
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 423-440 (2020)
DOI: 10.6688/JISE.201903_36(2).0017

423

Live Save: An Efficient Snapshot Mechanism
for Virtual Machines in Xen

PO-JEN CHUANG AND YEN-CHIA HUANG

Department of Electrical and Computer Engineering
Tamkang University

Tamsui, New Taipei City, 25137 Taiwan
E-mail: pjchuang@ee.tku.edu.tw

We present an efficient snapshot mechanism, briefed as Live Save, to make real

time backup of the virtual machine state to a local host. Live Save will iteratively send
the state data, store the snapshot file in a local host and, when necessary, send the entire
file directly to a remote host – to reduce network bandwidth consumption in existing
snapshot practices. In iterative transmissions, when dirty frequency rises to a certain high
level, iterations may fail to reduce dirty pages and hence become redundant. To handle
the problem, we add a simple judging measure to Live Save to form an Improved Live
Save which will adaptively adjust the maximum number of iterations. By maintaining the
maximum number of iterations, Improved Live Save can avoid futile iterations – saving
unnecessary iterative computation in Live Save. Extended simulation runs are conducted
to evaluate the performance of various snapshot mechanisms (Xen Save, Xen Live Mi-
gration, Live Migration Save (VNsnap), Live Save and Improved Live Save) in terms of
downtime, total execution time and total pages sent. The results show that, in performing
the snapshot practice, both Live Save and Improved Live Save are more resource-con-
serving than the other mechanisms.

Keywords: cloud computing services, virtualization, Xen, virtual machines, state snap-
shot mechanisms, dirty frequency, performance evaluation

1. INTRODUCTION

Virtualization techniques [1-5] are important for cloud services because they help to
build fully functional virtual machines (VMs) on limited physical resources to maximize
hardware utilization and system performance. Current virtualization techniques tend to
use such physical resources as CPU, memory, network interface cards or storage to build
fully functional VMs which can execute operating systems and applications like real
computers. Aided by the techniques, cloud service providers can now turn one physical
server into a number of VMs to maximize hardware utilization and conserve physical
resources [6-11]. In practice, when hardware or software errors occur in a computer with
multiple VMs, it may cause VMs to become faulty and consequently affect cloud sys-
tems and services. To maintain proper system performance, a cloud service provider
must back up VMs in advance so that he can recover a faulty VM – when it happens – at
the shortest time. Traditionally, we can back up a system in the shutdown period. But it
is infeasible to shut down a cloud system for VM backup because the impact on services
can be serious. To lessen the impact, we can involve the snapshot technique [12] to back
up virtualization systems at minimized downtime. The snapshot of VMs, which usually

Received August 15, 2018; revised November 18, 2018 & April 2, 2019; accepted June 10, 2019.
Communicated by Jan-Jan Wu.
* A preliminary version of this paper was presented at the 10th IEEE International Conference on Service-Ori-

ented Computing and Applications, Kanazawa, Japan, Nov. 2017.

PO-JEN CHUANG AND YEN-CHIA HUANG

424

contains the backup of hard disks and system states (memory + vCPU), can handily help
us to restore a faulty system to the checkpoint.

Xen [13-15] is a popular virtualization platform without the snapshot function. To
obtain the snapshot of hard disks and system states, it depends on the Logical Volume
Manager in the Linux system [16-18] and the Xen Save function. To generate the image
file of the VM state, Xen Save must shut down the VM first and the generation time of a
snapshot (i.e., the system downtime) is subject to the memory size of the VM. It may
take tens of seconds during which cloud services must totally stop. To shorten the down-
time, VNsnap [19, 20] builds a Live Migration Save mechanism based on Xen Save
and Xen Live Migration commands for distributed systems [21, 22]. Live Migration
Save (VNsnap) uses a host as the target to receive and store the VM state snapshots. It
successfully reduces the system downtime in Xen Save. The reduction is nevertheless
attained with considerable network bandwidth consumption – because the VNsnap Live
Migration Save needs a daemon to receive and store the state data of VMs and has to
send the memory data continuously in the Internet.

To reduce the obvious bandwidth consumption in Live Migration Save, we set up
a new snapshot mechanism – briefed as Live Save – in this investigation. Different from
Live Migration Save, the proposed Live Save sends the VM state data in iterations,
stores the snapshot file in a local host and, will directly transmit the complete snapshot
file to a remote host only when necessary. Note that, in iterative transmissions, when
dirty frequency (i.e., the number of dirty pages generated per unit time) reaches a certain
high level, iterations may find no page for transmission and become resource-wasting
redundant iterations. To handle the situation, we set up a simple judging measure in the
original Live Save to form a modified Improved Live Save mechanism which can ad-
just the allowed maximum number of iterations adaptively, as follows. In the iterative
practice, when Improved Live Save detects dirty frequency rises to such a high level
that iterations cannot effectively reduce dirty pages, it will decrease the maximum num-
ber of iterations by 1 after each iteration to prevent redundant iterations. On the other
hand, when dirty frequency drops below the level, the modified mechanism will increase
the maximum number by 1 – without exceeding the preset threshold, to maintain proper
performance. The simple judging measure enables Improved Live Save to avoid insig-
nificant iterations and, as a result, to perform better in total execution time and transmit-
ted memory data than the original Live Save.

