
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 1151-1169 (2013)

1151

PTree: Mining Sequential Patterns Efficiently
in Multiple Data Streams Environment

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG
Department of Computer Science and Information Engineering

National Dong Hwa University
Hualien, 974 Taiwan

E-mail: guanling@mail.ndhu.edu.tw

Although issues of data streams have been widely studied and utilized, it is never-

theless challenging to deal with sequential mining of data streams. In this paper, we as-
sume that the transaction of a user is partially coming and that there is no auxiliary for
buffering and integrating. We adopt the Path Tree for mining frequent sequential pat-
terns over data streams and integrate the user’s sequences efficiently. Algorithms with
regards to accuracy (PAlgorithm) and space (PSAlgorithm) are proposed to meet the dif-
ferent aspects of users, although GAlgorithm for mining frequent sequential patterns with
a gap limitation is proposed. Many pruning properties are used to further reduce the
space usage and improve the accuracy of our algorithms. We also prove that PAlgorithm
mine frequent sequential patterns with the approximate support of error guarantee.
Through thoughtful experiments, synthetic and real datasets are utilized to verify the
feasibility of our algorithms.

Keywords: data mining, multiple data streams, sequential patterns, frequent patterns,
knowledge discovery

1. INTRODUCTION

In recent years, emerging applications, such as sensor network data analysis, net-
work traffic analysis, and Web-click stream mining, have called for a study of a new kind
of environment, called data streams. For data stream applications, the volume of data is
usually too huge to be stored in persistent devices or to be scanned more than once [14].
In this paper, we focus on the problem of frequent sequence mining in data streams.
Study of frequent sequence mining of offline fashion has been extensively done in a se-
quence database. A sequence database is a collection of ordered data items or events i.e.,
a DNA sequence, network flow logs and Web-click stream logs. Frequent sequences
mining can be classified, based on the pattern they produce, into two categories: con-
secutive sequence [4, 7] and generalized sequence. A generalized sequence is a sequence
that allows wildcards. A sequential pattern is similar to a generalized sequence without
the consideration of an itemset. The sequential patterns mining problem was first dis-
cussed in [1]. Thereafter, many efficient mining methods have been studied extensively.
Since conventional sequential pattern mining methods may generate a huge number of
short and trivial patterns, Kum et al. aim at mining sequential patterns roughly by using a
cluster technique [9]. Pei et al. introduce PrefixSpan to avoid hung memory usage during
the mining process [15]. Yu and Chen propose an algorithm for mining a sequential pat-

Received March 2, 2013; accepted April 19, 2013.
Communicated by Ruay-Shiung Chang and Sheng-Lung Peng.

admin
打字機文字
DOI:10.1688/JISE.2013.29.6.6

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1152

tern from the multidimensional sequence data [18]. Chen et al. first proposed an off-line
algorithm for sequential pattern mining across multiple streams [3]. Zhao et al. first pro-
posed a prefix-projection based algorithm, U-PrefixSpan, for probabilistically frequent
sequential patterns mining [19]. Due to compression based pattern mining has been ap-
plied to many data mining tasks, Lam et al. proposed an efficient greedy algorithm, Go-
Krimp, to directly mine compressing sequential patterns [10].

The key characteristics of existing algorithms in sequences database are the multiple
scans and secondary memory accesses involved. The characteristics are diametrically
opposed to the limitations of the data stream environment: one pass scheme, short re-
sponse time and limited system resources. Consequently, on-line fashion algorithms are
needed to tie in the data stream environment. Li et al. introduced an on-line algorithm,
StreamPath, to mine frequent sequence patterns [12]. In the proposed algorithm, a ma-
jority method is used for the guarantee of memory usage. In recent years, top-k se-
quences mining have been discussed in [6, 13]. The issues of mining closed sequential
patterns in a data stream environment are introduced in [2, 5, 17]. Moreover, the problem
of mining sequential patterns in the multiple data streams environment is introduced in
[16], and the application of sequential patterns with B2B is discussed in [8].

