
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 14, 725-741 (1998)

725

 Design and Implementation of Cohesion

CE-KUEN SHIEH, JYH-CHANG UENG, AN-CHOW LAI,
TYNG-YUE LIANG AND SU-CHEONG MAC

Department of Electrical Engineering
National Cheng Kung University

Tainan, Taiwan 701, R. O. C.
E-mail: shieh@ee.ncku.edu.tw

This paper describes a prototype DSM system called Cohesion which sup-
ports two memory consistency models, namely, Sequential consistency and Release
consistency, within a single program to improve performance and support a wide
variety of parallel programs for the system. Memory that is sequentially consistent is
further divided into object-based and conventional (page-based) memory, where
they are constructed at the user-level and kernel-level, respectively. In object-based
memory, the shared data are kept consistent in terms of the granularity of an
object; this is provided to improve the performance of fine-grained parallel applica-
tions that may incur a significant overhead in conventional or release memory as
well as to eliminate unnecessary movement of pages which are protected in a critical
section. On the other hand, the Release consistency model is supported in Cohesion
to attack the problem of excessive network traffic and false sharing. Cohesion
programs are written in C++, and the annotation of shared objects for release and
object-based memory is accomplished by inheriting a system-provided base class.
Cohesion is built up on a network of Intel 486-33 personal computers which are
connected by a 10Mbps Ethernet. Three application programs, including Matrix
Multiplication, SOR, and N-body, have been employed to evaluate the efficiency
of Cohesion. In addition, a Producer-Consumer program has been tested to show that
the object-based memory will benefit us in a critical section.

Keywords: distributed shared memory, multiple consistency protocols, upcall mecha-
nism.

1. INTRODUCTION

A distributed Shared Memory (DSM) system is a memory management
system which provides a shared memory abstraction for the users of a distributed
system. A DSM system makes programming on a distributed memory multipro-
cessor system easier with the shared variable paradigm. In addition, the ease of
building up the system as well as the high scalability of a loosely-coupled multipro-
cessor system is kept in a DSM system. In all fairness, it is not easy to construct
an efficient DSM due to considerations like the choice of memory consistency,
granularity, programming ease, etc.

In order to emulate the abstraction of shared memory, consideration of
memory consistency models is important. We may state that the stricter the model

Received July 22, 1995; accepted June 18, 1998
Communicated by Chuan-lin Wu.

admin
打字機文字
DOI:10.1688/JISE.1998.14.4.2

726 CE-KUEN SHIEH ET AL

is, the more requirements the system has to meet; as efforts have been invested on
different memory consistency models by the forerunners. These imposed require-
ments may induce unnecessary overheads. Nevertheless, there are advantages and
disadvantages in each memory consistency model. A DSM system that employs a
strict consistency model, such as Sequential consistency, allows programs written
for shared memory multiprocessors to be ported easily. Users may know very little
about the system. However, the performance of the system may not be good enough.
On the other hand, a DSM system that supports a weaker consistency model may
have better system performance and reduced network traffic; but there are some
constraints the programmer must keep in mind, such as the use of “enough” syn-
chronization operations. In conclusion, a system that supports a single memory
consistency may not compromise the efficiency and flexibility in programming.
Therefore, it is substantial for an efficient DSM system to support both strict and
weak consistency models. Then, the users will be able to select the appropriate
consistency model in programming for different shared data without loss of perfor-
mance.

Another consideration in designing a DSM system is the choice of granularity.
Without the assistance of a compiler or preprocessor, a page is typically suitable.
However, when a page of 4Kbytes on a PC486 is adopted in a sequentially con-
sistent system, contention will reduce the performance heavily. This is especially
an issue if there are pages which are falsely shared among processors. This will
cause a phenomenon called page thrashing that may not happen in Release con-
sistency model [1, 7].

Release consistency may efficiently relieve us of the trouble of false sharing
in coarse-grained data only. For fine-grained data, neither release nor sequential
(page-based) consistency can efficiently reduce latency and frequency in transmis-
sion. For example, even though only one processor is assured to enter the protected
region in a parallel program, (1) additional overheads are required to maintain the
small shared data protected in a critical section when buffering and a delayed
update strategy are employed to enforce release consistency because updates have
to be flushed to other caching nodes in release consistency; and (2) page thrashing
occurs in page-based sequential consistency due to redundant page faults and
requests initiated in page-based sequential consistency. Accordingly, longer latency
in a non-parallelizable critical section will definitely affect the system performance
heavily.

