
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 649-670 (2018)
DOI: 10.6688/JISE.201805_34(3).0005

649

From Early Aspect to Aspect-Oriented Programming:
A State-Based Join Point Model Approach*

KUO-HSUN HSU AND CHANG-YEN TSAI

Department of Computer Science
National Taichung University of Education

Taichung, 403 Taiwan
E-mail: glenn@mail.ntcu.edu.tw; ss8805733@hotmail.com.tw

Aspect-oriented approaches have recently had a tremendous impact on the charac-

terization of crosscutting concerns during the development of software systems. However,
issues in transforming early aspects in the design stage into final codes still remain to be
addressed. In this paper, we focused on operator conversion rules, which convert the
early aspects described in state diagrams into AspectJ codes systematically. By weaving
these aspect codes into base codes, a final system can be obtained that is enhanced by
early aspects in a systematic manner. A tool that supports the conversion rules of the op-
erators was developed. The tool transforms the aspect behaviors described in the as-
pect-enhanced state diagram into aspect code. To validate our proposed method, a meet-
ing scheduler system was designed and implemented.

Keywords: early aspect, goal, use case, state diagram, join point model, software engi-
neering, requirement engineering

1. INTRODUCTION

Aspects as a means to address separation of concerns (SoC) problems [1], are at-
tracting increasing interest from aspect-oriented software development (AOSD) re-
searchers [2]. In the implementation phase, an aspect [3-5] is implemented by a piece of
code representing the realization of a crosscutting concern that may span or be scattered
across multiple functional units such as classes or modules in a software system. By
managing these crosscutting concerns within a modular design, the coupling strength
between codes or modules and the complexity of system functionalities can be decreased
substantially.

In our previous studies [6, 7], the relationships between goals, use cases, and early
aspects were used to discover early aspects in the analysis stage. Interactions between
goals and use cases were analyzed in a numerical manner, and early aspects were de-
scribed in an aspect-enhanced use case diagram. In addition, the use case specification
was augmented for describing the properties of early aspects represented as aspectual use
cases in the diagram. Furthermore, an aspect-enhanced sequence diagram and extended
state-based join point model (eSJPM) were proposed to solve the problem of representing
aspects at the design stage. This previous work addressed the use of aspects between re-
quirement analysis and system design, however, the problems faced at the transition from
the design to implementation stages remain, which motivated this study.

We propose a state-based join point model approach for the transformation of as-

Received November 23, 2016; revised January 27, 2017; accepted February 21, 2017.
Communicated by Chang-Shing Lee.
* This research was supported by Ministry of Science and Technology (Taiwan) under grants MOST 105-2221-

E-142-006.

KUO-HSUN HSU AND CHANG-YEN TSAI

650

pectual behaviors described in aspectual use cases into aspectual codes based on ESJPM.
Three crucial elements are depicted within this model: state transitions for guiding the
weaving sequence, join points for representing weaving points, and advice of the deter-
mining actions to be taken.

Fig. 1. Concept of the proposed approach.

Fig. 1 illustrates the concept of the proposed approach. Traditionally, aspects are
written separately and then woven into the base code in the implementation stage. In our
previous work [6, 7], we proposed employing use cases and early aspects derived from
the goal-driven early aspect approach to model base behaviors and aspectual behaviors in
sequence diagrams (SDs). That is, aspectual use case specification is augmented with
aspectual properties to document the responsibilities of an aspectual use case. Aspectual
behaviors related to those responsibilities are modeled in the aspectual sequence diagram,
which makes explicit the inclusion of aspects with the help of the ESJPM for specifying
weaving semantics. Moreover, an ESJPM that described weaving behaviors was estab-
lished to assist in the weaving of base behaviors and aspectual behaviors and to obtain
the final SD in the design stage. However, an approach more suited to comply with the
software development process (SDP) is to address aspects during all stages. Therefore, in
this work, six conversion rules based on ESJPM are proposed to bridge the gap between
the design and implementation stages, as shown by the dashed line in Fig. 1. The final
code is obtained by weaving the aspect code generated by applying the conversion rules
into the base code. Thus, we not only bridge the gap between the design and the imple-
mentation stages but also complement the SDP by addressing aspects in all stages.

Background work particularly relevant to this paper is outlined in Section 2. Section
3 discusses the modeling of aspectual behaviors and base behaviors in the SD, and the
establishment of the ESJPM. The conversion rules used to convert the ESJPM into aspect
code are introduced in Section 4. In Section 5, a meeting scheduler system analyzed and
designed within the goal-driven early aspect approach, and implemented by applying the
conversion rules, is described to demonstrate the feasibility of the proposed approach.
The conclusions and advantages of the proposed approach are detailed in Section 6.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 651

2. RELATED WORK

Herein, we outline the literature that informed the present study, namely, that on the
support of AOSD during the design stage, and the previous work on the conversion of
aspectual behaviors into aspectual codes in the implementation stage.

