h will result in a larger standard deviation. We, therefore, adopt the first scenario that is, 
choosing a smaller h when the sample size is large, and the data are more tightly packed. 
The latter is best used when the sample size is smaller, and the data are sparser. After this 
process, then a suitably chosen bandwidth through cross-validation is then applied. This 
step is considered very significant since the importance of selecting an appropriate 
bandwidth cannot be overemphasized as it regulates the bias-variance trade-off in es- 
timating the density. Over-fitting will mean the bandwidth is too narrow and this will, in 
turn, lead to a high-variance estimate, whereas under-fitting depicts that the bandwidth is 
too broad, which will result in a high-bias estimate. 

Our selected cross-validation approach amidst sometimes it flaws of under smooth- 
ing and breaking down in some cases with large data samples performs better that gives 
near-optimal results than the others [5, 31] and it thus produces more authentic results for 
real-world datasets. However, with large dimension d, the computational rate becomes 
slow. It is very perplexing to decipher high-dimensional distributions from the unset, in 
most cases, either we result to parametric assumptions that can potentially be inaccurate, 
or we accept the very slow convergence. 
 
4.3 The KDEOD Algorithm 
 

In this section, we describe how our proposed KDEOD algorithm works, as shown 
in Algorithm 3. From the selected datasets, we loaded the dataset and split the data into 
80% for training and 20% for testing. We selected the features that best describe the data 
and then normalized the values. To apply the KDEOD algorithm to fit the model, we first 
selected the kernel type as per the guidelines in our previous section from among other 
types of kernels to perform the density estimation. We then chose the optimal number of 
bandwidths as per guideline of Section 4.2 above. We fit the KDEOD function using Eq. 
(16), to model the data, normalized the score, and then determine the misclassified clas-
ses from the data. We wanted to use just the density estimate to deter mine the outliers, 
but it is not the best of approach as our estimated distribution model happens to be mul-
timodal. We notice there are differences in the densities of data points belonging to dif-
ferent components, and this can be confusing as it might not be an outlier, and some may 
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have lower densities than the actual outliers. In KDEOD, the shape of the kernel form 
does not directly influence the approximation that much, but it is important to know that 
the kernel function parameters thus play an essential role. 
 

Algorithm 3: The KDEOD Algorithm 
Input: 

- X = {x(1), ..., x(n)}, n = 1, ..., N: Dataset 
- tr and ts: training and test data 
- K and n: kernel and sample size 
- h: bandwidth, h > 0 

Output: 
- Process 

1.   for each dataset X = {x(1), ..., x(n)}, n = 1, ..., N  do 
2.      if elements in X  0,  then 
3.           Read X 
4.           Split X into tr and ts 
5.      else 
6.           Preprocess or Clean X 
7.      end if 
8.   end for 
9.   for each feature in X do 
10.           Select and normalized data 
11. end for 
12. for each list of class in X do 
13.     if class count = = min then 
14.          mark outlier 
15.     else 
16.          mark inlier  
17.     end if 
18. end for 
19. Compute & Select the optimal bandwidth, h 
20. Select Gaussian kernel k(x)  
21. At each datum, xi builds the selected kernel function as in Eq. (16). 
22. Compute and fit tr into the model 
23. Return the prediction of ts  

 

In synopsis, from Algorithm 3, we can see that executing the kernel density estimate 
for outlier detection problems is a relative non-trivial task. We first selected the kernel 
type, used the cross-validation technique; we determined the optimal bandwidth for the 
KDEOD model, and fit the model to give our outlier predictions. One big difference be-
tween the KDEOD and the GMMOD is that the latter makes strong assumptions about 
the underlying data distribution when these assumptions do not hold these methods de-
liver inaccurate densities. Moreover, even when their assumptions hold, popular para-
metric methods can require extensive parameter tuning. In contrast, non-parametric 
methods such as this KDEOD can model the distance with few assumptions but are in 
turn much more computationally expensive. 
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2 https://odds.cs.stonybrook.edu 
3 https://archive.ics.uci.edu/ml 

5. EXPERIMENTAL EVALUATION 

In this section, we first introduce our experimental setup and then present our data de-
scriptions. Later, we compare the performance among our proposed algorithms with three 
baseline algorithms LOF [22], OEGMM [15] and KDEOS [20] in terms of well-known 
evaluation metrics used for outlier detection. In the final section, we discuss our findings.  

