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We present an efficient snapshot mechanism, briefed as Live Save, to make real 

time backup of the virtual machine state to a local host. Live Save will iteratively send 
the state data, store the snapshot file in a local host and, when necessary, send the entire 
file directly to a remote host – to reduce network bandwidth consumption in existing 
snapshot practices. In iterative transmissions, when dirty frequency rises to a certain high 
level, iterations may fail to reduce dirty pages and hence become redundant. To handle 
the problem, we add a simple judging measure to Live Save to form an Improved Live 
Save which will adaptively adjust the maximum number of iterations. By maintaining the 
maximum number of iterations, Improved Live Save can avoid futile iterations – saving 
unnecessary iterative computation in Live Save. Extended simulation runs are conducted 
to evaluate the performance of various snapshot mechanisms (Xen Save, Xen Live Mi-
gration, Live Migration Save (VNsnap), Live Save and Improved Live Save) in terms of 
downtime, total execution time and total pages sent. The results show that, in performing 
the snapshot practice, both Live Save and Improved Live Save are more resource-con- 
serving than the other mechanisms.      
 
Keywords: cloud computing services, virtualization, Xen, virtual machines, state snap-
shot mechanisms, dirty frequency, performance evaluation 
 
 

1. INTRODUCTION 
 

Virtualization techniques [1-5] are important for cloud services because they help to 
build fully functional virtual machines (VMs) on limited physical resources to maximize 
hardware utilization and system performance. Current virtualization techniques tend to 
use such physical resources as CPU, memory, network interface cards or storage to build 
fully functional VMs which can execute operating systems and applications like real 
computers. Aided by the techniques, cloud service providers can now turn one physical 
server into a number of VMs to maximize hardware utilization and conserve physical 
resources [6-11]. In practice, when hardware or software errors occur in a computer with 
multiple VMs, it may cause VMs to become faulty and consequently affect cloud sys-
tems and services. To maintain proper system performance, a cloud service provider 
must back up VMs in advance so that he can recover a faulty VM – when it happens – at 
the shortest time. Traditionally, we can back up a system in the shutdown period. But it 
is infeasible to shut down a cloud system for VM backup because the impact on services 
can be serious. To lessen the impact, we can involve the snapshot technique [12] to back 
up virtualization systems at minimized downtime. The snapshot of VMs, which usually 
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contains the backup of hard disks and system states (memory + vCPU), can handily help 
us to restore a faulty system to the checkpoint.  

Xen [13-15] is a popular virtualization platform without the snapshot function. To 
obtain the snapshot of hard disks and system states, it depends on the Logical Volume 
Manager in the Linux system [16-18] and the Xen Save function. To generate the image 
file of the VM state, Xen Save must shut down the VM first and the generation time of a 
snapshot (i.e., the system downtime) is subject to the memory size of the VM. It may 
take tens of seconds during which cloud services must totally stop. To shorten the down-
time, VNsnap [19, 20] builds a Live Migration Save mechanism based on Xen Save 
and Xen Live Migration commands for distributed systems [21, 22]. Live Migration 
Save (VNsnap) uses a host as the target to receive and store the VM state snapshots. It 
successfully reduces the system downtime in Xen Save. The reduction is nevertheless 
attained with considerable network bandwidth consumption – because the VNsnap Live 
Migration Save needs a daemon to receive and store the state data of VMs and has to 
send the memory data continuously in the Internet.  

To reduce the obvious bandwidth consumption in Live Migration Save, we set up 
a new snapshot mechanism – briefed as Live Save – in this investigation. Different from 
Live Migration Save, the proposed Live Save sends the VM state data in iterations, 
stores the snapshot file in a local host and, will directly transmit the complete snapshot 
file to a remote host only when necessary. Note that, in iterative transmissions, when 
dirty frequency (i.e., the number of dirty pages generated per unit time) reaches a certain 
high level, iterations may find no page for transmission and become resource-wasting 
redundant iterations. To handle the situation, we set up a simple judging measure in the 
original Live Save to form a modified Improved Live Save mechanism which can ad-
just the allowed maximum number of iterations adaptively, as follows. In the iterative 
practice, when Improved Live Save detects dirty frequency rises to such a high level 
that iterations cannot effectively reduce dirty pages, it will decrease the maximum num-
ber of iterations by 1 after each iteration to prevent redundant iterations. On the other 
hand, when dirty frequency drops below the level, the modified mechanism will increase 
the maximum number by 1 – without exceeding the preset threshold, to maintain proper 
performance. The simple judging measure enables Improved Live Save to avoid insig-
nificant iterations and, as a result, to perform better in total execution time and transmit-
ted memory data than the original Live Save. 