2.1 Aspect-Oriented Development Method in Design Stage

The join point model [8] implemented in aspect-oriented programming (AOP) is the
key concept in aspect orientation, and it dictates when and where crosscutting modulari-
zation occurs. Specifying a set of join points is a major task for aspect-oriented designers,
and effectively representing join points is a critical task in the evaluation of aspect inter-
action throughout software development.

Boucke and Holvoet [9] indicated the need for high-level join points to capture ab-
stract system states, a problem that was encountered in the development of an application
to control automatic guided vehicles in a warehouse management system. They argued
that the abstract states of SoC modules are necessary for the definition of join points in
programs with crosscutting concerns. However, this work was only a preliminary attempt
at the state-based join point modeling, where the authors outlined a Unified Modeling
Language (UML) class diagram that corresponded to a concern and the software entities
that constituted the concerns.

Ali et al. [10] proposed a state-based join point model (SJPM) that was motivated
by the deficiencies of existing fixed code-based behavioral join point models when used
to support the implementation of crosscutting concerns in systems that required constant
state monitoring, such as safety-critical systems. To capture the crosscutting behaviors
that are activated by some system state transitions, the SJPM defines a crosscutting sys-
tem state as an abstract state machine, and uses its transitions to identify the join points
of aspect superimposition. These state-based join points provide the foundation for a
state-based aspect implementation.

Stein et al. [11, 12] proposed the aspect-oriented design model (AODM), which ap-
plies existing UML concepts to aspect-oriented concepts currently used in AspectJ. As-
pects are represented as UML classes of a special stereotype called aspect. Analogous
to aspects in AspectJ, “pointcut” elements and “advice” operations can be defined as op-
erations in the aspect class with pointcut and advice stereotypes, respectively. In the
AODM, the crosscutting behavior of a program (implemented using advice in AspectJ) is
visualized by highlighting messages in a UML SD. Araùjo et al. [13, 14] introduced as-
pects to scenario-based software requirement research. They focused on representing
aspects during use case modeling and in particular on how to compose aspectual and
nonaspectual scenarios in a way that enabled them to be simulated together. Non-aspec-
tual scenarios were modeled using UML SDs, and aspectual scenarios were modeled as
interaction pattern specifications [15]. Finite state machines were modeled as UML state
machines and an aspectual finite state machine were modeled as state machine pattern
specifications [16]. The aspectual and non-aspectual state machines were then composed
using a state machine synthesis algorithm. The result was a new set of state machines
representing the complete specification. The notion of join points was implicit in the
synthesis algorithm, however, how the aspectual scenarios crosscut the non-aspectual

KUO-HSUN HSU AND CHANG-YEN TSAI

652

scenarios was not explicitly modeled in the SDs.
From these studies, we can summarize that in some work, join points were specified

directly by marking the woven actions in UML SDs, which cannot easily be achieved in
state-sensitive systems. Support for specifying how, where, and when aspectual behav-
iors occur is rather limited. Furthermore, specifying one type of join point at which the
aspectual behaviors do not depend on the specific actions performed, but on a specific
state transition, is difficult.

2.2 Converting Aspectual Behaviors into Aspectual Code

Groher and Schulze [17] extended UML by including a new notation for separating
aspect code from base code, which also supported the generation of code from UML
models. The extended notation was proposed to provide guidelines for modeling, and the
design methodology was based on AspectJ, which can be easily applied with numerous
CASE tools.

Hecht et al. [18] researched automatic generation in the implementation phase based
on XSLT. They first produced an XMI file output from class diagrams drawn by a UML
editor and manually edited it. Using the rules of the aspect program code described in the
XMI file, it was then transformed into program code using XSLT. This method is suita-
ble for programmers who are implementing actual code, but not for abstract requirements
in the development phase.

Wehrmeister et al. [19] presented a model-driven engineering approach, AMoDE-
RT, to design real-time and embedded automation systems, which combined UML,
AOSD, platform-based design [20], and code generation techniques in a consistent set of
activities and tools. AMoDE-RT enables straightforward progress from requirements
engineering to the system’s implementation.

These studies demonstrate that the procedure used in code creation concerns high-
level products that are developed artificially. Therefore, UML is suitable to describe the
abstract requirements of human thought. The conversion has been mainly addressed on a
code level and it would be difficult for these approaches to adopt early aspects because
early aspects represent high-level and abstract requirement descriptions. Therefore,
methods must be devised that bridge the gaps between the analysis, design, and imple-
mentation phases.

3. ASPECT-ENHANCED SEQUENCE DIAGRAM

To address the gaps and incorporate aspects between the design and implementation
stages, it is crucial to clarify how to model aspectual behavior in an aspectual SD with an
ESJPM. In our previous study [7], an augmentation of the use case specification to in-
clude aspectual properties was proposed for addressing the issue of representing aspects
in the requirement stage. Once the aspectual use case specification is designed, we can
begin to model the aspectual behavior in the aspectual SD with interaction operators.
Aspects can then be woven into the base use cases and the ESJPM can be appended with
the weaving semantics. The types of weaving operators used serve as the background of
our conversion rules.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 653

3.1 Augmented Use Case Specification with Aspects

Each use case specifies what must be done to perform its functionalities (also called
responsibilities). A basic use case specification includes a use case ID, name, pre-con-
ditions, post-conditions, actors, a basic flow and alternative flows. Fig. 2 shows a use
case specification augmented to include aspectual properties, which can address the re-
sponsibilities of aspectual use cases.