Fig. 1. Data of sensor gathering in each time period. Fig. 2. The database after integration.

In this paper, the problem of finding frequent sequential patterns across multiple

streams in an on-line fashion is introduced and discussed. We illustrate our motivation by
the following application. Suppose biologists are interested in the mice’s sequences of
reactions (events) after giving mice certain triggers. To collect those sequences, biolo-
gists tag each mouse with an ID and set sensors for every event. The sensors will output
an ID sequence periodically. Each output represents who has passed by in the corre-
sponding time period. Biologist can mine recently frequent sequences of events by min-
ing the outputs generated by sensors; for example, there are 3 mice, {A, B, C}, and 2
sensors, {s1, s2}. The data reported by the sensors is shown in Fig. 1. In the traditional
way, a buffer is needed to buffer and integrate temporal outputs. The integrated database
is shown in Fig. 2. Upon analyzing Fig. 2, it is easy to see that sequences {s1, s2} and {s2,
s2, s1} are frequently accessed. A user’s transaction gradually becomes complete under
this environment of data streams, which is practical in many real applications, such as
routing optimization by using logs of routers and transportation monitoring. With the
growing technique of RFID, monitoring a vast number of objects is becoming more prac-
tical. However, it is hard to mine underlying knowledge from separate records in real
time and update it incrementally as time advances.

The problem of mining frequent sequential patterns in data streams with incremental
transactions has not been well discussed to date. In [12, 13], they aimed to mine frequent

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1153

sequences, called maximal forward references from data streams. A maximal forward
reference (MFR) is a consecutive forward reference sequence without any backward ref-
erence, for example, the MFR of sequence <CABCDCA> is <ABCD>. They adapt FP-
Tree based structures to achieve mining a frequent sequence in one pass; however, they
do not take the problem of incremental transaction into account. In our previous research
[11], we developed a notation of sequential patterns in multiple streams and proposed
two algorithms, PAlgorithm and PSAlgorithm, for mining sequential patterns without
any auxiliary buffer. An approximation for counting the algorithms with a guaranteed
error boundary was proposed. Furthermore, we also proposed an algorithm with com-
pressed space. Upon these two algorithms, the paths maintained by Ptree are within the
current window. However, people may be interested in other types of frequent paths.
Therefore, in this paper, we propose a variational algorithm, GAlgorithm, to deal with the
problem of mining frequent paths with a gap limitation for different application based on
the same structure. Moreover, we will discuss some optimizations to improve the speed
of algorithms.

The rest of the paper is organized as follows. The problem statement is provided in
section 2. In section 3, the structure and algorithms are explained, followed by the per-
formance result with thoughtful experiments in section 4. Conclusions are discussed in
section 5.

2. PRELIMINARIES

2.1 Stream Environment

Let i = {i1, i2, …, in} be the monitored items and n be the total number of items that

can be a variable or fixed value depending on applications. An itemset e = {ij1, …, ijk} is a
subset of I. The monitoring sensors set is S = {s1, s2, …, sm} where m is the total number
of monitoring sensors. Taking Fig. 1 as an example, the item set is {A, B, C} and the
monitoring sensor set is {s1, s2}. The data stream generated by sj is a sequence with con-
secutive and boundless data items and has the form {esjt1, esjt2, …, esjtk} where esitk is the
set of items detected by sj during the time period tk and named as an appearance. Refer-
ring to Fig. 1, es1t1 = {A, C} means item A and C appear at monitoring sensor s1 in time
period t1. The collection of appearances during a specific time period tk is a tuple, wk =
{es1tk, es2tk, …, esmtk}. In this paper, we assume that an item can only appear once during a
time period, but multiple times in different periods.