Extensive simulation runs are conducted under different CPU cap values and Do-
main-U settings, to evaluate the performance of various snapshot mechanisms (Xen Save, 
Xen Live Migration, Live Migration Save (VNsnap), Live Save and Improved Live 
Save) for a number of parameters (dirty frequency, numbers of dirty pages, iteration time, 
numbers of iterations, downtime, total execution time and total pages sent). The obtained 
results show that, in contrast to other mechanisms, the proposed Live Save and Im-
proved Live Save both perform with reduced network bandwidth consumption and 
downtime. Improved Live Save, in particular, performs better in numbers of iterations, 
total execution time and total pages sent. The performance gain comes mainly from the 
following key designs: (1) live backing up VM states to the local host (“live backup” 
indicates to back up the VM state in a minimal shutdown period); (2) without sending 
the memory data iteratively in Internet; and (3) adaptively adjusting the maximum num-
ber of iterations to avoid futile iterations. 
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2. BACKGROUND STUDY 

2.1 Xen Save [13] 
 
Originally, Xen uses the Save command to direct a VM into the standby mode and 

uses the Restore command to wake it up into the operation mode. When Save is issued, 
the VM will shut down its operation to generate the image file of its state. The size of the 
image file, as mentioned, equals the memory size of the VM and the file generation 
time – which depends also on the memory size – may range as long as tens of seconds. 
The standby VM will wake up upon the issue of Restore to resume its operation accord-
ing to the generated image file (which functions as the state snapshot of the VM). 
 
2.2 Migration [21, 22] 

 
We can perform VM migration – offline or live – to move VMs from a physical 

source host to another physical target host with identical virtualization environments.  
 
Offline migration: A VM will be shut down completely before migrating from the 
source to the target and will restore the operation only after the migration ends (i.e., the 
original service will totally halt during the migration).   
 
Live migration: A VM can move from the source to the target without being shut down. 
It will maintain the operation during most of the migration, cease only briefly at the very 
end (when to leave the source to the target) and instantly revive the operation when the 
migration ends.  
 
2.3 Live Migration [21-27] 

 
In contrast to offline migration, live migration is a more feasible VM migration 

mode for cloud computing and virtualization practices because it helps to maintain al-
most all services in the migration (so that cloud servers can upgrade, replace or repair 
devices without interrupting routine services). Live migration can be post-copy or 
pre-copy – the latter is currently the mainstream application in commercial software, 
including Xen. VM live migration usually works by the following three phases, but dif-
ferent migration modes may involve varied phases. For instance, post-copy migration 
works by the second and third phases, whereas pre-copy migration (such as Xen Live 
Migration) involves the first and second.  
 
The push phase: When live migration starts, the VM will maintain its operation at the 
source host and simultaneously keep sending data to the target. To preserve data con-
sistency in both ends, it must re-send all changed data in the process.      
 
The stop-and-copy phase: The VM will briefly stop the service only at the instant to leave 
the source host. It will keep sending the remaining memory state data to the target in this 
brief suspension. After all state data are sent to the target host, the VM – which has been 
officially migrated from the source to the target now – will instantly resume the service. 
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The pull phase: After the migration, when the VM in the target host accesses uncopied 
memory data to result in page faults, the memory data will be sent from the VM in the 
source to the VM in the target. 
 
2.4 Xen Live Migration [22] 

 
Xen Live Migration moves a VM from the source host to the target in the follow-

ing steps.  
 
Pre-migration: The source host first sends a migration inquiry to the target to check the 
compatibility before migration starts. 
 
Reservation: With compatibility checked, the source will issue the migration request 
and, after receiving confirmation from the target, start to transfer the data. 
 