Fig. 2. Detailed use case specification template.

3.1.1 Type

Type is used to specify the type of category a use case belongs to, which is either an
aspectual use case that interleaves with base use cases or a base use case that may be
affected by aspectual use cases.

3.1.2 Woven base use cases

Woven base use cases are a set of use cases that an aspectual use case crosscuts.
Unlike extend or include relationships, an aspectual use case crosscuts more than one
base use case.

3.1.1 Join points

Join points describe when and where the corresponding aspectual behavior weaves
into the base use cases that the aspect crosscuts. They are specified in the aspectual use
case specification, not the base use case specification.

3.1.1 Types of weaving operators

The three categories of weaving operators are “insert behavior,” “replace behavior,”
and “impose constraint behavior” operators, further elaboration of which can be found in
Section 4.

KUO-HSUN HSU AND CHANG-YEN TSAI

654

Fig. 2 is a template of an aspectual use case specification for documenting aspectual
properties; however, it is up to system analysts to determine their own format, including
information that is necessary for the development of a software system that is suitable for
their organization or application.

3.2 Aspectual Sequence Diagram

UML interaction diagrams [21, 22] model the dynamic behaviors of a system. SDs
are a specific type of interaction diagram that portray the timing of messages dispatched
among a set of object instances. They are also the most direct and intuitive means for
describing how a group of object interact with each other. The proposed extension to
UML SDs is to introduce weaving operators that are implemented by an instance of a
weaver object. This incorporates aspectual behavior into object instances in the base SD
and the three types of weaving operators. The focus of the proposed extension to the SDs
is twofold: (1) to express the weaving semantics by modeling what and how the notion of
aspectual behavior can be interleaved into the sequence of event occurrences that are
defined in the woven use case specification, and (2) to specify the join points by model-
ing where the aspectual behavior will be interleaved into those behaviors defined in the
woven SDs.

Fig. 3. Extended state-based join point model.

3.3 Extended State-Based Join Point Model

In AOP [8], a join point is a well-defined location within the primary code where a
concern crosscuts an application. Join points can be method calls, constructor invocations,
exception handlers, or other points in the execution of a program. In aspect-oriented
modeling, how to denote join points and their corresponding behaviors with suitable no-
tation is the main focus of aspect modeling. Ali et al. [10] proposed an SJPM that sup-
ports, from a system dynamics behavior perspective, the implementation of crosscutting
concerns in systems that must be monitored constantly, such as safety-critical systems.
This addressed the deficiency of existing fixed code-based behavioral join point models.
The SJPM offers a high-level conceptual method to define and capture the concerns of a
software system, and assists analysts in representing nonfixed code-based aspectual be-
havior in a systematic manner. An extension to the SJPM, called ESJPM (shown in Fig.
3), was proposed in [7] to facilitate the capture and representation of the dynamic behav-
ior of aspectual use cases with aspect weaving in the early stage of software development,
which has the following three features:

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 655

1. Attachment of state machines to aspectual use cases to represent aspectual behavior
and join points;

2. Enrichment of the weaving semantics by introducing weaving operators into action
expressions in each early aspect state; and

3. Augmentation of the possible weaving location (called aspect interception in the
ESJPM) to include the entry point, inside state, and state exit point, to more effec-
tively include aspectual behavior in the software.

The proposed conversion rules used to bridge the gap between the design and im-

plementation stages are discussed in detail in the following section.

4. CONVERSION RULES

In the conversion mechanism, the ESJPM, which describes the weaving behaviors,
is used to provide the input information. In addition to the ESJPM, a defined code is re-
quired to assist the conversion of aspectual behaviors to aspect code. In this section, we
introduce the steps of the conversion mechanism and conversion rules of applying weav-
ing operators, and depict the code fragment that supplements the weaving operator.

Six weaving operators are classified into three operator type categories, as shown in
Table 1. Through the use of weaving operators, the system analyst can explicitly specify
the kind of weaving operation to be performed by an aspectual use case and the effects to
base use cases.

Table 1. Weaving operator categories.
Operator Type Operator Name

Insert Behavior
insert
insertPar (insert parallel)

Replace Behavior replace

Impose Constraint Behavior
IDC (impose duration constraint)
ITC (impose timing constraint)
ISI (impose state invariant)

1. Insert behavior includes two weaving operators, WeaveOPinsert and WeaveOPinsertPar.
WeaveOPinsert operator is applied when the woven aspect owns the control of execut-
ing the base use case till the end of performing the aspectual behavior. Weave-
OPinsertPar, on the contrary, does not interfere with the control flow of the base behav-
ior. The aspectual behavior will be executed in parallel with the woven behavior.