A path of an item il, pathil = <st1, st2, …, stk> where stj = {s, if il  sstj}, is a time or-
dered sequence and is recorded by the sensors where it passes by. And, st1 is the head of
the pathil. Moreover, k increases as time advances. A pathil = <1, 2, …, j> is a sub-
path of a pathip = <1, 2, …, k>, denoted by pathil  pathip, if there exist integers 1  l1
 …  lj  k such that 1 = l1, 2 = l2, …, j = lj. We also call pathip a super-path of
pathil. The support count of a path x is the number of items whose path contains x. And
the support of x, denoted by support(x), is defined by the ratio of the support count of x
to the total number of items. Taking Fig. 1 as an example, the support count of path
<s1s2> is three.

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1154

2.2 Problem Definition

Since people have more interest in recent data, we can define a stream window, Wj =
{wj-D+1, …, wj-2, wj-1, wj}, j  D + 1  0, to delimit which data we are interested in,
where j is the current time period and D is the user defined window size. The timestamp
of a path formed by item i is denoted by timestamp(i, pathi), that is the time that i ap-
peared in the head. For example, referring to Fig. 2, the value of timestamp(A, <s1s2s1>)
is one. A path formed by item i is expired whenever its timestamp is out of a current time
window. Our idea is to treat every path equally within the current window and ignore
expired paths as soon as the window slides.

The input of our system is an (infinite) set of tuples which are coming one by one at
every end of time period. Our goal is to mine the paths with support that exceed a mini-
mum support within the current window. Minimum support is a user-defined parameter
min_sup  (0, 1). Given a user-defined error threshold   (0, 1) and  << min_sup, the
answer of our algorithm is required to have the following guarantees:

1. All paths whose support exceeds min_sup are output. There are no false negatives.
2. No paths whose support has a value of less than (min_sup-) is output.

3. ALGORITHMS

In this section, we first explain our basic idea of frequent paths mining by answering
the following two questions: How can we enumerate the complete set of frequent paths
and, since the inputs of our environment are continuous tuples, how can we concatenate
an item’s path without the help of auxiliary buffer. Then, we propose two algorithms to
come to the compromise between precision (PAlgorithm) and space (PSAlgorithm).

3.1 Path Tree

Assume that there is a lexicographical ordering < among the set of sensor ids S (i.e.,
in Fig. 1, one possible sensor ordering can be S1 < S2). Conceptually, the complete search
space of path mining forms a path tree (PTree), which can be constructed in the follow-
ing way: The root node node0

 of the PTree is at level 0 and labeled . From root node
node0

 but excluding node0
, each node node0

sj
 PTree forms a path path(nodel

sj
) = <sx, …,

sj>, where node1
sx
 is in the path from node0

 to nodel
sj
 and sx is the label of the node fol-

lowing node0
. A set of items denoted by item_set(nodel

sj
) maintained in node nodel

sj
 is

used to store the relationship between paths and items, and assist the recognition of the
item’s path whenever the new arrival tuple is inserted into the PTree. Moreover, each
item i maintained in node nodel

sj
 is associated with a timestamp timestamp(i, nodei

sj
)

which is set to timestamp(i, path(nodel
sj
)). Fig. 3 shows the PTree built from Fig. 1. In the

PTree, each node represents a path from root to the node and contains a set of items. Ac-
cording to Fig. 3, we see that item A has passed paths <s1>, <s1, s2> and <s2> during the
time window of time period 2, since A is maintained by each node accordingly. It is ob-
vious that PTree stores all the information of items path and sub-paths. The PTree con-
struction process is illustrated by the following example: in Figs. 1 and 3, w2 = {es2t2={A,B,C}

}
is incoming, item A will be inserted into node1

s2
 with timestamp 2, since node1

s2
 already

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1155

exists. In addition, because A has visited node1
s1
 before and node1

s1
 has no child with label

s2, a new child node2
s2
 is inserted into node1

s1
 to maintain the path <s1, s2> formed by A.