Extensive simulation runs are conducted under different CPU cap values and Do-
main-U settings, to evaluate the performance of various snapshot mechanisms (Xen Save,
Xen Live Migration, Live Migration Save (VNsnap), Live Save and Improved Live
Save) for a number of parameters (dirty frequency, numbers of dirty pages, iteration time,
numbers of iterations, downtime, total execution time and total pages sent). The obtained
results show that, in contrast to other mechanisms, the proposed Live Save and Im-
proved Live Save both perform with reduced network bandwidth consumption and
downtime. Improved Live Save, in particular, performs better in numbers of iterations,
total execution time and total pages sent. The performance gain comes mainly from the
following key designs: (1) live backing up VM states to the local host (“live backup”
indicates to back up the VM state in a minimal shutdown period); (2) without sending
the memory data iteratively in Internet; and (3) adaptively adjusting the maximum num-
ber of iterations to avoid futile iterations.

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 425

2. BACKGROUND STUDY

2.1 Xen Save [13]

Originally, Xen uses the Save command to direct a VM into the standby mode and

uses the Restore command to wake it up into the operation mode. When Save is issued,
the VM will shut down its operation to generate the image file of its state. The size of the
image file, as mentioned, equals the memory size of the VM and the file generation
time – which depends also on the memory size – may range as long as tens of seconds.
The standby VM will wake up upon the issue of Restore to resume its operation accord-
ing to the generated image file (which functions as the state snapshot of the VM).

2.2 Migration [21, 22]

We can perform VM migration – offline or live – to move VMs from a physical

source host to another physical target host with identical virtualization environments.

Offline migration: A VM will be shut down completely before migrating from the
source to the target and will restore the operation only after the migration ends (i.e., the
original service will totally halt during the migration).

Live migration: A VM can move from the source to the target without being shut down.
It will maintain the operation during most of the migration, cease only briefly at the very
end (when to leave the source to the target) and instantly revive the operation when the
migration ends.

2.3 Live Migration [21-27]

In contrast to offline migration, live migration is a more feasible VM migration

mode for cloud computing and virtualization practices because it helps to maintain al-
most all services in the migration (so that cloud servers can upgrade, replace or repair
devices without interrupting routine services). Live migration can be post-copy or
pre-copy – the latter is currently the mainstream application in commercial software,
including Xen. VM live migration usually works by the following three phases, but dif-
ferent migration modes may involve varied phases. For instance, post-copy migration
works by the second and third phases, whereas pre-copy migration (such as Xen Live
Migration) involves the first and second.

The push phase: When live migration starts, the VM will maintain its operation at the
source host and simultaneously keep sending data to the target. To preserve data con-
sistency in both ends, it must re-send all changed data in the process.

The stop-and-copy phase: The VM will briefly stop the service only at the instant to leave
the source host. It will keep sending the remaining memory state data to the target in this
brief suspension. After all state data are sent to the target host, the VM – which has been
officially migrated from the source to the target now – will instantly resume the service.

PO-JEN CHUANG AND YEN-CHIA HUANG

426

The pull phase: After the migration, when the VM in the target host accesses uncopied
memory data to result in page faults, the memory data will be sent from the VM in the
source to the VM in the target.

2.4 Xen Live Migration [22]

Xen Live Migration moves a VM from the source host to the target in the follow-

ing steps.

Pre-migration: The source host first sends a migration inquiry to the target to check the
compatibility before migration starts.

Reservation: With compatibility checked, the source will issue the migration request
and, after receiving confirmation from the target, start to transfer the data.

Iterative pre-copy: The source will copy the VM memory data and send the copy to the
target in iterations. In the iterative process, all memory data will be sent in the first itera-
tion. In following iterations before each ends and begins, call XEN_DOMCTL_SHA-
DOW_OP_CLEAN to get the bitmaps of dirty pages (changed memory pages) and copy
the two bitmaps to to_send and to_skip. Clear the two bitmaps for re-recording in sub-
sequent iterations. The two bitmaps (which respectively indicates the pages turning dirty
in the previous and current iterations) will reveal the pages to be sent in the current itera-
tion: i.e., the dirty pages which were generated in the previous iteration but are not
changed (not turning dirty again) in the current iteration. Then check at the end of each
iteration to see if it reaches the stop condition: If yes, go to the next step (stop-and-
copy); if no, keep sending the memory data in iterations.

Stop-and-copy: Set last_iter to 1. The source will shut down the VM, copy the dirty
page bitmap to to_send, and send the memory pages with to_send or to_fix = 1 (i.e., the
dirty pages generated in the last iteration or the frequent dirty pages) – along with the
state of CPU – to the target.