Iterative pre-copy: The source will copy the VM memory data and send the copy to the 
target in iterations. In the iterative process, all memory data will be sent in the first itera-
tion. In following iterations before each ends and begins, call XEN_DOMCTL_SHA- 
DOW_OP_CLEAN to get the bitmaps of dirty pages (changed memory pages) and copy 
the two bitmaps to to_send and to_skip. Clear the two bitmaps for re-recording in sub-
sequent iterations. The two bitmaps (which respectively indicates the pages turning dirty 
in the previous and current iterations) will reveal the pages to be sent in the current itera-
tion: i.e., the dirty pages which were generated in the previous iteration but are not 
changed (not turning dirty again) in the current iteration. Then check at the end of each 
iteration to see if it reaches the stop condition: If yes, go to the next step (stop-and- 
copy); if no, keep sending the memory data in iterations. 
 
Stop-and-copy: Set last_iter to 1. The source will shut down the VM, copy the dirty 
page bitmap to to_send, and send the memory pages with to_send or to_fix = 1 (i.e., the 
dirty pages generated in the last iteration or the frequent dirty pages) – along with the 
state of CPU – to the target. 
 
Commitment: After receiving the complete and consistent data of the VM, the target 
will notify the source to shut down the VM. 
 
Activation: The VM which is now completely migrated from the source to the target 
will instantly activate the service. 
 
2.5 Live Migration Save (VNsnap) [12, 19, 20]  

 
Snapshot studies used to be hard disk oriented, i.e., we can use the snapshot tech-

nique to fix the hard disk and restore the VMs. In cloud services, it is obvious that we 
can use the VM state snapshot backup file to restore a faulty VM more instantly. Recall 
that, during VM migration, Xen Live Migration will keep sending the VM’s memory 
data iteratively until there remain only a few highly modifiable memory pages. It will 
shut down the VM and transfer the remaining data (with the CPU state) to the target at 
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the end of the migration to retain as much service as possible. To further reduce the 
shutdown duration in Xen Live Migration, Live Migration Save (VNsnap) uses a 
physical host as the target to receive and store the state snapshot file of a migrating VM. 
The new design shortens the required system downtime and preserves more routine ser-
vices in the snapshot process.  

Table 1 lists the basic features of Xen Save, Xen Live Migration and Live Migra-
tion Save to assist understanding. 

 

Table 1. The features of Xen Save, Xen Live Migration and Live Migration Save (VNsnap).  
Xen Save Xen Live Migration Live Migration Save 

Live no parameter “l” is live yes 
VM downtime the entire backup period the stop-and-copy phase the stop-and-copy phase 
Destination of  
VM migration 

specified file location  
in the host 

the target host  
(the file not retained) 

the target host 
(the file retained) 

VM state at the end 
of backup 

when “-c” backup ends,  
VM resumes the operation 

the source stops and the 
target starts to work 

resume the operation 
when backup ends 

3. THE PROPOSED SNAPSHOT MECHANISMS 

To maintain proper cloud system performance, this paper presents an efficient new 
snapshot mechanism – Live Save – to minimize system downtime when backing up the 
VM states. In contrast to Live Migration Save which needs an additional daemon to 
receive the memory data of VMs, Live Save is more resource conserving as it live backs 
up the VM state to a local host without iteratively sending memory data in the Internet.  
 
3.1 Live Save 

 
Built also over Xen Save, the proposed Live Save aims to reduce the network 

bandwidth consumption in existing Live Migration Save. Recall that Live Migration 
Save uses an extra daemon host to receive and store the VM state data, which is quite 
bandwidth consuming as it must send the memory data (including those being overwrit-
ten by the newly transferred data) iteratively and continuously in the Internet. To fix the 
situation, our Live Save sends the VM state data in iterations and stores the file in a local 
host instead of a remote one – with no network bandwidth consumption as shown in Fig. 
1. When it is necessary to send the snapshot file to a remote host (e.g., when a VM gets 
faulty), Live Save can also work out with less complexity. It will directly send the gen-
erated complete snapshot file to the remote host after iterations end, consuming obvi-
ously less network bandwidth than Live Migration Save which sends memory data (in-
cluding redundant ones) continuously in the Internet.  

To sum up, Live Save works differently from Live Migration Save in (1) sending 
the VM state data in iterations and storing the snapshot file in a local host, and (2) di-
rectly sending the generated complete snapshot file to a remote host only at need. Both 
practices help to bring down the required network bandwidth consumption. (Table 2 
gives the pseudo code of our Live Save.) 
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Fig. 1. The architecture of live save. 