In this paper, we present a distributed shared memory system called Cohesion.
Cohesion supports both sequential and release consistency. It easily overcomes
the aforementioned problems by taking advantage of a combination of the two
consistency models. There are two features which distinguish Cohesion from other
DSM systems. First, two kinds of granularity are applied for sequential memory
in Cohesion, ie., page and object. Page-based memory is unstructured and shared
at the physical layer while object-based memory structures the shared data as an
object. Typically, object-based memory alleviates the overhead of accesses in a
critical section and benefits the synchronization operations. Second, Cohesion is
an object-oriented DSM. Annotation of shared objects in Cohesion can, therefore,
be done by inheriting a system-provided base class, where the types of objects will
be recorded in the system. This prevents us from modifying the compiler or creating

DESIGN AND IMPLEMENTATION OF COHESION 727

a special purpose preprocessor. Moreover, the infrastructure of Cohesion is com-
posed of a cluster of identical Intel 486-33 processors connected by a 10Mbit
Ethernet.

This paper is organized as follows. An overview of the system is given in
section 2. Section 3 discusses the design methodology of Cohesion. Subsequently,
the implementation of the system is described briefly in section 4. In section 5, the
performance of Cohesion is shown. Section 6 presents features that set Cohesion
apart from others. Finally, section 7 gives a conclusion of our work.

2. SYSTEM OVERVIEW

Basically, Cohesion encompasses an object-oriented run-time thread system,
similar to PRESTO [2], that provides a convenient parallel programming environ-
ment at the user-level and a kernel based on iRMK (intel Real Time Kernel) for
each node where the coherence manager is incorporated. To implement the idea
of DSM, another three important components are constructed, as illustrated in
Fig. 1; there are reliable communication, memory coherence and kernel sup-
porting subsystems, where a kernel thread is assigned to execute each of them. In
addition, two other kernel threads are employed to execute the user-level threads
and initialization of the user program.

Fig. 1. System overview.

The reliable communication component is responsible for providing a rapid
and reliable vessel to exchange messages in the emulation of shared address space
since DSM is very sensitive to the communication delay. On the other hand, the

728 CE-KUEN SHIEH ET AL

memory coherence component is particularly designed to enforce the consistency
of virtually shared memory among the processors and is adaptive to different
consistency protocols employed in Cohesion. The kernel supporting subsystem
facilitates the Release consistency protocol as well as the object-based sequential
memory. In other words, it provides a bridge, which is called the upcall mechanism,
to integrate the user-level and kernel-level for the purpose of constructing a more
efficient DSM system.

In a user-level thread system, affinity scheduling is implemented, and pro-
grammers are able to locate user-threads to any node in the system statically or
dynamically. Furthermore, an object server is erected which works co-operatively
with other scheduling objects in PRESTO. There are two goals for an object server
: (1) to support synchronization operations, such as queue-based locks, which will
be described in section 4; and (2) to support the release consistency protocol. This
object server in Cohesion is not run as a user thread but is incorporated into the
runtime thread system as an object. Therefore, it is worth noting that data maintained
by the object server on different processors are not related.

2.1 Shared Address Space

Cohesion provides a global address space for users. Typically, the shared
address space of a program running on Cohesion can be divided into three parts.
They can be categorized as object-based, conventional, and release memories, as
shown in Fig. 2. The coherence protocol of the object-based memory employs a
migratory protocol; it is dedicated for shared memory protected in a critical
section and synchronization of objects. While that in the conventional memory uses
write-invalidation; this simplifies the task for developers of locating the shared
system data, such as the global queue in the affinity scheduler, and of porting a
program written for shared memory multiprocessors to Cohesion. For release
memory, a synonym of write-update that remedies the problem caused by false
sharing is adopted. In particularly, the size of each memory can be dynamically
changed by the user. However, they are handled separately.