2. Replace behavior has only one weaving operator, named WeaveOPreplace. It is applica-
ble only when aspectual behavior is used to replace the base behavior at a given join-
point.

3. Impose constraints include three weaving operators, namely, WeaveOPIDC, WeaveO-
PITC and WeaveOPISI. WeaveOPIDC is applied when an aspect imposed a duration con-
straint on the execution of base behavior. WeaveOPITC is used when an aspect imposes
a timing constraint on the base behavior. And WeaveOPISI is used to introduce and
maintain an invariant state described by an aspect to the base use case’s behavior.

KUO-HSUN HSU AND CHANG-YEN TSAI

656

The definition of the aspectual behaviors and how they are transformed into conver-
sion rules are as follows:

1. Depicting the weaving operator: It is paramount to know which weaving operator is

appropriate. An appropriate scenario for each weaving operator is depicted and where
the aspect is to be woven is defined.

2. Transforming the scenario into the ESJPM: To provide weaving operator information
to the conversion mechanism, the weaving operator scenario is modeled in the
ESJPM.

3. Converting the ESJPM into aspectual code: A generic sample code for each weaving
operator is provided as a guideline to transform the EJSPM into aspectual code.

In the following, rules of applying the weaving operators are all expressed in a gen-

eralized format. However, to express the weaving operators more convincingly, a realis-
tic example is also provided using AspectJ [3-5].

4.1 OP Insert Rule

An OP insert is used to assist developers to insert extra code at a specified point in
an execution flow. The scenario of where an OP insert operator should be applied is
shown in Fig. 4 (a). When the execution flow reaches a join point, the aspect weaver ob-
tains the Join Point information from the base code and aspect code and creates a new
class with the aspect code as depicted in the code block at the right-hand side of the fig-
ure.

(c) General example code. (d) Example code with AspectJ.

Fig. 4. Insert operator.

The ESJPM of the OP insert shown in Fig. 4 (b) provides weaving information
while generating aspectual codes. The ESJPM is composed of a transition condition and
two states: the “Inspection State” and the “Insert State.” The Inspection State examines
whether the aspect weaver encounters a join point. If it is at a join point, the aspect
weaver transits to the “Insert State,” which describes the advice, the type of operators,
and the extra code in the entry action. In the figure we use “after” advice as an example.
After the extra code is inserted, the aspect weaver returns to the “Inspection State.”

(a) Scenario. (b) ESJPM.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 657

In the previous step, the ESJPM is converted into aspectual codes. As depicted in
Fig. 4 (c), aspectual code of the OP insert is generated from the “Join Point” and the en-
try action information within the “Insert State”. The first line of code is equivalent to the
declaration of a class in Java. Lines 2-7 are all directly converted from the pointcut in-
sert(), the “after” advice, and “TODO” in the entry action in the “Insert State” in the
ESJPM (Fig. 4 (b)). The join point declared in the pointcut insert() is also converted from
the transition condition between the “Inspection State” and “Insert State” in Fig. 4 (c).

Fig. 4 (d) illustrates an example of OP insert use for inserting a message that reads
“Synchronize Complete” when login.Syn() is completed.

4.2 OP InsertPar Rule

OP inserPar is used to assist developers to fork a new thread from an original thread
to execute a new insert code. The two threads run in parallel without affecting each other.
The OP insertPar scenario is shown in Fig. 5 (a). In the origin thread, the order of execu-
tion in flow-A is A0, B0, C0. Using OP insertPar, a new thread can be forked to execute
the sequence X0, Y0 at the join point without affecting the original execution sequence
B0, C0.

The OP insertPar ESJPM is shown in Fig. 5 (b) and is composed of a transition con-
dition and two states. The “Inspection State” has the same meaning as previously, and the
other is called the “InsertPar State.” In this state, “around” advice should be used because
it calls proceed() to execute the original execution flow in AspectJ. The two Runnable()
commands contain the codes to be executed in parallel by the two threads, one of which
calls proceed() and the other of which is used to execute the inserted code.

(a) Scenario. (b) ESJPM.

Fig. 5. OP insertPar Scenario and ESJPM.

By converting the ESJPM of OP insertPar, aspectual code can be generated as
shown in Fig. 6 (a) between lines 10 and 12. The code fragment depicted within the
dashed line block is provided to supplement OP insertPar.

Fig. 6 (b) shows an example code using AspectJ. There are two threads in the code,
starting at lines 13 and 18. The first thread executes the original method log.state() and
the other thread displays the message “Login State!”. In this case, the message “Login
State!” is shown when log.state() is executed.

KUO-HSUN HSU AND CHANG-YEN TSAI

658

(a) General example code. (b) Example code with AspectJ.

Fig. 6. OP insertPar example codes.

4.3 OP Replace Rule

Developers can replace an original process with a new process by using OP replace.
As shown in Fig. 7 (a), the original execution flow is A0, B0, C0. Using OP replace, the
aspect weaver weaves in an aspectual behavior R0 to replace behavior B0, which diverts
down a new execution flow with the sequence A0, R0, C0.