Commitment: After receiving the complete and consistent data of the VM, the target
will notify the source to shut down the VM.

Activation: The VM which is now completely migrated from the source to the target
will instantly activate the service.

2.5 Live Migration Save (VNsnap) [12, 19, 20]

Snapshot studies used to be hard disk oriented, i.e., we can use the snapshot tech-

nique to fix the hard disk and restore the VMs. In cloud services, it is obvious that we
can use the VM state snapshot backup file to restore a faulty VM more instantly. Recall
that, during VM migration, Xen Live Migration will keep sending the VM’s memory
data iteratively until there remain only a few highly modifiable memory pages. It will
shut down the VM and transfer the remaining data (with the CPU state) to the target at

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 427

the end of the migration to retain as much service as possible. To further reduce the
shutdown duration in Xen Live Migration, Live Migration Save (VNsnap) uses a
physical host as the target to receive and store the state snapshot file of a migrating VM.
The new design shortens the required system downtime and preserves more routine ser-
vices in the snapshot process.

Table 1 lists the basic features of Xen Save, Xen Live Migration and Live Migra-
tion Save to assist understanding.

Table 1. The features of Xen Save, Xen Live Migration and Live Migration Save (VNsnap).
Xen Save Xen Live Migration Live Migration Save

Live no parameter “l” is live yes
VM downtime the entire backup period the stop-and-copy phase the stop-and-copy phase
Destination of
VM migration

specified file location
in the host

the target host
(the file not retained)

the target host
(the file retained)

VM state at the end
of backup

when “-c” backup ends,
VM resumes the operation

the source stops and the
target starts to work

resume the operation
when backup ends

3. THE PROPOSED SNAPSHOT MECHANISMS

To maintain proper cloud system performance, this paper presents an efficient new
snapshot mechanism – Live Save – to minimize system downtime when backing up the
VM states. In contrast to Live Migration Save which needs an additional daemon to
receive the memory data of VMs, Live Save is more resource conserving as it live backs
up the VM state to a local host without iteratively sending memory data in the Internet.

3.1 Live Save

Built also over Xen Save, the proposed Live Save aims to reduce the network

bandwidth consumption in existing Live Migration Save. Recall that Live Migration
Save uses an extra daemon host to receive and store the VM state data, which is quite
bandwidth consuming as it must send the memory data (including those being overwrit-
ten by the newly transferred data) iteratively and continuously in the Internet. To fix the
situation, our Live Save sends the VM state data in iterations and stores the file in a local
host instead of a remote one – with no network bandwidth consumption as shown in Fig.
1. When it is necessary to send the snapshot file to a remote host (e.g., when a VM gets
faulty), Live Save can also work out with less complexity. It will directly send the gen-
erated complete snapshot file to the remote host after iterations end, consuming obvi-
ously less network bandwidth than Live Migration Save which sends memory data (in-
cluding redundant ones) continuously in the Internet.

To sum up, Live Save works differently from Live Migration Save in (1) sending
the VM state data in iterations and storing the snapshot file in a local host, and (2) di-
rectly sending the generated complete snapshot file to a remote host only at need. Both
practices help to bring down the required network bandwidth consumption. (Table 2
gives the pseudo code of our Live Save.)

PO-JEN CHUANG AND YEN-CHIA HUANG

428

Fig. 1. The architecture of live save.

Table 2. The pseudocode of our live save.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// start live backup by iteratively transmitting
// the VM’s memory data to the local hard disk
While (not any of the 3 stop conditions) {
// the stop conditions:
// (1) the number of iterations exceeds MAX_iterations (to be Xen’s
// MAX_iterations, i.e., 30, initially)
// (2) dirty pages generated in the previous and current iterations are
// less than 50
// (3) total pages sent exceed the triple of memory size

if (first iteration)
copy all the VM’s memory data into the local hard disk

else // subsequent iterations
send the dirty pages to the local hard disk
// the dirty pages to be transmitted in this iteration are the
// dirty pages each of which has been generated in
// the previous iteration but has not become dirty again
// in this iteration

}
// stop and copy
shut down the VM and stop service briefly
copy remaining dirty pages and CPU state into the local hard disk
activate the VM and resume service

`

3.2 Improved Live Save

Experimental evaluation shows that system downtime in our snapshot operation will

culminate when dirty frequency reaches a certain high level, and that the numbers of
iterations and total pages sent will affect the length of downtime. Based on the results,
we set up a simple judging measure to manage the two parameters in order to reduce
downtime and preserve system performance.