Fig. 2. Shared address space in Cohesion.

DESIGN AND IMPLEMENTATION OF COHESION 729

2.2 Integrating Convenience in the User-level and Kernel-level

In DSM, since a page is usually taken as a promising shared granularity, the
detection of writes in a kernel is simple and easy to implement. However, the
enforcement of consistency is not necessarily efficient in the kernel because this
will induce overhead especially when buffering techniques and more complicated
algorithms are employed to meet the consistency requirements. Alternatively, this
can be accomplished at the user-level, where much overlapping seems to be in the
run to reduce the impact of communication in the consistency handlers by
making use of convenient and low cost context switching of user threads. Also, if
two or more consistency models are managed by a single kernel, the kernel will
apparently become large and more difficult to debug. As a result, to facilitate
management of the release memory, most of the required state information can be
kept in user space while detection of writes is retained in the kernel.

Overall, the flexibility and convenience provided by the user-level and
kernel-level approaches are incorporated into Cohesion. Conventional memory is
maintained throughout the kernel while release memory is enforced at the user-
level with kernel support. For object-based memory, everything is carried out at
the user-level without kernel intervention. To make this idea work, an object-server
in the run-time threads system serves as an intermediary.

2.3 Annotation

As mentioned earlier, Cohesion distinguishes itself from others in the anno-
tation of shared data. Every shared object in Cohesion is considered to be an item
in a class. When this object inherits the base class specially provided by the
system, the memory consistency model as well as the coherence protocol applied
to the object is set. Therefore, no effort in compiler or preprocessor is needed.
However, the type of a shared object may not be changed once it is set.

Nevertheless, for conventional shared data, there is no need to specify. In
Cohesion, they are kept sequentially consistent by default. This is reasonable and
may simplify implementation. Thus, only the objects in release and object-based
memory have to be annotated in Cohesion. Overall, doing an annotation by inherit-
ing a base class is not cumbersome because it is a unique feature of object-
oriented programming. To briefly illustrate how all this works, an example is shown
in Fig. 3.

class Matrix : public Release { // declaring the Matrix as a Release object.
private : shared data items;
public : member functions;

};
class Sor { // declaring the Sor as a sequential object.

private : shared data items; // this is default without inheriting.
public : member functions;

};

Fig. 3. An example of annotation.

730 CE-KUEN SHIEH ET AL

3. DESIGN METHODOLOGY

Since network latency is a major concern, we need to carefully choose algo-
rithms and strategies for the coherence protocol and for buffering of updates. When
dealing with presentation of writes in the system, either write update or write
invalidate is chosen for the coherence protocol. In the write invalidation protocol,
short messages are sent for invalidation; however, requests for data and invalida-
tions will occur too often when the data are heavily referenced by different pro-
cessors. On the other hand, in the write update strategy, long update messages are
propagated to other nodes that share the data; this may cause additional network
traffic when other processors do not reference the data often.

3.1 Sequential Consistency Model

The Sequential consistency model applied in Cohesion follows the definition
given by Leslie Lamport [8]. In Cohesion, sequential consistency of conventional
memory is maintained at a page granularity, and the algorithm used to implement
this model is similar to that of IVY [10]. For that of object-based shared memory
is maintained at an object granularity.

Definition 1: Sequential Consistency (SC)

A system is sequentially consistent if the result of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the order
specified by its program.

3.1.1 Conventional Memory

In our system, the write invalidation approach is employed to present a write
since this protocol is more efficient in a sequential consistency algorithm. The
management of the pages’ ownership applies a distributed algorithm [9]. Moreover,
to deal with page thrashing, a time window paradigm [6] is employed. The idea
is to hold a page in a processor for at least a quantum of time even if there is a
write request for the page.

3.1.2 Object-based Shared Memory

Object-based shared memory is designed to handle fine-grained shared data
protected in a critical section and synchronization of objects. Typically, all shared
objects allocated in this memory are assumed to be migratory, where an object is
migrated to the first requester and only one owner exists among the processors.