5.1 Experimental Setup 

We conduct an extensive experiment to evaluate our proposed methods and the 
baseline algorithms on eight real benchmark datasets from an openly provided access of 
large collection of outlier detection datasets (ODDS)2. These datasets can also be down- 
loaded directly from the UCI Machine learning repository3. In each of these datasets, we 
assumed one/set of class(es) as outlier(s) (i.e. rare classes) and normal class (inlier class, 
the most dominant class(es)). We used python to design our source code and ran on 
Anaconda Navigator platform using Spyder 3.2.4, which is a powerful python IDE. The 
test platform is on a 64Bit Ubuntu 16.04LTS system with CPU of 3.20GHz X4, with 
Disk Space of 230GB and Memory 3GB. We used the standard metrics used to evaluate 
outlier detection problems by calculating the detection rate and the detection accuracy 
and showing the receiver operating characteristic curve (ROC) and Area Under Curve 
(AUC) values in a bar chart. For better result, we conducted 15 independent runs of the 
algorithms in each dataset and calculated the average results. 

5.2 Data Description  

The approach in this paper is suitable for both synthetic and real-world datasets. In 
our experiment, we have used ten different real benchmark datasets from an openly pro-
vided access to large collection of outlier detection datasets to evaluate the effectiveness 
of our proposed methods. The datasets are of varying size and have different attributes. 

We chose three datasets with dimension 6, four below 15 and three above 30 at 
random, as shown in Table 1. We decided to categorize them according to the number of 
dimensions because we want to investigate the effect of dimensionality in outlier detec-
tion problems. In some cases, we did some further preprocessing, and in cases where one 
of the class is already rare, we labeled them as the outlier class. In cases where the da-
taset contained relatively balanced classes, down-sampling was necessary to create an 
outlier class. In other instances, multiple large classes were combined to create inliers, 
and multiple minority classes were combined to create outliers.  

In the Vertebral dataset, Abnormal (Ab) and Normal (No) are the two class labels. 
‘Ab’ is the majority class, which is the inlier and ‘No’ is the minority class. The outlier 
class was down-sampled from 100 to 30 instances. The Thyroid dataset has three classes 
not hypothyroid, subnormal functioning and hyperfunction. It has six attributes, with 
both normal and subnormal classes treated as inliers while the hyperfunction class was 
considered as the outlier class since it is the minority class. The Mammography has two 
classes benign and malignant, with a total of 11,183 samples. It also has six attributes, 
and the minority class are considered as outliers and the remaining as inliers. 
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Table 1. Dataset description. 
Dataset #Dimensions # Points # Outliers 

Vertebral 6 240 30 
Thyroid 6 3772 93 

Mammography 6 11183 260 
Shuttle 9 49097 3511 
Glass 9 214 9 

BreastW 9 683 239 
Wine 13 129 10 

Satellite 36 6435 2036 
Ionosphere 33 351 126 

Heart 44 224 10 
 

The Shuttle dataset contains six classes, among which classes 2,3,5,6,7 are included 
as outliers, whereas class 1 which contain approximately 80% of the data, is the domi-
nant class that forms the inlier class. The Glass dataset have attributes of a multi-class 
type with several glass types. Here, class 6 which is the minority class is label as the out-
lier class, while all the other classes make up the inlier class. The Breast Cancer Wiscon-
sin dataset (BreastW) contains two classes, malignant and benign, where the malignant 
class is marked as the outlier, and the benign class as the inlier. The Wine dataset has 
three classes with class 2 and 3 marked as inliers and class 1 as outliers. 

In the Statlog (Landsat Satellite) dataset, the training and test data are combined. 
Class 2 is down-sampled to 71 outliers, while all the other classes are combined to form 
an inlier class. The Ionosphere has a dimensionality of 34, but one is discarded because 
all the values are zero, so therefore the number of dimensions is 33 with the ‘good’ class 
as inliers and the ‘bad’ class as outliers. 
 
5.3 Performance Evaluation  
     

Usually, to evaluate an outlier detection algorithm, the detection rate and false alarm 
rate are calculated as shown in Eqs. (20) and (21). 