 

Table 2. The pseudocode of our live save. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

// start live backup by iteratively transmitting  
// the VM’s memory data to the local hard disk 
While (not any of the 3 stop conditions) { 
// the stop conditions: 
// (1) the number of iterations exceeds MAX_iterations (to be Xen’s 
//       MAX_iterations, i.e., 30, initially)  
// (2) dirty pages generated in the previous and current iterations are  
//       less than 50 
// (3) total pages sent exceed the triple of memory size 

if (first iteration) 
copy all the VM’s memory data into the local hard disk  

else  // subsequent iterations 
send the dirty pages to the local hard disk 
// the dirty pages to be transmitted in this iteration are the  
// dirty pages each of which has been generated in  
// the previous iteration but has not become dirty again 
// in this iteration 

} 
// stop and copy 
shut down the VM and stop service briefly 
copy remaining dirty pages and CPU state into the local hard disk 
activate the VM and resume service 

` 

3.2 Improved Live Save 
 
Experimental evaluation shows that system downtime in our snapshot operation will 

culminate when dirty frequency reaches a certain high level, and that the numbers of 
iterations and total pages sent will affect the length of downtime. Based on the results, 
we set up a simple judging measure to manage the two parameters in order to reduce 
downtime and preserve system performance. 
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3.2.1 The problem of dirty frequency 
 
Like Xen Live Migration, our Live Save will terminate the iterations on three stop 

conditions:  
(1) when the number of iterations exceeds 30 (preset in Xen)  
(2) when dirty pages generated in the previous and current iterations are less than 50  
(3) when total pages sent exceed the triple of the memory size  

 
Following the three stop conditions and the simulation results, we attain three dirty 

frequency phases – low, medium and high, each corresponding to one of the stop condi-
tions:  

 
low → the generated dirty pages in the previous and current iterations are less than 50  
medium → the total pages sent exceed the triple of the memory size 
high → the number of iterations exceeds 30 

 
To solve the dirty frequency problem in Live Save, we will focus on the first itera-

tion stop condition – the maximum number of iterations – based on the following find-
ings.  

According to simulation results, the highest downtime tends to fall at the second 
half of the medium dirty frequency phase – indicating iterative transmissions after this 
second phase no longer support the generation of dirty pages and subsequent iterations 
may find no page for transmission. As mentioned, the page to be sent in a new iteration 
will be the dirty pages generated in the previous iteration which do not turn dirty again in 
the new iteration. Hence, with high dirty frequency, iterations may fail to reduce dirty 
pages effectively. As simulation results show that system downtime usually arrives at the 
peak at CPU cap25, we assume such high dirty frequency appears after CPU cap25 – i.e., 
after cap25, the iteration speed will drop below dirty frequency. (Note that the CPU cap 
value of 25 indicates 25% of CPU usage.) 

The results of total pages sent and numbers of iterations show that iterations will 
stop when total transmitted memory data multiply the memory size between CPU cap13 
and 31. In this cap interval, it is still possible for iterations to reduce dirty pages, i.e., it 
remains likely to reduce downtime. Then, after CPU cap34 when dirty frequency rises to 
such a high level, it turns unlikely to reduce dirty pages or downtime – because hardly 
any page transmission will take place now: even if there is some page to transmit, it will 
soon turn dirty again. Iterations hence become redundant and resource-wasting.  

 
3.2.2 The improved design 

 
To solve the dirty frequency problem in Live Save, we insert a simple judging mea- 

sure into original Live Save to form a modified Improved Live Save. With the judging 
measure, the modified mechanism can instantly adapt the dirty frequency levels to lessen 
the high dirty frequency impact. Improved Live Save works as follows. When dirty 
frequency rises to such a high level (say H) where iterations cannot effectively reduce 
dirty pages, the modified mechanism will decrease the maximum number of iterations 
(MAX_iterations) by 1 after each iteration, to maintain appropriate performance. When 



PO-JEN CHUANG AND YEN-CHIA HUANG 

 

430

 

dirty frequency drops below H, it will increase MAX_iterations by 1 – but not to exceed 
the preset MAX_iterations in Xen. By the simple practice, we can avoid insignificant 
iterations in Live Save to save overall execution time and total transmitted memory data.  