Because the object-shared memory is handled at the user-level, the detection
of writes can not make use of any hardware supports as in conventional memory.
To make this process work, some requirements have to be known by the program-
mers. Since Cohesion provides an object-oriented programming environment, users
may easily declare an object-based shared data as the data item in a user-defined

DESIGN AND IMPLEMENTATION OF COHESION 731

class which inherits the base class dedicated for object-based memory. Then,
users may create this shared object dynamically by overloading the operator
new(), such that the object server may seize this opportunity to insert an entry for
it in an object table. Furthermore, access to this object should be done through
its member functions. Within each member function, before the shared accesses
are allowed to be initiated, a function check() provided in the object server has to
be called to check if the data item resides. If not, the data item will be requested.
When the member function has finished accessing the data, another function,
release(), has to be called to notify others that the data are available. Within the
period of time between check() and release(), the object being accessed cannot be
migrated. This will assure the integrity of the accessed data.

3.2 Release Consistency Model

Basically, the Release consistency model employed in Cohesion is based on
the definition given by Gharachorloo [7]. Experience with release consistent
memories indicates that it is necessary to send messages before announcing that
the release operation is performed. Since there are two or more threads on a
processor, threads may be preempted instead of waiting for acknowledgement.
Based on this fact, the effect of overlapping communication latency may also be
achieved by running another ready thread. Consequently, the requirement that the
synchronization operations be processor consistent is not so essential. In Cohesion,
the synchronization operations in the Release model are kept sequentially consistent.

To deal with updates by a processor, the delay update scheme is employed,
and updates are presented to other caching nodes during release operations. A
consistency protocol for this memory can be stated as a write-update.

Definition 2: Release Consistency (RC)

(a) Before an ordinary LOAD or STORE access is allowed to be performed
with respect to any other processor, all previous acquire accesses must be
performed.

(b) Before a release access is allowed to be performed with respect to any
other processor, all previous ordinary LOAD and STORE accesses must
be performed.

(c) Special accesses are sequentially consistent with respect to one another.

During the execution of a parallel program on Cohesion, a release object
may be allocated dynamically through an overloaded new() operator in C++.
The object server is then invoked by assigning several pages that are large enough
from the pre-allocated release memory pool, as discussed in 4.1, for the object.

4. IMPLEMENTATION

In the following sections, only the most subtle portions in implementation will
be introduced. They include the routines used to allocate shared address space, to

732 CE-KUEN SHIEH ET AL

handle page faults together with the time the upcall is invoked, and to also handle
object management at the user-level as well as synchronization in Cohesion.

4.1 Allocation of Shared Address Space

In Cohesion, efforts are devoted to reduce the possibility of thrashing of system
data. Allocation of memory is specially designed in two levels, the kernel and user
levels. Initially, shared memory space is reserved and is kept sequentially consistent
by the coherence manager. Subsequently, part of this space is allocated as object-
based shared memory during the initialization stage of the thread system. In order
to provide release memory, pages of shared memory that are large enough to meet
user requirements are again pre-allocated. Eventually, this requires a manager, the
object server mentioned previously, who is aware and takes care of these pages at
the user-level. The access right, ownership and copyset of each of these pages are
kept individually in the private space of each processor by the object server; this
will be discussed in 4.3. For release memory, the boundaries of shared pages are
registered by instructing the coherence manager to handle them differently from
conventional pages at each node. In this situation, all future accesses to the release
memory will be intercepted and redirected to the object server. The advantage of
doing so has already been described in section 2.2 and details are given in 4.2. In
Fig. 4, routines described for initialization are shown.

void thread_system_initial() {
……
start_co-schedulers_of_thread_system_on_each_node()
clear_object_based_memory_description_table()
allocate_object_based_shared_memory()
clear_release_page_description_table();
allocate_release_shared_memory()
register_boundary_of_release_memory(start, end);
……

}

Fig. 4. Initialization for release memory.

4.2 Page Fault Handling and Upcalling

The first unique feature that Cohesion possesses is its support of two memory
consistency models in the kernel of the system. In a sense, two memory handlers
in the coherence manager are used to cope with memory violations. In the follow-
ing, the focus is the release memory since the conventional part [10] is very
familiar. Events in the manager are shown in Fig. 5.