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 429

3.2.1 The problem of dirty frequency

Like Xen Live Migration, our Live Save will terminate the iterations on three stop

conditions:
(1) when the number of iterations exceeds 30 (preset in Xen)
(2) when dirty pages generated in the previous and current iterations are less than 50
(3) when total pages sent exceed the triple of the memory size

Following the three stop conditions and the simulation results, we attain three dirty

frequency phases – low, medium and high, each corresponding to one of the stop condi-
tions:

low → the generated dirty pages in the previous and current iterations are less than 50
medium → the total pages sent exceed the triple of the memory size
high → the number of iterations exceeds 30

To solve the dirty frequency problem in Live Save, we will focus on the first itera-

tion stop condition – the maximum number of iterations – based on the following find-
ings.

According to simulation results, the highest downtime tends to fall at the second
half of the medium dirty frequency phase – indicating iterative transmissions after this
second phase no longer support the generation of dirty pages and subsequent iterations
may find no page for transmission. As mentioned, the page to be sent in a new iteration
will be the dirty pages generated in the previous iteration which do not turn dirty again in
the new iteration. Hence, with high dirty frequency, iterations may fail to reduce dirty
pages effectively. As simulation results show that system downtime usually arrives at the
peak at CPU cap25, we assume such high dirty frequency appears after CPU cap25 – i.e.,
after cap25, the iteration speed will drop below dirty frequency. (Note that the CPU cap
value of 25 indicates 25% of CPU usage.)

The results of total pages sent and numbers of iterations show that iterations will
stop when total transmitted memory data multiply the memory size between CPU cap13
and 31. In this cap interval, it is still possible for iterations to reduce dirty pages, i.e., it
remains likely to reduce downtime. Then, after CPU cap34 when dirty frequency rises to
such a high level, it turns unlikely to reduce dirty pages or downtime – because hardly
any page transmission will take place now: even if there is some page to transmit, it will
soon turn dirty again. Iterations hence become redundant and resource-wasting.

3.2.2 The improved design

To solve the dirty frequency problem in Live Save, we insert a simple judging mea-

sure into original Live Save to form a modified Improved Live Save. With the judging
measure, the modified mechanism can instantly adapt the dirty frequency levels to lessen
the high dirty frequency impact. Improved Live Save works as follows. When dirty
frequency rises to such a high level (say H) where iterations cannot effectively reduce
dirty pages, the modified mechanism will decrease the maximum number of iterations
(MAX_iterations) by 1 after each iteration, to maintain appropriate performance. When

PO-JEN CHUANG AND YEN-CHIA HUANG

430

dirty frequency drops below H, it will increase MAX_iterations by 1 – but not to exceed
the preset MAX_iterations in Xen. By the simple practice, we can avoid insignificant
iterations in Live Save to save overall execution time and total transmitted memory data.

In Improved Live Save, we can define H as the dirty frequency of an iteration
which rises to such a high level that the iteration may produce no less dirty pages than
the previous iteration. In fact, such a high level H will lead the system to the processing
limit and cause iterations unable to reduce dirty pages effectively. That is, with H, the
current iteration will likely become a useless iteration with no page for transmission. For
improvement, when dirty frequency reaches H, our modified mechanism will cut MAX_
iterations by 1 at the end of the iteration to avoid such useless iterations. On the other
hand, when dirty frequency drops below H and there remain chances to reduce dirty
pages, it will increase MAX_iterations by 1 at the end of the iteration – not to exceed the
preset threshold. (Table 3 gives the pseudocode of the judging measure which can be
readily inserted between lines 17 and 18 in Table 2.)

As mentioned in Section 3.2.1, dirty frequency levels (low, medium, or high) are
differentiated on the basis of iteration stop conditions, i.e., dirty frequency levels are not
fixed and will vary with different disk-writing speed. For instance, in a system with very
low disk-writing speed, a moderate dirty frequency may become H simply because the
system may not catch up with even such a moderate dirty frequency. Note that in a sys-
tem with fixed disk-writing speed, H can be computed initially and be fixed (as the value
of H results from the dirty frequency of an iteration which rises to such a high level that
the iteration may produce more/equal dirty pages than the previous iteration and hence
find no page for transmission).

Table 3. The pseudocode of the added judging measure.
1
2
3
4

if dirty frequency > system process limit
MAX_iterations = MAX_iterations 1

else if MAX_iterations < Xen’s MAX_iterations
MAX_iterations = MAX_iterations + 1

4. PERFORMANCE EVALUTION

4.1 The Simulation Environment

Extended simulation runs are conducted to check the performance of various snap-

shot mechanisms, including Xen Save, Xen Live Migration, Live Migration Save
(VNsnap), Live Save and Improved Live Save. We carry out the simulation in 2 Xen
hosts with Intel Quad-core CPU: 3.30GHz, 4GB memory, Xen-4.5.1 and 3.16.0 Linux
kernel (hosted virtualization with para-virtualization) and 1 Network File System (NFS)
host [28] with Intel CPU: 3.30GHz, 2GB memory and 3.13.0 Linux kernel. Note that we
use 2 Xen hosts and 1 NFS host to run the simulation for Xen Live Migration and Live
Migration Save (as Fig. 2 shows) but only 1 Xen host to run the simulation for Xen
Save, Live Save and Improved Live Save.