( )
TP

DetectionRate TPR
TP FN




     (20) 

( )
FP

FalseAlarmRate FPR
FP TN




     (21) 

Where TP is the true positive, FN is the false negative, FP is the false positive, and 
TN is the true negative. Obtaining the detection rate tells us how many numbers of outli-
ers are correctly identified while the false alarm rate gives us a relative number of mis-
classified outliers. Usually, TP and TN are called Sensitivity and Specificity. To show 
the trade-off between Eqs. (20) and (21), we use the ROC curve, and for further analysis 
of the quality of the algorithm, we show the AUC values in a bar chart. The AUC is the 
integral of ROC, which serves as a measure of the detection performance. For an ideal 
case, the ROC curve has a value of 1 for detection rate while the false alarm is 0. For the 
AUC, the ideal value is also 1 or 100% as in our case. 
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5.4 Experimental Results  

     In this section, Figs. 2-4 show three trained model of three different datasets and 
the visualization of the inlier and outlier points. It further shows how the predictions are 
obtained that helps in illustrating the ROC in the ten subfigures of Figs. 5-7 (a)-(c) of the 
different datasets. The final set of figures, Figs. 8 (a)-(c) show the bar chart plot of the 
AUC values for the eight different datasets. In Fig. 5 (b), it shows that the KDEOD ROC 
curve for thyroid for both methods perform better than the GMMOD ROC curve for the 
thyroid dataset, with thyroid showing better performance than vertebral Fig. 5 (a). In Fig. 
5 (c) the KDEOD ROC curve slightly outperformed the GMMOD, with overall, the two 
proposed methods showed better performance than their competitors for this data. 
However, the baseline methods also showed good performance with EOGMM having 
the least performance for this dataset. The curves are considered to be good because it 
does fit well with the number of dimensions despite the difference in the number of 
outliers and data points. The AUC score for both methods for the different datasets also 
follows the same trend as can be seen in the bar chart plot in Fig. 8 (a). The performance 
difference is minute because the datasets have closely related characteristics, with 
thyroid data having a higher number of data points than vertebral. KDEOD, which has 
no underlying assumptions, have enough data points to strengthen its prediction pro- 
bability amidst the fact that it will be slower than GMMOD because they are inherently 
characterized by high computational cost. 
 

    
       Fig. 2. The shuttle dataset.                     Fig. 3. The thyroid dataset. 

 
Fig. 4. The vertebral dataset. 
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(a)                                      (b) 

   
          (c) 

Fig. 5. The (a) Vertebral dataset; (b) Thyroid dataset; (c) Mammography dataset. 
 

     
  (a)                                         (b) 

   
 (c)                                       (d)          

Fig. 6. (a) Shuttle dataset; (b) Glass dataset; (c) BreastW dataset; (d) Wine datasets. 
 

Fig. 6 shows the comparison of the Shuttle, Glass, BreastW, and Wine datasets with 
the same dimensions except for the Wine dataset. Despite the increase in dimensionality, 
the shuttle dataset Fig. 6 (a) is close to perfection and performs even better than the pre- 
vious data for both methods because it has exceedingly number of data points that aid its 
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learning accuracy. In Fig. 6 (d), the Wine dataset shows similar performance and trend as 
in Fig. 6 (b) with almost the same number of data points and outliers except for a minute 
difference in the dimensionality, which does not show much difference in the outlier 
detection score. The shuttle dataset has higher AUC scores, Fig. 8 (b) for both techniques 
because the methods can adapt well to deal with the distribution changes. Surprisingly, 
GMMOD performs better here than KDEOD, possibly owing to the fact of KDEOD’s 
challenge with the curse of dimensionality for higher dimensional datasets. Both 
methods showed a decrease in performance, on the glass dataset, for instance, among the 
others, since it represents the most imbalanced data among the four. Fig. 7, finally shows 
the comparison of the Satellite, Ionosphere, and Heart datasets. In these datasets, the 
performance dropped when compared to the previous datasets as can be seen from the 
AUC bar chart in Fig. 8 (c). 

 

     
      (a)                                        (b) 

 
                                      (c) 

Fig. 7. (a) Satellite dataset; (b) Ionosphere dataset; (c) Heart dataset. 
 

 
                  (a)                                      (b)  
Fig. 8. The AUC values for (a) Vertebral, Thyroid, and Mammography; (b) Shuttle, Glass, BreastW, 

and Wine; (c) Satellite, Ionosphere and Heart. 
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                                         (c) 
Fig. 8. (Cont’d) The AUC values for (a) Vertebral, Thyroid, and Mammography; (b) Shuttle, Glass, 

BreastW, and Wine; (c) Satellite, Ionosphere and Heart. 
 