In Improved Live Save, we can define H as the dirty frequency of an iteration 
which rises to such a high level that the iteration may produce no less dirty pages than 
the previous iteration. In fact, such a high level H will lead the system to the processing 
limit and cause iterations unable to reduce dirty pages effectively. That is, with H, the 
current iteration will likely become a useless iteration with no page for transmission. For 
improvement, when dirty frequency reaches H, our modified mechanism will cut MAX_ 
iterations by 1 at the end of the iteration to avoid such useless iterations. On the other 
hand, when dirty frequency drops below H and there remain chances to reduce dirty 
pages, it will increase MAX_iterations by 1 at the end of the iteration – not to exceed the 
preset threshold. (Table 3 gives the pseudocode of the judging measure which can be 
readily inserted between lines 17 and 18 in Table 2.) 

As mentioned in Section 3.2.1, dirty frequency levels (low, medium, or high) are 
differentiated on the basis of iteration stop conditions, i.e., dirty frequency levels are not 
fixed and will vary with different disk-writing speed. For instance, in a system with very 
low disk-writing speed, a moderate dirty frequency may become H simply because the 
system may not catch up with even such a moderate dirty frequency. Note that in a sys-
tem with fixed disk-writing speed, H can be computed initially and be fixed (as the value 
of H results from the dirty frequency of an iteration which rises to such a high level that 
the iteration may produce more/equal dirty pages than the previous iteration and hence 
find no page for transmission). 

 

Table 3. The pseudocode of the added judging measure. 
1 
2 
3 
4 

if dirty frequency > system process limit 
MAX_iterations = MAX_iterations  1 

else if MAX_iterations < Xen’s MAX_iterations 
MAX_iterations = MAX_iterations + 1 

4. PERFORMANCE EVALUTION 

4.1 The Simulation Environment 
 
Extended simulation runs are conducted to check the performance of various snap-

shot mechanisms, including Xen Save, Xen Live Migration, Live Migration Save 
(VNsnap), Live Save and Improved Live Save. We carry out the simulation in 2 Xen 
hosts with Intel Quad-core CPU: 3.30GHz, 4GB memory, Xen-4.5.1 and 3.16.0 Linux 
kernel (hosted virtualization with para-virtualization) and 1 Network File System (NFS) 
host [28] with Intel CPU: 3.30GHz, 2GB memory and 3.13.0 Linux kernel. Note that we 
use 2 Xen hosts and 1 NFS host to run the simulation for Xen Live Migration and Live 
Migration Save (as Fig. 2 shows) but only 1 Xen host to run the simulation for Xen 
Save, Live Save and Improved Live Save. 
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Fig. 2. The migration environment. 

 

In the simulation, domain-U keeps writing data into the memory to make it dirty 
and the Credit Scheduler [11, 29] will set up CPU cap levels for domain-U. By setting up 
the CPU cap levels, we can limit domain-U’s CPU usage to yield different levels of dirty 
frequency: CPU cap0 indicates unlimited (100%) CPU usage, whereas CPU cap1~99 
indicates 1%~99% CPU usage. When issuing the Save and Migration commands, we use 
command parameter vvv to attain more detailed messages and wanted data from the 
system, including the system downtime, execution time and numbers of data sent. Do-
main-U has two settings: VM memory 1G (with 1GB memory – data written randomly 
and continuously to its 512MB memory) and VM memory 2G (with 2GB memory – data 
written randomly and continuously to its 1GB memory). 

Regarding simulation results, all data are the average value of 20 runs and the CPU 
cap interval is set to be 3 (0 (idle), 1, 4, 7…100 (0)). For instance, downtime for Impro- 
ved Live Save at CPU cap28 is 6050.55 (Fig. 6 (a)). Given 95% of confidence, the cal-
culated confidence interval half-width over the 20 replications is 168.7258964 – indicat-
ing we are 95% confident that the true result will fall between 6050.55168.7258964 or 
equivalently 6050.552.79% (with less than 3% error). It shows that the simulation re-
sults are reasonably accurate, i.e., we can practically exclude possible deviations due to 
simulation scenarios generated by random numbers.  