Moreover, A is inserted into item_set(node2
s2
) and timestamp(A, node2

s2
) is set to time-

stamp(A, node1
s1
) since timestamp(A, node1

s1
) is the timestamp of path < s1, s2> formed by

A. Recursively, we can extend a node nodel
sj
 at level l with label sj in PTree by adding

sensor id sm as its child node nodesm

l+1 at the next level l + 1. This is called the path exten-
sion and the extended path is denoted by path(nodel

sj
)  sm (the corresponding node is de-

noted by nodel
sj
  sm). Taking Fig. 1 as an example, after the update of appearance es2t2

 =
{A, B, C}, node1

s1
 and node1

s2
 are identified and extended to generate path(nodel

s1
)  s2 and

path(nodel
s2
)  s2, since paths <s1s2> and <s2s2> are formed.

In the PTree, the item i and its timestamp(i, nodel
sj
) is set accordingly whenever i

was inserted into node nodel
sj
 and the timestamp is used to identify which items’ sub-path

path(nodel
sj
) has expired in the next time window. An item does not contain path(nodel

sj
)

in the time period of tk whenever the timestamp(i, nodel
sj
) + D is no greater than tk. We

can take Fig. 3 as an example and assume that the size of the stream window is 3. As the
stream window slides from time period 3 to 4, the item i whose timestamp(i, nodel

sj
)

equals 1 is expired and dropped from nodel
sj
, i.e., item A in node2

s1
 and B in node3

s1
. We

remove item i and its corresponding timestamps from a nodel
sj
 and nodel

sj
’s sub-tree

whenever the timestamp(i, nodel
sj
) is expired, since valid sub-paths of i are still main-

tained in the PTree. Obviously, the support count of a path formed by node nodel
sj
 (we

will use the node to represent the path formed by itself for short), sup_count(nodel
sj
), is

the number of items it maintains. By traversing the PTree and identifying the node whose
support count exceeds min_sup  n, we can enumerate all frequent paths. The PTree has
the following properties:

Property 1: In the process of path extension, the possible itemset whose path contains
path(nodel

sj
)  sm is the intersection of the items maintained by nodel

sj
 and its sibling nodel

sm
.

Property 2: The timestamp(i, nodel

sj
  sm) is always no greater than timestamp(i, nodel

sj
).

Property 3: When timestamp(i, nodel

sj
) is expired, item i maintained by the nodes of the

sub-tree rooted at nodel
sj
 can also be dropped.

And according to property 1, we can get the following lemma.

Lemma 1: The support count of path(nodel

sj
)  sm is no greater than the number of items

within the intersection of the items maintained by nodel
sj
 and its sibling with label sm.

Proof: In the process of path extension, the possible itemset whose path contains path-
(nodel

sj
)  sm is the intersection of the items maintained by nodel

sj
 and its sibling nodel

sm
.

Therefore, the support count of path(nodel
sj
)  sm cannot exceed the number of items within

the intersection of the items maintained by nodel
sj
 and its sibling with label sm.

3.2 Algorithms

If we can record all the paths whose support count is no smaller than one in the

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1156

 

 

Fig. 3. PTree constructed from Fig. 1.

PTree, we can solve the problem by traversing the tree and reporting the path(nodel
sj
) as a

frequent path if and only if the number of items maintained by nodel
sj
 is no smaller than

min_sup  n. However, the rapidly increasing number of paths can cause severe prob-
lems which include prohibitive space and computing overheads. To address this problem,
Teng et al. hold the generation of a candidate pattern until all its sub-patterns of size-1
are frequent. However, the problem of this generation mechanism is delayed pattern rec-
ognition. To solve the problem, a user-specified error parameter  is used as the candi-
date generation threshold, -generation. After an update iteration, nodes with support
count exceeding  are identified. These identified nodes can be taken into account to
generate new candidates, the candidates of which are then counted in later iterations.