In particular, when there is a read fault of release memory, the fault handling
response is similar to that in a conventional memory handler. A page will be
fetched, and the access right will be set as read-only. Since a read miss does not

DESIGN AND IMPLEMENTATION OF COHESION 733

affect buffering or write sharing in the release protocol, no upcall will be outgoing,
and control will return to normal in this case. On write fault, special care is given.
The release memory handler will acquire the page if the page is not present. After
setting its access right, the coherence manager will pass the control to the object
server together with the faulted page number via upcalling. Then, the upcall handler
in the object server may realize that this particular page is dirty, and the number
will be appended to the faulting thread’s delay queue [5]. Subsequently, control
will be returned to the faulting thread.

4.3 Management in the Object Server

For shared objects declared as release or object-based, special care is required.
This management is carried out by the object server at the user-level of each machine.
Although these servers work co-operatively, they have private data and tables to
avoid message exchanges and to maintain the states of shared objects.

In practice, each object has a header that is created during the construction
of the system-provided base class. The information included in the header is listed
below:

(a) type: a flag to specify the memory model applied, i.e., object-based, page-
based or release;

(b) size: the size, in bytes, of the object;
(c) access right: a flag to indicate if the page or the object is clean (read-only),

dirty (read/write) or absent (invalidated);
(d) copyset: a best guess of the set of processors with the page or the object;
(e) probable owner: a best guess of the owner of the page or the object;
(f) twin pointer: a pointer of the page’s twin copy (for Release consistency

only).

Fig. 5. Page fault handling and upcalling.

734 CE-KUEN SHIEH ET AL

For object-based objects, as mentioned before, the check() function call will
look at the bit set in the access right field to find out the state of the data item.
The probable owner will help the object server to retrieve valid data.

For page-based objects, headers are dummies. They are inserted for the
purpose of uniformity.

For release objects, the access right is substantial. The reason is that the
delayed modifications received will be decoded and merged into the page ac-
cordingly by the relevant processors. During merging, updates will also be written
to the twin copy of a page if the page is already dirty in order to avoid retransmis-
sion of updates just received upon the next synchronization by the relevant thread
on the receiving processor. The access right of the page is used to check whether
it is dirty. The copyset tells the releasing thread to which locations the delayed
updates are to be forwarded and is updated when a new caching node is added. The
twincopy may help the object server to find dirty parts of a page for the releasing
thread.

4.4 Synchronization

Parallel programs usually employ synchronization objects, such as locks and
barriers, to remove data races and ambiguities. In Cohesion, locks and barriers
are allocated in the object-based shared memory such that users may consider
synchronization objects as shared data, and no additional manager, such as the lock
manager in other systems, is required. Moreover, they are managed in a distributed
manner, so that the synchronization load can be spread among all the nodes.
Typically, the locks apply a queue-based algorithm [11].

5. PERFORMANCE ANALYSIS

We evaluated the power of two memory consistency models by considering
the speedup of three applications in two versions, i.e., release and conventional
versions, and the results are presented in Figs. 6 through 8. The X-axis represents
the number of processors, and the Y-axis represents the amount of speedup achieved.
To evaluate the efficiency of object-shared memory in a critical section, a Producer-
Consumer was tested.

All of the experiments were carried out on a network of eight 486-33 personal
computers. These computers contained 33MHz INTEL 80486 microprocessors
and the 3Com Ethernet interface. They were connected by a 10 Mbps Ethernet
which was disconnected from other campus networks during the experiments. In
all the tests, the starting time was read when the main thread started off, and the
ending time was recorded when all the worker threads had joined. The elapsed
computation time was the time interval between the starting time and the ending
time.

DESIGN AND IMPLEMENTATION OF COHESION 735

Fig. 6. Speedup of matrix multiplication in Cohesion.