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 431

Fig. 2. The migration environment.

In the simulation, domain-U keeps writing data into the memory to make it dirty
and the Credit Scheduler [11, 29] will set up CPU cap levels for domain-U. By setting up
the CPU cap levels, we can limit domain-U’s CPU usage to yield different levels of dirty
frequency: CPU cap0 indicates unlimited (100%) CPU usage, whereas CPU cap1~99
indicates 1%~99% CPU usage. When issuing the Save and Migration commands, we use
command parameter vvv to attain more detailed messages and wanted data from the
system, including the system downtime, execution time and numbers of data sent. Do-
main-U has two settings: VM memory 1G (with 1GB memory – data written randomly
and continuously to its 512MB memory) and VM memory 2G (with 2GB memory – data
written randomly and continuously to its 1GB memory).

Regarding simulation results, all data are the average value of 20 runs and the CPU
cap interval is set to be 3 (0 (idle), 1, 4, 7…100 (0)). For instance, downtime for Impro-
ved Live Save at CPU cap28 is 6050.55 (Fig. 6 (a)). Given 95% of confidence, the cal-
culated confidence interval half-width over the 20 replications is 168.7258964 – indicat-
ing we are 95% confident that the true result will fall between 6050.55168.7258964 or
equivalently 6050.552.79% (with less than 3% error). It shows that the simulation re-
sults are reasonably accurate, i.e., we can practically exclude possible deviations due to
simulation scenarios generated by random numbers.

4.2 Simulation Results

4.2.1 Dirty frequency vs. CPU caps

Fig. 3 (a) gives dirty frequency at different CPU cap values (0%~100%) for the five

mechanisms. As we can see, Save is without dirty frequency because it directly shuts
down the system in the snapshot process. Dirty frequency for the other four mechanisms
grows with CPU cap values in a similar rising trend. (Note that in later simulations, we
will adjust the CPU caps to get varied dirty frequency in order to observe the corre-
sponding performance and overhead).

4.2.2 Dirty pages in each iteration vs. CPU caps

Figs. 3 (b) and (c) give the numbers of dirty pages generated in each iteration at

different CPU caps, respectively for VM memory 1G and 2G. The results show that, for
the four mechanisms, dirty pages generated in the iterations all reach the peak after CPU
cap 31. We also find that, after this cap value, the obtained dirty pages are close to the

PO-JEN CHUANG AND YEN-CHIA HUANG

432

(a)

(b)

(c)

Fig. 3. (a) Dirty frequency vs. CPU caps; (b) Dirty pages/each iteration vs. CPU caps for VM
memory 1G; (c) Dirty pages/each iteration vs. CPU caps for VM memory 2G.

size of data written into the memory (131072 pages – close to 512M memory and
262144 pages – close to 1G memory), indicating nearly all memory pages turn dirty in
iterations after CPU cap 31.

4.2.3 The average iteration time vs. CPU caps

Fig. 4 exhibits the average iteration time, from the second to the last second itera-

tions, at different CPU caps for VM memory 1G (a) and 2G (b). (The first and last itera-

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 433

tions are excluded because the first sends all memory data and the last is the stop-and-
copy phase.) We observe that the average iteration time rises sharply before CPU cap10
for all mechanisms. This is because, when dirty pages increase in the memory, mecha-
nisms need to transmit increasing pages in each iteration. After CPU cap10, the average
iteration time starts to decline. This is because, after the cap value, iterations tend to han-
dle fewer pages at less transmission time. Recall that the pages to be sent in a new itera-
tion are the dirty pages from the previous iteration which do not turn dirty again at the
beginning of the new iteration. Hence, when high dirty frequency produces more dirty
pages in the memory, it will cause subsequent iterations to skip more dirty pages and
meanwhile to transmit fewer pages.

(a) VM memory 1G.

(b) VM memory 2G.

Fig. 4. The average iteration time vs. CPU caps.

4.2.4 The average number of iterations vs. CPU caps

Fig. 5 depicts the number of iterations at different CPU caps for VM memory 1G (a)

and 2G (b). As it shows, the numbers of iterations for Live Migration, Live Migration
Save and Live Save all grow with cap values before CPU cap37. After cap37, the three
mechanisms maintain a steady trend of 30 iterations to the end (i.e., cap0 (100%)). As
for Improved Live Save, the number of iterations rises from the beginning, takes a de-
cending turn at cap28 (a) and cap31 (b), and then stays around 17 until the end. (By con-

PO-JEN CHUANG AND YEN-CHIA HUANG

434

trast, Save runs only one iterative transmission.)
We also find the numbers of iterations ascend before CPU cap7. This is because,

when dirty frequency rises, we need more iterative transmissions to reduce dirty pages in
order to reach the stop condition for the low dirty frequency phase: dirty pages from both
the previous and current iterations must be less than 50 (Section 3.2.1). The numbers of
iterations increase between CPU cap7 and 37 for a different reason: When rising dirty
frequency results in more skipped pages and fewer transmitted pages, we must carry out
more iterations to get the needed pages in order to meet the stop condition for the me-
dium dirty frequency phase: the total transmitted pages exceed the triple of the memory
size. After CPU cap37, the number of iterations reaches 30 which is the stop condition
for the high dirty frequency phase.