The OP replace ESJPM is shown in Fig. 7 (b). In the replace state, “around” advice
is recommended because replacement is built into its semantics.

(a) Scenario. (b) ESJPM.

(c) General example code. (d) Example code with AspectJ.

Fig. 7. Replace operator.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 659

Fig. 7 (c) displays the general code derived from the OP replace ESJPM. The con-
tent of anotherFunction() replaces the original behavior coded at line 3. Developers can
also code the replacing code directly in the block of void around():replace().

An example code using the OP replace operator is provided in Fig. 7 (d). Another-
Function() displays the message “TODO,” replacing the execution of replace.routine().
Using “replace and modify” in “around” advice, both OP insertPar and OP replace can be
implemented easily.

4.4 OP IDC (Impose Duration Constraint) Rule

The OP IDC operator is used to limit the time a specific execution process is al-
lowed to take; otherwise, the process fails. As shown in Fig. 8, OP IDC checks the exe-
cution time of doSomething() against the constraint time at the checkpoint receiveResult()
to determine whether doSomething() is finished in time.

There are two types of OP IDC operators: in type A, the checkpoint is set at the end
of a process, which means that the process is not checked until it is finished; in type B,
the process is interrupted immediately when the constraint time has run out.

Fig. 9 (a) displays OP IDC ESJPM type A, where the join point of the transition is
the process that must be limited. The “IDC Before State” records the start time of the

Fig. 8. OP IDC scenario.

(a) Type A ESJPM. (b) Type A general example code.

Fig. 9. Type A of OP IDC ESJPM and general example code.

KUO-HSUN HSU AND CHANG-YEN TSAI

660

process and the “IDC After State” records the time it is finished. These are then used to
determine whether the process is completed within the constraint time. There are also
two states for setting the constraint time in IDC ESJPM type B (Fig. 10 (a)). The “IDC
Before State” is the same as that for type A, and the other state is named “IDC Around
State,” which introduces multiple threads as used in OP insertPar. The first thread in the
“IDC Around State” is proceed(), which executes the process, and the second thread uses
a “for” loop to check the constraint time. When the time is up, the code represented by
“TODO” is executed, and the “for” loop is terminated immediately.

A general example code of type A is shown in Fig. 9 (b). The block from lines 6 to
8 is converted from the “IDC Before State” to mark the starting time, and conversion of
the “IDC After State” is listed from lines 12 to 19. The variable duration declared at line
2 is used to record the execution time of the process. Join points are declared at lines 4
and 10. Before the execution of a join point, duration records the current time, and after
the execution, it is checked to determine whether the constraint time set at line 15 was
exceeded.

For the example code in Fig. 11 (a), a developer declares Client.clientCallServer()
and Server.serverResponse() at the two pointcuts. The starting time is recorded before the
execution of Client.clientCallServer(), and the end time is recorded after the execution of
Server.serverResponse(). If the process time exceeds 3 seconds, the system displays the
message “timeout!”.

Fig. 10 (b) shows the general example code for type B. The effect of the block be-
tween lines 12 and 14 is the same as that for type A. The portion from lines 15 to 34 is
converted from “IDC Around State” in Fig. 10 (a). The constraint time is set at line 26,
and the next instruction is coded in the block after line 28. The join point is declared at
line 10. Before the execution of the join point, the variable duration records the current
time, and then the proceed() method in the first thread executes the original function de-
clared at line 10. Simultaneously, the second thread executes a “for” loop to check
whether the constraint time has been exceeded.

 (a) Type B ESJPM. (b) Type B general example code.

Fig. 10. Type B of OP IDC ESJPM and general example code.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 661

 (a) Type A example code with AspectJ. (b) Type B example code with AspectJ.

Fig. 11. OP IDC Type A and B example code with AspectJ.

Fig. 11 (b) is an example code for type B. The developer declares forIDC.check() in

the pointcut, and sets integer 3 at line 23 as the constraint time. When the forIDC.check()
function has taken longer than the constraint time (3 seconds), the message “Timeout!” is
printed and forIDC.check() is terminated.

4.5 OP ITC (Impose Timing Constraint) Rule

The weaving operator OP ITC is used to constrain the time of a process, similar to
OP IDC; however, in this case, it is used to execute a specified process at a preset time
(Fig. 12 (a)). When encountering the initial event, a join point and a time interval are
declared. The process continues to be executed until the preset time interval is reached, at
which point the assigned process is executed.

The ESJPM of OP ITC is shown in Fig. 12 (b). The preset time is defined in the
“ITC State.” Asides from the “ITC State,” the general code requires a supplementary
code fragment to be converted from the ESJPM of OP ITC.

Fig. 12 (c) depicts a general example code for OP ITC. The code fragment between
lines 9 and 18 is converted from the ESJPM of OP ITC. The join point is declared at line
10, and the preset time at line 16. The code between lines 2 and the 8 is the supplemen-
tary code fragment that is executed when the preset time is up, and should be coded in
the block at line 5.