 
4.2 Simulation Results 
 
4.2.1 Dirty frequency vs. CPU caps 

 
Fig. 3 (a) gives dirty frequency at different CPU cap values (0%~100%) for the five 

mechanisms. As we can see, Save is without dirty frequency because it directly shuts 
down the system in the snapshot process. Dirty frequency for the other four mechanisms 
grows with CPU cap values in a similar rising trend. (Note that in later simulations, we 
will adjust the CPU caps to get varied dirty frequency in order to observe the corre-
sponding performance and overhead). 

 
4.2.2 Dirty pages in each iteration vs. CPU caps 

 
Figs. 3 (b) and (c) give the numbers of dirty pages generated in each iteration at 

different CPU caps, respectively for VM memory 1G and 2G. The results show that, for 
the four mechanisms, dirty pages generated in the iterations all reach the peak after CPU 
cap 31. We also find that, after this cap value, the obtained dirty pages are close to the 
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(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Dirty frequency vs. CPU caps; (b) Dirty pages/each iteration vs. CPU caps for VM 
memory 1G; (c) Dirty pages/each iteration vs. CPU caps for VM memory 2G. 

 

size of data written into the memory (131072 pages – close to 512M memory and 
262144 pages – close to 1G memory), indicating nearly all memory pages turn dirty in 
iterations after CPU cap 31. 
 
4.2.3 The average iteration time vs. CPU caps 

 
Fig. 4 exhibits the average iteration time, from the second to the last second itera-

tions, at different CPU caps for VM memory 1G (a) and 2G (b). (The first and last itera-
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tions are excluded because the first sends all memory data and the last is the stop-and- 
copy phase.) We observe that the average iteration time rises sharply before CPU cap10 
for all mechanisms. This is because, when dirty pages increase in the memory, mecha-
nisms need to transmit increasing pages in each iteration. After CPU cap10, the average 
iteration time starts to decline. This is because, after the cap value, iterations tend to han-
dle fewer pages at less transmission time. Recall that the pages to be sent in a new itera-
tion are the dirty pages from the previous iteration which do not turn dirty again at the 
beginning of the new iteration. Hence, when high dirty frequency produces more dirty 
pages in the memory, it will cause subsequent iterations to skip more dirty pages and 
meanwhile to transmit fewer pages.  

 

 
(a) VM memory 1G. 

 
(b) VM memory 2G. 

Fig. 4. The average iteration time vs. CPU caps. 
 
4.2.4 The average number of iterations vs. CPU caps 

 
Fig. 5 depicts the number of iterations at different CPU caps for VM memory 1G (a) 

and 2G (b). As it shows, the numbers of iterations for Live Migration, Live Migration 
Save and Live Save all grow with cap values before CPU cap37. After cap37, the three 
mechanisms maintain a steady trend of 30 iterations to the end (i.e., cap0 (100%)). As 
for Improved Live Save, the number of iterations rises from the beginning, takes a de-
cending turn at cap28 (a) and cap31 (b), and then stays around 17 until the end. (By con-
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trast, Save runs only one iterative transmission.)  
We also find the numbers of iterations ascend before CPU cap7. This is because, 

when dirty frequency rises, we need more iterative transmissions to reduce dirty pages in 
order to reach the stop condition for the low dirty frequency phase: dirty pages from both 
the previous and current iterations must be less than 50 (Section 3.2.1). The numbers of 
iterations increase between CPU cap7 and 37 for a different reason: When rising dirty 
frequency results in more skipped pages and fewer transmitted pages, we must carry out 
more iterations to get the needed pages in order to meet the stop condition for the me-
dium dirty frequency phase: the total transmitted pages exceed the triple of the memory 
size. After CPU cap37, the number of iterations reaches 30 which is the stop condition 
for the high dirty frequency phase. 

Fig. 5 (b) exhibits that the number of iterations for our Improved Live Save starts 
to decrease after CPU cap31. It happens as dirty frequency has now reached such a high 
level that iterative transmissions can hardly keep up with generation of dirty pages, i.e., it 
becomes difficult to reduce dirty pages. Improved Live Save hence starts to decrease 
the number of iterations (between cap31 and 40) to 17 – the smallest number of itera-
tions. 

 

 
(a) VM memory 1G. 

 
(b) VM memory 2G. 

Fig. 5. The number of iterations vs. CPU caps. 
  