Because path(nodel
sj
)  sm would not be generated until the support counts of nodel

sj

and its sibling nodel
sm

 exceed   n, we could not determine the items whose path contains
path(nodel

sj
) and path(nodel

sm
) forms path(nodel

sj
)  sm or path(nodel

sm
)  sj whenever the path

extension is performed. Therefore, we set the items maintained by extended nodes nodel
sj
 

sm and nodel
sm

  sj to the possible maximum set of items. According to property 1, the pos-

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1157

sible items whose path contain path(nodel
sj
)  sm is the intersection of the items maintained

by nodel
sj
 and its sibling nodel

sm
. Similarly, the sub-tree rooted at node nodel

sj
 can be re-

moved whenever the sup_count(nodel
sj
) is less than   n.

Lemma 2: All nodes whose true support exceeds min_sup can be recognized in the
PTree constructed by -generation.

Proof: Assume t is the support count of a node  accumulated so far and t is the true
support of , we have t  t  t  , since sup_count() is always set to  whenever it was
generated. If ’s true support exceeds min_sup, we have t  t  min_sup. Thus, nodes
with true support count that exceed the min_sup will be recognized. 

Lemma 3: Each node  with estimated support t no smaller than the min_sup in PTree
constructed by using -generation satisfies: t  t  .

Proof: Because the over estimate of  is t  t, where t is the true support of , and we
know t  t  . Therefore, t  t  t  (t  ). And we get t  t  . 

From Lemmas 2 and 3, we can examine that the PTree constructed by using -gen-

eration is satisfying those guarantees outlined in the previous section.
Moreover, we can further reduce the overestimated support count of a node by the

assistance of timestamp. In the following, we introduce two algorithms to enumerate the
complete set of frequent paths with regards to the accuracy and space. The first algorithm,
PAlgorithm, keeps the full information of the timestamp in nodes to meet the require-
ments of the guarantee discussed in section 2. The second algorithm, PSAlgorithm, keeps
less information of the timestamp in nodes. It calculates an item’s timestamp through an
estimation function.

Before explaining the PAlgorithm, we will now outline some properties of the PTree:

Property 4: Whenever the path extension of path(nodel
sj
)  sm is performed, the time-

stamp(i, nodel
sj
  sm) is equal to timestamp(i, nodel

sj
), when timestamp(i, nodel

sj
)  time-

stamp(i, nodel
sm

). Otherwise, it is equal to timestamp(i, nodel
sm

).

Property 5: If item i is a newly added item in nodel

sj
 at time tk, i would not be inserted

into nodel
sj
  sm during the path extension of nodel

sj
 with sibling nodel

sm
 at tk.

The pseudo code of PAlgorithm is shown in Fig. 4, and the PTree constructed by
PAlgorithm shown in Fig. 5 is referred to in Fig. 1. Through PAlgorithm, PTree persis-
tently maintains a root and a set of child nodes {node1

sm
|sm  S}, only the monitored nodes

are counted in each update. Generally, PAlgorithm traverses PTree in a DFS manner. For
an incoming item i of appearance esjtk, PAlgorithm will check each node node1

sm
 at level

one and update i recursively if item i exists in node1
sm

. After the recursive updating of i,
PAlgorithm inserts or updates i with timestamp tk into node nodel

sj
. Referring to Fig. 5,

when item A of es2t2 is coming, the nodes’ information rooted at node1
s1
 with A is updated,

since A is maintained in node1
s1
. After the update, A is inserted into node1

s2
, and time-

stamp(A, node1
s2
) is set to the current time period t2. By checking the items maintained by

nodes, PAlgorithm recognizes the sub-paths of an item i and updates nodes through call-

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1158

ing subroutine PUpdate. The sense of recursively calling PUpdate is to recognize each
i’s sub-paths, to concatenate each i’s sub-paths with sj and to update each i’s sub-paths to
the latest timestamp. The item’s timestamp of a node will be updated if the node’s label
equals the sensor id of the current appearance. Moreover, the timestamp(i, nodel

sm
) should

be updated by the timestamp(i, nodel
sm

’s parent) instead of the current time period.