Particular example code for the use of the OP ITC operator is provided in Fig. 12
(d). When forITCtest.run() has begun execution, the clock has started. After 5 seconds,
“5 seconds after timingObj” is displayed. Because the “around” advice leads to a re-
placement, the original process forITCtest() is replaced with the code coded in the
“around” advice. If the developer wants to execute the original process, we recommend-
ed that proceed() be used here.

KUO-HSUN HSU AND CHANG-YEN TSAI

662

Fig. 12. ITC operator.

4.6 OP ISI (Impose State Invariant) Rule

The OP ISI operator is used to ensure that an invariant is not violated before or after
the execution of a process. For example, banking systems may have an invariant declar-
ing that deposits must be greater than or equal to withdrawals. Fig. 13 (a) illustrates an
OP ISI scenario, in which the invariant is not violated before or after the execution of a
process.

The ESJPM of OP ISI is shown in Fig. 13 (b). The “ISI State” has two advices,
“before throws Exception” and “after throws Exception,” which throw Exception() mes-
sages if the constraint conditions are not satisfied.

Fig. 13 (c) provides the general code for the OP ISI operator. The join point is de-
clared at line 3. Lines 7 and 13 examine the conditions to determine whether the invari-
ants are violated. If the invariants are violated, Exception() messages at line 9 or line 15
are thrown and can be used to assist developers in maintaining or debugging the system.

Before and after the withdrawal of money from a bank, the balance must be checked
to ensure that it is greater than or equal to 0. The example code is shown in Fig. 13 (d).
Before and after the execution of Bank.withDrawMoney, user.getBlance() is called to
check whether the balance is less than 0, and if it is, the exception message “Error!” is
displayed.

4.7 Guidelines of Applying Conversion Rules

To assist developers to apply the proposed conversion mechanism, the following
steps are provided as a guideline for selecting appropriate conversion rules:

(a) Scenario.
(b) ESJPM.

(c) General example code.
(d) Example code with AspectJ.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 663

Fig. 13. ISI operator.

1. Matching the scenario of the proposed operators and the system to be built. In the as-
pectual use case document, there is a field of “types of weaving operators”, which
suggests the operator to be applied. By matching the scenario of the operator proposed
in the previous sections with the one in the use case document, developers can deter-
mine whether the operator in the use case document is appropriate or not.

2. Looking for the ESJPM of the aspectual sequence diagram corresponding to the use
case in the previous step to find out weaving information. By examining the ESJPM,
the following information can be retrieved, including join points, advices and “TO-
DO” operations.

3. Transforming information in the ESJPM into aspect code. According to the general
sample code given in each conversion rules, the information obtained from EJSPM
can be converted into aspect code as depicted in each conversion rules example.

5. CASE STUDY: A MEETING SCHEDULER SYSTEM

To demonstrate the feasibility of the proposed approach, a meeting scheduler system
[23] that has been adopted as a benchmark by Potts et al. [24], which illustrates typical
requirements and real system problems is introduced in this work. The purpose of this
system is to support the scheduling of meetings in organizations, that is, to determine, for
each meeting request, a meeting date and location so that most of the intended partici-
pants can join the meeting. The meeting data the location should be as convenient as
possible to all participants. The system should assist meeting initiators in re-planning a
meeting dynamically to support flexibility. All participants should be allowed to modify
their preference set, exclusion set or preferred location before a meeting date or location

(a) Scenario.

(b) ESJPM.

(c) General example code. (d) Example code with AspectJ.

KUO-HSUN HSU AND CHANG-YEN TSAI

664

is proposed. The system should also support conflict resolution according to the resolu-
tion policies specified by the initiator. Physical constraints, such as a person should not
be in two different meetings at the same time, should not be broken. Fig. 14 shows the
aspect-enhanced goal-driven use case diagram of the system. The meeting scheduler sys-
tem was then further analyzed and specified with aspect-enhanced sequence diagram and
ESJPM.

Fig. 14. Handle flexibility early aspect.

We use the handle flexibility early aspect as an example. The aspect AspectSF is to
be realized by the use case UCHandleFlexibility and crosscuts three goals, namely GMP, GMR,
GSF. GMP denotes the goal to plan a meeting, GMR denotes the goal to re-plan a meeting,
and GSF denotes the goal to support flexibility. We focus on the interaction between the
aspectual use case, UCHandleFlexibility, and base use case, UCReplanaMeeting, for explaining the
proposed approach. Fig. 15 (a) shows the aspectual use case specification of the UCHandle-

Flexibility aspectual use case. There are two join points specified: one is “Preference set

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 665

modification” that allows all participants to modify their exclusion/preferences sets be-
fore the meeting is held, and the other is “Meeting accommodation” that allows all par-
ticipants to issue a ‘re-plan the meeting request’ for accommodating a more important
meeting. The type of weaving operator to be used is WeaveOPinsert, which means that the
aspectual behavior addressed in this specification will be inserted into the behavior of
base use case.