5.1 Matrix Multiplication

Matrix Multiplication computes C = A B, where A, B, and C are N × N square
matrices. In our experiment, a 400 × 400 matrix was used for A, B, and C; only
a single thread was forked on each node during execution. Initially, data were
stored in the master node. During processing, matrix A and B were read-only data.
Fig. 6 shows that a compute-bound program performed pretty well in Cohesion for
both versions. In the release version, the performance loss was due to the com-
munications required for each page that was primarily accessed, and updates of
messages at synchronization points after every thread had completed computa-
tion. In the conventional version, pages were transmitted for reads at the initial
stage and writes were initiated by processors to the same page in matrix C during
execution. Despite the false sharing, we found that the conventional version was
just slightly poorer in performance than the release version. This is because the
data size was large in this problem, and the possibility of false sharing in a page
was relatively small.

5.2 Successive Over-Relaxation

SOR is an algorithm that simply processes iteratively to solve a problem.
Basically, we may regard a matrix as representing a grid of points in a pending area
of the problem. During each iteration, every matrix element for next iteration is
updated to some function of the elements near it. In the experiment, this function
was the average of its nearest neighbors (above, below, left, and right). There are
two matrices in the program, both of which are in turn considered as current and
scratch arrays before an iteration is started. Every element calculated for the next
iteration is written to the scratch array. In our experiment, there were 2000 × 1000
points in the pending area. A single thread which was forked on each node would
synchronize via a barrier at the end of each iteration, and twenty iterations were
presumed for convergence in the program. Comparing the speedup of the two
developed consistency models, the release model did not perform very much better
than the conventional model. The main reason is that two matrices were alternatively

736 CE-KUEN SHIEH ET AL

used for each iteration. This required only that an entry be read from a matrix but
written to another matrix. As a consequence, there was little contention in memory,
and false sharing only caused a problem when several processors were trying to write
the result to a same page in the conventional version. Moreover, there was unlikely
to be much false sharing in this algorithm when the size of the matrix was large.

Fig. 7. Speedup of SOR in Cohesion.

5.3 N-Body

N-Body is a force calculation problem found in the area of astrophysics. It
calculates the total force perceived by each particle in a self-gravitating space
system according to Newton acceleration theorem. Fundamentally, there are N(N
– 1)/2 forces between all pairs of bodies. We may arrange an array of structures
that represent the mass and the coordinates of all particles. In this problem, for
parallelism without contention, we apply four arrays to temporarily store the result,
and barriers are required. Lastly, the final result may be calculated by adding up
all these four arrays for each entry. In the experiment, 8192 particles were con-
sidered. As shown in Fig. 8, we found that the release consistency model indeed

Fig. 8. Speedup of N-body in Cohesion.

DESIGN AND IMPLEMENTATION OF COHESION 737

Fig. 9. Overhead of different consistency models in P-C program.

relieved the program of page thrashing. Although the algorithm in our experiment
required several barriers for synchronization, fully partitioning of the problem
allowed high utilization of the processors. On the other hand, the number of pages
needed for the arrays was small and there apparently was false sharing in every
page. Consequently, pages were thrashed heavily among the processors in the
conventional version. This became a serious problem when there were more than
two processors in the system.

5.4 Efficiency of Object-Shared Memory

In a critical section, data that are truly shared among processors are protected.
It is trivial to state that there is only a single owner of these data at any instant
throughout the execution. Accordingly, a migratory protocol is more suitable.
However, if these data are declared to be objects in a page-based sequential memory,
write invalidation protocol is imposed in Cohesion; if release consistency is used,
write update protocol is concerned. In both methods, additional messages and delays
are involved. Moreover, shared data in a critical section are usually fine-grained.
Consequently, object-shared memory is important. As shown in Fig. 9, three versions
of the P-C program, sequential (page-based, and object-based) and release, with 16
Producers and 16 Consumers accessing a protected 8192 byte buffer were tested to
evaluate the overhead in the critical sections. Each time the thread entered the
critical section, and 128 bytes of “good” were produced or consumed.

6. RELATED WORKS AND DISCUSSIONS

Munin [1, 5] is a shared memory system developed to overcome the ar-
chitecture limitations of shared memory machines while keeping their advantages
in terms of programming ease. A multiple-protocol release consistency in memory
coherence is employed. Most parts of this system are implemented at the user-level.
Although virtual memory manipulation is employed, consistency is enforced on a
per-variable granularity. Munin employs several different strategies instead of a
single memory coherence strategy for all shared data objects to improve performance.