Fig. 5 (b) exhibits that the number of iterations for our Improved Live Save starts
to decrease after CPU cap31. It happens as dirty frequency has now reached such a high
level that iterative transmissions can hardly keep up with generation of dirty pages, i.e., it
becomes difficult to reduce dirty pages. Improved Live Save hence starts to decrease
the number of iterations (between cap31 and 40) to 17 – the smallest number of itera-
tions.

(a) VM memory 1G.

(b) VM memory 2G.

Fig. 5. The number of iterations vs. CPU caps.

4.3 Downtime

The results of downtime obtained at different CPU caps are shown in Fig. 6 (a) /

Table 4 for VM memory 1G and Fig. 6 (b) / Table 5 for VM memory 2G. (Both tables
show the results from cap1 to 25 and at idle.) As observed, downtime grows with CPU
caps before cap25 for all mechanisms except Xen Save, with a similar trend: growing
slowly before cap4, abruptly between cap4 and 10, and slightly from cap 10 to 25. The

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 435

fact that downtime reaches the highest after cap25 and remains so to the end (with spo-
radic variations) reveals that iterations after cap25 can hardly reduce dirty pages.

Table 4. Downtime from CPU cap1 to cap25 and at idle (VM memory 1GB).
downtime idle 1 4 7 10 13 16 19 22 25

Save 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5
Live Migration 3.9 4.8 5.1 1715.2 3922.8 4290.35 4413.7 4520.4 4631.45 4698.65

Live Migration Save 3.85 51.1 8.55 4343.15 5728.5 6964.8 6609.7 5909.85 6495.65 5394.4
Live Save 9.7 31.55 192.4 4495.7 4641.45 5279.05 5443 5730.95 5781.55 5855.2

Improved Live Save 7.5 6.9 15.2 3272.05 4825.15 5301.4 5525.35 5677 5928 5919.8

Table 5. Downtime from CPU cap1 to cap25 and at idle (VM memory 2GB).
downtime idle 1 4 7 10 13 16 19 22 25

Save 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5
Live Migration 3.9 4.8 5.1 1715.2 3922.8 4290.35 4413.7 4520.4 4631.45 4698.65

Live Migration Save 3.85 51.1 8.55 4343.15 5728.5 6964.8 6609.7 5909.85 6495.65 5394.4
Live Save 9.7 31.55 192.4 4495.7 4641.45 5279.05 5443 5730.95 5781.55 5855.2

Improved Live Save 7.5 6.9 15.2 3272.05 4825.15 5301.4 5525.35 5677 5928 5919.8

(a) VM memory 1G.

(b) VM memory 2G.
Fig. 6. Downtime.

Among the mechanisms, Xen Live Migration produces the shortest downtime, fol-
lowed by Live Save, Improved Live Save, Live Migration Save and Xen Save. Unlike
other mechanisms which have to generate a snapshot of the VM state data and write it to
the hard disk, Xen Live Migration sends the state data directly to the memory of the
target host. It hence takes less execution time in the stop-and-copy phase, to produce the

PO-JEN CHUANG AND YEN-CHIA HUANG

436

shortest downtime. Our Live Save and Improved Live Save take less downtime than
Live Migration Save (as much as 4000 ms less in Fig. 6 (b)) because we write the VM
state data directly to the hard disk of a local host, whereas Live Migration Save sends
the data to the snapshot daemon of the target host and later writes the received data from
memory to the hard disk. Xen Save needs the longest downtime because, instead of iter-
atively sending the state data in advance, it will shut down the VM first before engaging
VM migration.

4.4 Total Execution Time

Fig. 7 depicts the total execution time at different CPU caps. We see total execution

time grows with cap values before CPU cap10 for all mechanisms except Xen Save –
because the mechanisms must engage more iterations to send the increased dirty pages
when dirty frequency rises. Between CPU cap10 and 28, total execution time reaches the
top and remains there with slight variation. The level total execution time is the result of
decreasing execution time and rising downtime offsetting each other in this cap interval.

(a) VM memory 1G.

(b) VM memory 2G.

Fig. 7. Total execution time.

Total execution time decreases after CPU cap28 as downtime stops growing after

reaching the peak and execution time continues to decrease in iterations. In all mecha-
nisms, Xen Save directly shuts the VM down without iteratively sending memory pages
and hence yields the least total execution time. Xen Live Migration, Live Migration
Save and Live Save display a similar trend in total execution time, with Xen Live Mi-

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 437

Fig. 8. Total pages sent.

gration performs slightly better because it does not write the state data to the hard disk.
In contrast to the three mechanisms, our Improved Live Save yields significantly re-
duced total execution time (up to 20000 ms reduction in Fig. 7 (b)), mainly because its
practice effectively reduces both the number of iterations and execution time.