4.3 Downtime  
 
The results of downtime obtained at different CPU caps are shown in Fig. 6 (a) / 

Table 4 for VM memory 1G and Fig. 6 (b) / Table 5 for VM memory 2G. (Both tables 
show the results from cap1 to 25 and at idle.) As observed, downtime grows with CPU 
caps before cap25 for all mechanisms except Xen Save, with a similar trend: growing 
slowly before cap4, abruptly between cap4 and 10, and slightly from cap 10 to 25. The 
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fact that downtime reaches the highest after cap25 and remains so to the end (with spo-
radic variations) reveals that iterations after cap25 can hardly reduce dirty pages.  

 

Table 4. Downtime from CPU cap1 to cap25 and at idle (VM memory 1GB). 
downtime idle 1 4 7 10 13 16 19 22 25 

Save 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 
Live Migration 3.9 4.8 5.1 1715.2 3922.8 4290.35 4413.7 4520.4 4631.45 4698.65 

Live Migration Save 3.85 51.1 8.55 4343.15 5728.5 6964.8 6609.7 5909.85 6495.65 5394.4 
Live Save 9.7 31.55 192.4 4495.7 4641.45 5279.05 5443 5730.95 5781.55 5855.2 

Improved Live Save 7.5 6.9 15.2 3272.05 4825.15 5301.4 5525.35 5677 5928 5919.8 
 

Table 5. Downtime from CPU cap1 to cap25 and at idle (VM memory 2GB). 
downtime idle 1 4 7 10 13 16 19 22 25 

Save 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 9151.5 
Live Migration 3.9 4.8 5.1 1715.2 3922.8 4290.35 4413.7 4520.4 4631.45 4698.65 

Live Migration Save 3.85 51.1 8.55 4343.15 5728.5 6964.8 6609.7 5909.85 6495.65 5394.4 
Live Save 9.7 31.55 192.4 4495.7 4641.45 5279.05 5443 5730.95 5781.55 5855.2 

Improved Live Save 7.5 6.9 15.2 3272.05 4825.15 5301.4 5525.35 5677 5928 5919.8 
 

 
(a) VM memory 1G.  

 
(b) VM memory 2G. 
Fig. 6. Downtime.  

 

Among the mechanisms, Xen Live Migration produces the shortest downtime, fol-
lowed by Live Save, Improved Live Save, Live Migration Save and Xen Save. Unlike 
other mechanisms which have to generate a snapshot of the VM state data and write it to 
the hard disk, Xen Live Migration sends the state data directly to the memory of the 
target host. It hence takes less execution time in the stop-and-copy phase, to produce the 
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shortest downtime. Our Live Save and Improved Live Save take less downtime than 
Live Migration Save (as much as 4000 ms less in Fig. 6 (b)) because we write the VM 
state data directly to the hard disk of a local host, whereas Live Migration Save sends 
the data to the snapshot daemon of the target host and later writes the received data from 
memory to the hard disk. Xen Save needs the longest downtime because, instead of iter-
atively sending the state data in advance, it will shut down the VM first before engaging 
VM migration. 
 
4.4 Total Execution Time 

 
Fig. 7 depicts the total execution time at different CPU caps. We see total execution 

time grows with cap values before CPU cap10 for all mechanisms except Xen Save – 
because the mechanisms must engage more iterations to send the increased dirty pages 
when dirty frequency rises. Between CPU cap10 and 28, total execution time reaches the 
top and remains there with slight variation. The level total execution time is the result of 
decreasing execution time and rising downtime offsetting each other in this cap interval. 

 

 
(a) VM memory 1G. 

 
(b) VM memory 2G. 

Fig. 7. Total execution time.  
 
Total execution time decreases after CPU cap28 as downtime stops growing after 

reaching the peak and execution time continues to decrease in iterations. In all mecha-
nisms, Xen Save directly shuts the VM down without iteratively sending memory pages 
and hence yields the least total execution time. Xen Live Migration, Live Migration 
Save and Live Save display a similar trend in total execution time, with Xen Live Mi-
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Fig. 8. Total pages sent. 

gration performs slightly better because it does not write the state data to the hard disk. 
In contrast to the three mechanisms, our Improved Live Save yields significantly re-
duced total execution time (up to 20000 ms reduction in Fig. 7 (b)), mainly because its 
practice effectively reduces both the number of iterations and execution time. 