After coding a general meeting scheduler, we proceeded as follows: (1) A handle
flexibility early aspect was identified from a goal-driven use case (shown in the dashed
rectangle in Fig. 14); (2) The use case specification shown in Fig. 15 was written; (3)
According to the operator definition, the aspect-enhanced sequence diagram and ESJPM
that fulfill the specification in the UML editor were constructed as shown in Figs. 16 and
17; (4) We exported the *.xmi file and (5) converted it into AspectJ code using the con-
version tool developed for this study; (6) Finally, by adjusting the code to fit the situation,
the requirements defined by the goal-driven use case specification were satisfied.

(a) Handle flexibility aspectual use case. (b) Max, number of meeting aspectual use case.

Fig. 15. Aspectual use case specification.

The meeting conflict scenario is defined as a situation in which the number of peo-
ple present at a meeting is insufficient and some meeting attendees have other meetings
scheduled that overlap with the meeting. Fig. 18 shows the current meeting schedule and
the activity diagram describing the process of scheduling a meeting. If the number of
possible attendees is 11, and at least half of the possible attendees can attend, then six or
more people are required to successfully establish a meeting. Attendee B is invited to two
simultaneous meetings; therefore, if B attends Meeting-1, there will be a conflict.

According to the basic flow of a goal-driven use case specification, two processes
should be performed: (1) preference set modification and (2) meeting accommodation.
Fig. 16 shows the aspect-enhanced SD for planning a meeting. In the SD, after the exe-
cution of Meeting(), an aspect is inserted to identify which meeting has higher priority.
Focusing on the aspect in the aspect-enhanced SD, the ESJPM is depicted in Fig. 17.

KUO-HSUN HSU AND CHANG-YEN TSAI

666

Fig. 18. Meeting schedule and activity diagram for scheduling a meeting.

Fig. 16. Handle flexibility SD crosscut for the scenario of planning a meeting.

Fig. 17. ESJPM of handle flexibility aspect.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 667

Using our conversion mechanism, a code template was generated and then modified
based on the AspectJ requirements (Fig. 19, top and bottom respectively).

Before the addition of the AspectJ content, the system could only inform separately
the initiator of both meetings that there would be a conflict. The initiators would have to
negotiate and replan the meeting.

After the handle flexibility of the early aspect is weaved in, the system can assign
each meeting a priority level. If there are any conflicts, participants can execute dynamic
attendance preferences according to the priority settings, without being limited by con-
straints (shown in Fig. 20).

Fig. 19. Code template and modified version of code.

Fig. 20. Handle flexibility crosscut: Part of the resolve conflict section.

When a possible attendee chooses whether they will attend a meeting, they can ig-
nore the meeting constraints, attend the crucial meeting, and cancel others in order of
priority (shown in Fig. 21). This achieves the preference set modification and meeting
accommodation defined by the aspect requirement.

Fig. 15 (b) gives another example of the aspectual use case specification of the
UCMax.NumberofMeeting aspectual use case with different weaving operators. In this example,
one join point is specified: “Allow More Participants” that allow more users to login the
system for more meetings to be planned. Two different weaving operators are used, one

KUO-HSUN HSU AND CHANG-YEN TSAI

668

is WeaveOPISI and the other is WeaveOPReplace. WeaveOPISI is used to guarantee that the
system won’t exceed the preset loading threshold while WeaveOPReplace allows the system
to have more participants to login when the number of login users is exceeding the origin
design but under the system loading threshold.

6. CONCLUSIONS

We present a mechanism for converting the ESJPM into AOP code, which enables
system development personnel to focus on developing state diagram models, and through
the support of tools, incorporate aspects into their code. This bridges the gap between the
design and code implementation phases of the development process.

We validated our conversion mechanism by incorporating an aspect into a meeting
scheduler system, showed the benefits of implementing SoC [1] modularization in the
SDP.

AOSD is emerging as a crucial approach to software engineering, and provides ex-
plicit means to model critical concerns that tend to crosscut multiple system components.
Early identification of concerns prevents the development of a tangled, scattered code
design, which reduces the cost of implementation and enhances maintainability.

Fig. 21. Handle flexibility crosscut: Part of the meeting replanning section.

We proposed six operator transformation rules and converted the early aspect de-
scribed in the ESJPM into aspect-oriented code in AspectJ, which can combine with the
base code and generates final system programs. There are three main features of the pro-
posed mechanism:

1. Using operator transformation rules, the early aspect of the state diagrams can be

converted.
2. Using the provided AspectJ transform template, both automatic and semi-automatic

conversions are supported.
3. Using the supporting tools, aspects can be imported into code, bridging the gap be-

tween the design and implementation phases of the development process.

FROM EARLY ASPECT TO ASPECT-ORIENTED PROGRAMMING 669

REFERENCES

1. D. Orleans and K. Lieberherr, “Dj: Dynamic adaptive programming in java,” in
Proceedings of International Conference on Metalevel Architectures and Reflection,
2001, pp. 73-80.

2. J. Araùjo, E. Baniassad, P. Clements, A. Moreira, A. Rashid, and B. Tekinerdogan,
“Early aspects: The current landscape,” Technical Notes, CMU/SEI and Lancaster
University, 2005.

3. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of aspectj,” in Proceedings of European Conference on Object-Oriented
Programming, 2001, pp. 327-354.

4. D. Zook, S. S. Huang, and Y. Smaragdakis, “Generating aspectj programs with
meta-aspectj,” in Generative Programming and Component Engineering, Springer,
2004, pp. 1-18.

5. S. Akai, S. Chiba, and M. Nishizawa, “Region pointcut for aspectj,” in Proceedings
of the 8th ACM Workshop on Aspects, Components, and Patterns for Infrastructure
Software, 2009, pp. 43-48.

6. J. Lee and K. H. Hsu, “Gea: A goal-driven approach to discovering early aspects,”
IEEE Transactions on Software Engineering, Vol. 40, 2014, pp. 584-602.

7. J. Lee, C.-L. Wu, W.-T. Lee, and K.-H. Hsu, “Aspect-enhanced goal-driven sequence
diagram,” International Journal of Intelligent Systems, Vol. 25, 2010, pp. 712-732.

8. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J.
Irwin, “Aspect-oriented programming,” in Proceedings of European Conference on
Object-Oriented Programming, 1997, pp. 220-242.

9. N. Boucké and T. Holvoet, “State-based join-points: Motivation and requirements,”
in Proceedings of the 2nd Dynamic Aspects Workshop, 2005, pp. 1-4.

10. N. M. Ali and A. Rashid, “A state-based join point model for aop,” in Proceedings of
the 1st ECOOP Workshop on Views, Aspects and Role, in 19th European Conference
on Object-Oriented Programming, Citeseer, 2005.

11. D. Stein, S. Hanenberg, and R. Unland, “Designing aspect-oriented crosscutting in
uml,” in Proceedings of Workshop on Aspect-Oriented Modeling with the UML,
2002.

12. D. Stein, S. Hanenberg, and R. Unland, “On representing join points in the uml,” in
Proceedings of Aspect Oriented Modeling Workshop, 2002.

13. J. Whittle and J. Araújo, “Scenario modelling with aspects,” IEE Proceedings 
Software, Vol. 151, 2004, pp. 157-171.

14. J. Araujo, J. Whittle, and D.-K. Kim, “Modeling and composing scenario-based re-
quirements with aspects,” in Proceedings of the 12th IEEE International Require-
ments Engineering Conference, 2004, pp. 58-67.

15. R. B. France, D.-K. Kim, S. Ghosh, and E. Song, “A uml-based pattern specification
technique,” IEEE Transactions on Software Engineering, Vol. 30, 2004, pp. 193-
206.

16. D.-K. Kim, R. France, S. Ghosh, and E. Song, “A uml-based metamodeling language
to specify design patterns,” in Proceedings of the 2nd Workshop in Software Model
Engineering, 2003.

KUO-HSUN HSU AND CHANG-YEN TSAI

670

17. I. Groher and S. Schulze, “Generating aspect code from uml models,” in Proceedings
of the 4th AOSD Modeling With UML Workshop, 2003.

18. M. V. Hecht, E. K. Piveta, M. S. Pimenta, and R. T. Price, “Aspect-oriented code
generation,” Simpsio Brasileiro de Engenharia de Software, 2006, pp. 209-223.

19. M. A. Wehrmeister, C. E. Pereira, and F. J. Rammig, “Aspect-oriented model-driven
engineering for embedded systems applied to automation systems,” IEEE Transac-
tions on Industrial Informatics, Vol. 9, 2013, pp. 2373-2386.

20. A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and software
design methodology for embedded systems,” IEEE Design & Test of Computers, Vol.
18, 2001, pp. 23-33.

21. G. Booch, J. Rumbaugh, and I. Jacobson, “The unified modeling language,” Unix
Review, Vol. 14, 1996, p. 5.

22. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley Professional, UK, 2010.

23. M. S. Feather, S. Fickas, A. Finkelstein, and A. Van Lamsweerde, “Requirements
and specification exemplars,” Automated Software Engineering, Vol. 4, 1997, pp.
419-438.

24. C. Potts, K. Takahashi, and A. I. Antón, “Inquiry-based requirements analysis,”
IEEE Software, Vol. 11, 1994, p. 21.

Kuo-Hsun Hsu (徐國勛) is an Assistant Professor in the De-
partment of Computer Science at National Taichung University of
Education in Taiwan. He received his Ph.D. degree in Computer
Science and Information Engineering from National Central Uni-
versity, Taiwan, in 2003, his B.S. in Computer and Information
Science from the National Chiao-Tung University, Taiwan, in
1996. His research interests mainly focus on software engineering,
requirement engineering, software architecture, service-oriented
architecture, and CMMI. He is a member of the IEEE.

Chang-Yen Tsai (蔡長諺) is a graduate student in the De-
partment of Computer Science at National Taichung University of
Education in Taiwan. He received his B.S. in Computer Science
from the National Taichung University of Education, Taiwan, in
2015. His research interests mainly focus on software engineering
and aspect-oriented development.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