4.5 Total Pages Sent

The results of total pages sent are plotted in Fig. 8. Before CPU cap10, total pages

sent increases with CPU caps for all mechanisms (except Xen Save). This is because,
when dirty frequency rises, each mechanism will take more iterations to reduce dirty
pages in order to meet the stop condition for the low dirty frequency phase. From cap10
to 28, total pages sent reaches the same peak at each cap. It stops growing with cap val-
ues because all have reached the iteration stop condition for the medium dirty frequency
phase. Beyond cap28, when high dirty frequency generates more skipped pages and less
transmitted pages, total pages sent keeps decreasing. Of the mechanisms, Xen Save
yields the least total pages sent because it sends all memory pages in one transmission.
Xen Live Migration, Live Migration Save and Live Save turn out quite similar results,
with Xen Live Migration producing slightly more total pages sent (as it does not write
the state data of a VM to the hard disk). Our Improved Live Save starts to function after
cap28. By instantly adapting the dirty frequency levels, it effectively reduces both the
number of iterations and total pages sent (a significant reduction of more than 100000/
200000 pages is shown in Figs. 8 (a) and (b)).

(a) VM memory 1G.

(b) VM memory 2G.

PO-JEN CHUANG AND YEN-CHIA HUANG

438

4.6 An Overall Recap

To facilitate illustration, we list the features of Xen Save, Live Migration Save and

Live Save in Table 6 and recap key performance/cost comparisons for Xen Save, Live
Migration Save, Live Save and Improved Live Save in Table 7.

Table 6. Basic features.

Xen Save Live Migration Save Live Save
Live Non live Live Live

VM downtime From backup to the end The stop-and-copy phase The stop-and-copy phase
Destination of VM
state data transfer

Specified file location in
local host

The target host (the file
not retained)

Specified file location in
local host

Table 7. Key comparations.
Xen Save Live Migration Save Live Save Improved Live Save

Downtime High Medium Low Low
Total execution time Low High High Medium

Total pages sent Low High High Medium
Network banwidth consumption No Yes No No

5. CONCLUSION

As mentioned, we can adopt snapshot techniques to backup the state files of VMs
and use the backup files to recover faulty VMs and maintain proper system performance.
In cloud systems, it is of particular importance to attain the snapshot files by the least
downtime in order to minimize the shutdown impact and preserve services. In this paper,
we present two new snapshot mechanisms – Live Save and Improved Live Save – to
enhance the performance of existing snapshot mechanisms, especially to reduce their
system downtime and network bandwidth consumption. Different from existing mecha-
nisms, our Live Save sends VM state data in iterations and stores the snapshot file in a
local host, instead of a remote one, to obtain the backup files with no network bandwidth
consumption. When it is necessary to send the file to a remote host, Live Save will di-
rectly send the generated complete file to the remote host after iterations end – to exclude
the iterative transmissions in Live Migration Save and save network bandwidth. To
avoid redundant iterations due to high dirty frequency in Live Save, we set a judging
measure to form a modified Improved Live Save. The modified mechanism handles the
dirty frequency problem by keeping the maximum number of iterations, as follows.
When dirty frequency rises to such a high level that iterations cannot effectively reduce
dirty pages, Improved Live Save will decrease the maximum number of iterations by 1
at the end of each iteration; it will increase the number by 1 when dirty frequency drops
below the level. By adjusting the allowed maximum number of iterations, the modified
mechanism is able to avoid futile iterative transmissions in Live Save, saving total exe-
cution time and transmitted memory data. Extended simulation runs are carried out to
check the performance of different snapshot mechanisms, including ours. The results
demonstrate that both Live Save and Improved Live Save take less downtime than re-
lated mechanisms, thanks to the distinct design: to live back up the VM state to a local

LIVE SAVE: AN EFFICIENT SNAPSHOT MECHANISM FOR VIRTUAL MACHINES IN XEN 439

host without iteratively sending the memory data in the Internet. In addition to no net-
work bandwidth consumption and less downtime, Improved Live Save is also shown to
outperform others in numbers of iterations, total execution time and total pages sent –
mainly because it handles the maximum number of iterations to avoid futile iterations.

REFERENCES

1. Virtualization, https://en.wikipedia.org/wiki/Virtualization.
2. Virtualization spectrum, http://wiki.xen.org/wiki/Virtualization_Spectrum.
3. K. Adams and O. Agesen, “A comparison of software and hardware techniques for

x86 virtualization, ” in Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2006, pp. 2-13.

4. N. Jain and S. Choudhary, “Overview of virtualization in cloud computing,” in Pro-
ceedings of Symposium on Colossal Data Analysis and Networking, 2016, pp. 1-4.