 
4.5 Total Pages Sent 

 
The results of total pages sent are plotted in Fig. 8. Before CPU cap10, total pages  

sent increases with CPU caps for all mechanisms (except Xen Save). This is because, 
when dirty frequency rises, each mechanism will take more iterations to reduce dirty 
pages in order to meet the stop condition for the low dirty frequency phase. From cap10 
to 28, total pages sent reaches the same peak at each cap. It stops growing with cap val-
ues because all have reached the iteration stop condition for the medium dirty frequency 
phase. Beyond cap28, when high dirty frequency generates more skipped pages and less 
transmitted pages, total pages sent keeps decreasing. Of the mechanisms, Xen Save 
yields the least total pages sent because it sends all memory pages in one transmission. 
Xen Live Migration, Live Migration Save and Live Save turn out quite similar results, 
with Xen Live Migration producing slightly more total pages sent (as it does not write 
the state data of a VM to the hard disk). Our Improved Live Save starts to function after 
cap28. By instantly adapting the dirty frequency levels, it effectively reduces both the 
number of iterations and total pages sent (a significant reduction of more than 100000/ 
200000 pages is shown in Figs. 8 (a) and (b)).  

 

 
(a) VM memory 1G. 

 
(b) VM memory 2G. 
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4.6 An Overall Recap 
 
To facilitate illustration, we list the features of Xen Save, Live Migration Save and 

Live Save in Table 6 and recap key performance/cost comparisons for Xen Save, Live 
Migration Save, Live Save and Improved Live Save in Table 7. 

 
Table 6. Basic features.  

Xen Save Live Migration Save Live Save 
Live Non live Live Live 

VM downtime From backup to the end The stop-and-copy phase The stop-and-copy phase 
Destination of VM 
state data transfer 

Specified file location in 
local host 

The target host (the file 
not retained) 

Specified file location in 
local host 

 
Table 7. Key comparations.  
Xen Save Live Migration Save Live Save Improved Live Save 

Downtime High Medium Low Low 
Total execution time Low High High Medium 

Total pages sent Low High High Medium 
Network banwidth consumption No Yes No No 

5. CONCLUSION 

As mentioned, we can adopt snapshot techniques to backup the state files of VMs 
and use the backup files to recover faulty VMs and maintain proper system performance. 
In cloud systems, it is of particular importance to attain the snapshot files by the least 
downtime in order to minimize the shutdown impact and preserve services. In this paper, 
we present two new snapshot mechanisms – Live Save and Improved Live Save – to 
enhance the performance of existing snapshot mechanisms, especially to reduce their 
system downtime and network bandwidth consumption. Different from existing mecha-
nisms, our Live Save sends VM state data in iterations and stores the snapshot file in a 
local host, instead of a remote one, to obtain the backup files with no network bandwidth 
consumption. When it is necessary to send the file to a remote host, Live Save will di-
rectly send the generated complete file to the remote host after iterations end – to exclude 
the iterative transmissions in Live Migration Save and save network bandwidth. To 
avoid redundant iterations due to high dirty frequency in Live Save, we set a judging 
measure to form a modified Improved Live Save. The modified mechanism handles the 
dirty frequency problem by keeping the maximum number of iterations, as follows. 
When dirty frequency rises to such a high level that iterations cannot effectively reduce 
dirty pages, Improved Live Save will decrease the maximum number of iterations by 1 
at the end of each iteration; it will increase the number by 1 when dirty frequency drops 
below the level. By adjusting the allowed maximum number of iterations, the modified 
mechanism is able to avoid futile iterative transmissions in Live Save, saving total exe-
cution time and transmitted memory data. Extended simulation runs are carried out to 
check the performance of different snapshot mechanisms, including ours. The results 
demonstrate that both Live Save and Improved Live Save take less downtime than re-
lated mechanisms, thanks to the distinct design: to live back up the VM state to a local 
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host without iteratively sending the memory data in the Internet. In addition to no net-
work bandwidth consumption and less downtime, Improved Live Save is also shown to 
outperform others in numbers of iterations, total execution time and total pages sent – 
mainly because it handles the maximum number of iterations to avoid futile iterations.  
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