738 CE-KUEN SHIEH ET AL

Each data object is associated with a type accepted as a hint to the system via the
user or the preprocessor. A write-shared consistency protocol is employed to achieve
release consistency protocol to attack the problem of false sharing.

Midway [3] is a distributed shared memory system that supports multiple
consistency models. Data in the program may be declared as processor consistent,
release consistent, or entry consistent. Within a single run of a program, several
multiple consistency models may be active at the same time. Midway tries to minimize
communications costs by aggressively exploiting the relationship between shared
variables and the synchronization objects that protect them. Midway does not rely
on virtual memory system, and consistency models are supported in the granularity
of individual data items. On the other hand, it detects access violations without
taking page faults, and only a small amount of compiler-time support is required
to generate codes that store a new value in a shared data item and mark the item
as ‘dirty’ in an auxiliary data structure. Synchronization objects are permitted to
be cached and further specified as exclusive and non-exclusive. In this way, simul-
taneous reads in a critical section are allowed when non-exclusive synchroniza-
tion objects are used.

Compared to the above systems, Cohesion differs in several ways. Cohesion
is a software distributed shared memory system supporting multiple consistency
models, i.e., sequential and release consistency. The sequential consistency model
includes the designation of conventional and object-based shared memory. It is
worth noting that the release consistency provided in Cohesion does not apply a
multi-protocol. Unlike Munin and Midway, there is no compiler or preprocessor
intervention in the annotation of shared objects. On the other hand, a system-
provided base class is provided. Object-based and release shared objects are
specified by inheriting the system-provided base class. Cohesion mitigates the
overhead in a critical section via object-based shared memory while Midway
employs the entry consistency model. Typically, shared memory is supported in the
granularity of an object and a page. In addition, threads running under Cohesion
are created during run-time, and their locations need not be specified. This offers
us higher programming ease than Munin as well as flexibility for load balancing in
the future. A brief comparison is given in Fig. 10.

Cohesion Munin Midway

Memory Consistency Models 2 1 3

Special Purpose Preprocessor No Yes Yes

Threads Location Dynamic & Static Static Static

Granularity Per Page and Object Per variable Per Data Item

Type Specifying Base Class Inheritance Well-defined Annotation Well-defined Annotation

Reduce overhead in Critical Section Object-based Memory Multi-protocol Entry Consistency

Object-Oriented Yes No No

Fig. 10. Comparison of cohesion, munin and midway.

DESIGN AND IMPLEMENTATION OF COHESION 739

7. CONCLUSIONS

In this paper, we have shown that it is essential for an efficient DSM system
to support at least two consistency models, a strict and a relaxed model. Cohesion
provides programming transparency and eases porting by supporting the Sequential
consistency model. We can reduce the impact of excessive networking and page
thrashing due to false sharing in a coarse-grained unit using the Release con-
sistency model. Fine-grained objects may be allocated in object-based memory.
Furthermore, delay in a critical section can be shortened by applying object-based
shared memory. At this point, users are able to select the consistency type of a
shared object according to the object’s behaviour. Therefore, Cohesion provides
benefits in a wide variety of applications although there is a trade-off to explicitly
annotate the consistency type in the program.

Since object-oriented programming is emphasized, shared data can be anno-
tated by inheriting a system-provided base class. This specification is easy and
reasonable. Moreover, no compiler or preprocessor is required to handle this
annotation. This makes Cohesion more familiar to a parallel programmer.

In Cohesion, the processors applied in our study were 33MHz Intel micropro-
cessors. Therefore, the 10Mbits Ethernet, which was so much slower than the
processors, became a bottleneck in the system. This constraint limited the
speedup potential of the system. This conflict between processor and network in
speed should be eliminated by applying a faster network, such as ATM. This may
eliminate the large latency in communications in the network.

REFERENCES

1. John K. Bennett, John B. Carter and Willy Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Second ACM
SIGPLAN Symposium of Principles and Practice of Parallel Programming, 1990,
pp. 168-175.

2. Brian N. Bershad, Edward D. Lazowska and Henry M. Levy, “PRESTO: A
system for object-oriented parallel programming,” Software - Practice and
Experience, Vol. 18, No. 8, 1988, pp. 713-732.