The Ionosphere dataset performed best for both methods as it does have not only the 
least number of dimensions but also has no class imbalance. The satellite dataset per- 
forms better than Heart for both techniques since it has many points, which makes it 
good for the KDEOD prediction. Another thing we notice here is, some of the baseline 
methods performance showed almost the same performance as our methods, and the 
margins are very close. However, throughout these datasets, one cannot clear concluded 
that one method is superior to the others in all cases. Even though sometimes a method 
can outperform another method based on the characteristic of the data sets, for example, 
a smaller number of dataset results in faster learning, however, one cannot clearly con- 
clude based on these factors without taking into consideration other previously mention- 
ed issues. 

 
5.5 Discussion  

The two methods show that they are good classifiers and good approach to outlier 
detection problems since they showed improved performance when compared to baseline 
methods for our parameter settings and experiments. In some cases, both techniques 
were able to achieve close to perfection in relatively moderate dimensional data (ROC 
curve for the Shuttle dataset in Fig. 7 and the trained model in Fig. 2). However, from 
Figs. 6 and 7, we observe a slight decline for high dimensional data in some cases. The 
lack of optimal performance is because both GMMOD and KDEOD are not optimal in 
some high dimensional dataset scenarios and moreover, KDEOD is highly prone to the 
curse of dimensionality and our choice of cross-validation method for computing the 
bandwidth also is another major reason. In most cases, both methods made a lower rate 
of miss-classification in models trained on different classes. KDEOD we believe do out- 
perform GMMOD overall, even though it is sensitive to outliers, but it gives better 
prediction estimate since it doesn’t rely on erstwhile knowledge. GMMOD also performs 
well, but due to its dependencies and assumptions of the distribution model, the results 
produce fall short to that of KDEOD with little or no assumptions of the distribution 
model. It is interesting to note that in some cases, the GMMOD algorithm shows a 
tendency to reach the maximal true positive rate earlier than KDEOD. Thus, in such case, 
applications that require a high recall of outliers with the best precision of the outlier 
performs better. We also observed that there is no direct way to draw conclusion among 
datasets or methods superiority and performance because it depends on the dataset that is 
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used, the parameter tuning and how best the algorithm models the data. We cannot clear- 
ly conclude that the influence of outliers or dimensionality will predict the performance. 
However, we believe that if the dataset has a very high dimension, it might face problems 
of the curse of dimensionality, which consequently will degrade the detection perfor- 
mance. In addition, it will result in slower computational time and high complexity cost. 

GMMOD approach, in summary, shows to be easy to use and flexible. However, 
major constraints are its computational capability, the task of setting the number of mix-
ture models to fit the training dataset. While the KDEOD approach in synopsis shows 
that it scales well with training samples and is also easy to implement, it is also charac-
terized by some gains like asymptotic consistency, simplification to supplementary den-
sity estimators. However, it is also known that when the dimensionality of samples is 
large, it suffers from the curse of dimensionality. It is also difficult to choose features in 
kernel density estimation so that the density estimation might be a hard task, and this in 
turns makes the performance to depend on the choice of the kernel width . 

6. CONCLUSIONS 

Over the years, using statistical techniques, among other techniques to detect outli-
ers has been invaluable in the research domain. In this paper, we presented a parametric 
and non-parametric approach to outlier detection under the umbrella of statistical tech-
niques. We selected two statistical techniques among the diverse methods as case studies. 
We proposed GMMOD for parametric methods and KDEOD for non-parametric meth-
ods and then compared these methods with other three baselines methods (EOGMM, 
KDEOS, and LOF). Using real-world datasets, we demonstrated that KDEOD approach 
is more effective and performs better than GMMOD and overall both further reveals they 
are successful for outlier detection because they serve the motive behind our research 
which was to design methods that can effectively fit the different data and give an im-
proved outlier detection accuracy. In most cases, our methods showed good performance 
when compared to other baseline algorithms based on our experimental study. In our 
future work, we plan to extend our work using very high dimensional data to investigate 
the detection performance and remedy previous drawbacks on the demand of computa-
tional cost.  
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