5. VMware virtualization software, http://www.vmware.com/tw.
6. Paravirtualization (PV), http://wiki.xen.org/wiki/Paravirtualization_(PV).
7. Kernel based virtual machine, http://www.linux-kvm.org.
8. QEMU, http://wiki.qemu.org/Main_Page.
9. H. Tan, C. Li, Z. He, K. Li, and K. Hwang, “VMCD: A virtual multi-channel disk

I/O scheduling method for virtual machines,” IEEE Transactions on Services Com-
puting, Vol. 9, 2016, pp. 982-995.

10. W.-Z. Zhang, H.-C. Xie, and C.-H. Hsu, “Automatic memory control of multiple
virtual machines on a consolidated server,” IEEE Transactions on Cloud Computing,
Vol. 5, 2017, pp. 2-14.

11. P.-J. Chuang and C.-Y. Chou, “SRVC: An efficient scheduler for concurrent virtual
machines over the Xen hypervisor,” Journal of Applied Science and Engineering,
Vol. 20, 2017, pp. 355-365.

12. A. Kangarlou, D. Xu, P. Ruth, and P. Eugster, “Taking snapshots of virtual net-
worked environments,” in Proceedings of the 2nd International Workshop on Vir-
tualization Technology in Distributed Computing, 2007, pp. 1-8.

13. Xen project, http://www.xenproject.org/.
14. D. Chisnall, The Definitive Guide to the Xen Hypervisor, Prentice Hall, NJ, 2007.
15. P. Barham, et al., “Xen and the art of virtualization,” in Proceedings of the 19th

ACM Symposium on Operating Systems Principles, 2003, pp. 167-177.
16. Red Hat, Inc., “LVM architectural overview,” https://access.redhat.com/site/docu-

mentation/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Ad
ministration/LVM_definition.html.

17. Citrix Systems Inc., “Xen 3.0 virtualization user guide,” http://bits.xensource.com/
Xen/docs/user.pdf.

18. P.-J. Chuang and W.-C. Wong, “Generating snapshot backups in cloud virtual
disks,” in Proceedings of IEEE 17th International Conference on Computational
Science and Engineering, 2014, pp. 1860-1863.

19. A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking snapshots of virtual net-
worked environments with minimal downtime,” in Proceedings of IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, 2009, pp. 524-533.

PO-JEN CHUANG AND YEN-CHIA HUANG

440

20. A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking snapshots of virtual net-
worked infrastructures in the cloud,” IEEE Transactions on Services Computing,
Vol. 5, 2012, pp. 484-496.

21. Migration, http://wiki.xen.org/wiki/Migration.
22. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. War-

field, “Live migration of virtual machines,” in Proceedings of the 2nd Symposiun on
Networked Systems Design and Implementation, 2005, pp. 273-286.

23. H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine migration with
adaptive, memory compression,” in Proceedings of IEEE International Conference
on Cluster Computing and Workshops, 2009, pp. 1-10.

24. C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live migration of virtual
machines using shared storage,” in Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2013, pp. 41-50.

25. A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, E. S. Pilli, and D. Kapil, “A
critical survey of live virtual machine migration techniques,” Journal of Cloud Com-
puting Advances, Systems and Applications, Vol. 6, 2017, pp. 1-41.

26. M. Noshy, A. Ibrahim, and H. A. Ali, “Optimization of live virtual machine migra-
tion in cloud computing: A survey and future directions,” Journal of Network and
Computer Applications, Vol. 110, 2018, pp. 1-10.

27. F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine migration:
challenges, techniques, and open issues,” IEEE Communications Surveys and Tutorials,
Vol. 20, 2018, pp. 1206-1243.

28. Network file system, https://en.wikipedia.org/wiki/Network_File_System.
29. Credit scheduler, http://wiki.xensource.com/wiki/Credit_Scheduler.

Po-Jen Chuang (莊博任) received the B.S. degree from Na-
tional Chiao Tung University, Taiwan, in 1978, the M.S. degree in
Computer Science from the University of Missouri at Columbia,
U.S.A., in 1988, and the Ph.D. degree in Computer Science from
the Center for Advanced Computer Studies, University of South-
western Louisiana, Lafayette, U.S.A. (now the University of Loui-
siana at Lafayette), in 1992. Since 1992, he has been with the De-
partment of Electrical and Computer Engineering, Tamkang Uni-
versity, Taiwan, where he is currently a Professor. He was the De-

partment Chairman from 1996 to 2000. His main areas of interest include parallel and
distributed processing, fault-tolerant computing, mobile computing, network security,
cloud computing, software defined networking, virtualization and internet of things.

 Yen-Chia Huang (黃彥嘉) received his B.S. and M.S. de-

grees in Electrical and Computer Engineering in 2013 and 2016
from Tamkang University, Taiwan. He is currently with X-LEG-
END Entertainment Corp. in Taiwan. His research interests in-
clude parallel and distributed processing, virtualization and cloud
computing.