3. Brian N. Bershad, Matthew J. Zekauskas and Wayne A. Sawdon, “Midway:
Shared memory parallel programming with entry consistency for distributed
memory multiprocessors,” Technical Report, CMU-CS-91-170, Department of
Computer Science, Carnegie-Mellon University, 1991.

4. John B. Carter, “Efficient distributed shared memory based on multi-protocol
release consistency,” Ph. D. dissertation, Department of Computer Science, Rice
University, 1993.

5. John B. Carter, John K. Bennett and Willy Zwaenepoel, “Implementation and
performance of Munin,” in 13th ACM Symposium of Operating Systems Prin-
ciples, 1991, pp. 152-164.

6. Brett D. Fleisch and Gerald J. Popek, “Mirage: A coherence distributed shared
memory design,” Operating Systems Review, Vol. 23, No. 5, 1989, pp. 211-223.

740 CE-KUEN SHIEH ET AL

7. Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta and John Hennessy, “Memory consistency and event ordering in
scalable shared-memory multiprocessors,” in 17th Annual International Sympo-
sium of Computer Architecture, 1990, pp. 15-26.

8. Leslie Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computer, Vol. 28,
No. 9, 1979, pp. 690-691.

9. Kai Li, “Shared virtual memory on loosely coupled multiprocessors,” Ph. D.
dissertation, Department of Computer Science, Yale University, 1986.

10. Kai Li, “IVY: A shared virtual memory system for parallel computing,” in
Proceedings of 1988 IEEE International Conference on Parallel Processing,
1988, pp. 94-101.

11. John M. Mellor-Crummey and Micheal L. Scott, “Synchronization without
contention,” in Fourth International Conference of Architectural Support for
Programming Languages and Operating Systems, 1991, pp. 269-278.

12. Ajay Mohindra, “Issues in the design of distributed shared memory systems,”
Ph. D. dissertation, Department of Computer Science, Georgia Institue of Tech-
nology, 1993.

13. Bill Nitzberg, Virginia Lo, “Distributed shared memory : A survey of issues and
algorithms,” Computer, Vol. 30, No. 8, 1991, pp. 52-60.

14. Ce-Kuen Shieh, An-Chow Lai, Jyh-Chang Ueng, Tyng-Yeu Liang, Tzu-Chiang
Chang, Su-Cheong Mac, “Cohesion: An efficient distributed shared memory
system supporting multiple memory consistency models,” in AIZU International
Symposium of Parallel Algorithms/Architecture Synthesis, 1995, pp. 146-152.

Ce-Kuen Shieh b is currently an associate
professor in the Department of Electrical Engineering,
National Cheng Kung University. He received his Ph. D.,
M. S., and B. S. degrees from National Cheng Kung Uni-
versity, all in electrical engineering. His current research
interests include distributed/parallel processing, operating
systems, computer networking, and compilers.

Jyh-Chang Ueng is currently a Ph. D. can-
didate in the Department of Electrical Engineering at
National Cheng Kung University. Ueng received his
B. S. degree from National Sun Yat-Sen University in 1991,
and M. S. degree from National Cheng Kung University
in 1993. His main research interest is Distributed Shared
Memory.

DESIGN AND IMPLEMENTATION OF COHESION 741

An-Chow Lai is currently a Ph. D. candi-
date in the Department of Electrical and Computer En-
gineering at Purdue University, U. S. A. His main research
interest is Distributed Shared Memory. Lai received his
B. S. and M. S. degrees from National Cheng Kung University
in 1992 and 1994, respectively.

Tyng-Yue Liang is currently a Ph. D. can-
didate in the Department of Electrical Engineering at
National Cheng Kung University. His main research interest
is Performance Optimization on Distributed Shared
Memory. Liang received his B. S. and M. S. degrees from
National Cheng Kung University in 1992 and 1994, respec-
tively.

Su-Cheong Mac received his B. S., M. S.,
and Ph. D. degrees from National Cheng Kung University
in 1990, 1992, and 1998, respectively. His research interests
focus on integrating Distributed Shared Memory and parallel
I/O.