PAlgorithm()
Input: a stream of tuples gathered by sensors, a user-specified min_sup, error parameter
 and window size D.
Output: Frequent path set F.
1: while(1) do
2: wtk = tuple of time period tk
3: foreach appearance esjtk  wtk do
4: foreach item i  esjtk do
5: foreach node node1

sm
 contains i do

6: node1
sm

.PUpdate(i, sj, (i, node1
sm

));
7: if node1

sj
 contains i then

8: update timestamp(i, node1
sj
) to tk;

9: else
10: insert i into node1

sj
 with timestamp tk;

11: if sup_count(node1
sj
)  n then

12: Path Extension;
13: Pruning Process;
PUpdate(i, sj, ts)
Input: an item ID i, label of current appearance sj and timestamp of i in parent node ts
1: if exist a child with label sj then
2: foreach child nodesm

l+1 contains i do
3: nodesm

l+1.PUpdate(i, sj, i’s timestamp in current node);
4: if nodesj

l+1 contains i then
5: update timestamp(i, nodesj

l+1) to ts;
6: else
7: insert i into nodesj

l-1 with timestamp ts;
8: if nodesj

l+1 has no child && support(nodesj

l+1)    N then
9: Path Extension;

Fig. 4. PAlgorithm.

After the insertion, PAlgorithm will check nodes for the path extension by calling
the subroutine Path Extension. The subroutine is triggered when the sup_count(nodel

sj
) is

no less than   n. Moreover, the height of PTree is at most D and we can avoid the
problem of delayed recognition. If the path extension process of a node nodel

sj
 is triggered,

siblings with a support count of no less than  (including nodel
sj
) will be identified and

extended with each other to form nodes at the next level. According to property 1, the
default itemset of path(nodel

sj
)  sm can be assigned. Moreover, according to properties 4

and 5, the item’s timestamp can be estimated more precisely.
Before processing the next tuple, Pruning Process has two purposes:

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1159

(1) to identify which paths an item does contain in the next time window.
(2) to delete the sub-tree rooted at nodes with a support count of less than n.

An item i would not contains path(nodel

sm
) in time period of tk+1 whenever timestamp

(i, nodel
sm

) + D is no greater than tk+1. Thus we drop items in nodes if their corresponding
timestamp are expired. Moreover, according to property 3, we can delete item i from’s
sub-tree safely whenever timestamp(i, nodel

sj
) is expired in nodel

sj
. The sub-tree rooted at

node nodel
sj
 would be deleted whenever sup_count(nodel

sj
) is less than n, owing to the

path extension of -generation.
Upon PAlgorithm, at any time point, we can enumerate the complete set of frequent

paths in the current time window by identifying those nodes with a support count that
exceeds min_sup  n. The experimental results indicate that the PAlgorithm has dramatic
accuracy. Even under a large setting value of , the accuracy of the PAlgorithm is also
near perfect. However, the increasing space is unsuitable in some circumstances since the
PAlgorithm stores all timestamps of items in nodes. To avoid the space overhead of
storing timestamps, we propose another algorithm, PSAlgorithm, to enumerate frequent
paths with an estimated timestamp. The necessary information is timestamps of items in
nodes at level one.

The procedure of PSAlgorithm is almost the same as PAlgorithm. The difference
between PAlgorithm and PSAlgorithm is the estimated timestamp, since PSAlgorithm
gets an item’s timestamp through an estimated method. Therefore, the PTree can be
modified as follows: the nodes maintain a set of items instead of items and timestamps
except nodes at level one. Because we evaluate an item’s timestamp through an esti-
mated method, it results in a loose guarantee of node’s support count. The loose guaran-
tee is a tradeoff to meet the compromise between accuracy and space.

Property 6: The timestamp(i, nodel

sj
) can be estimated as timestamp(i, nodel

sm
)  k + 1, whe-

re timestamp(i, node1
sm

) is the minimum value of {timestamp(i, node1
sm

)|sm  {path(nodel
sj
)}}

and k is the last index of sm in path(nodel
sj
).

For example, referring to Fig. 5, the timestamp(A, node3

s2
) is estimated as 5  2 + 1,

since the minimum timestamp of item A in path(node3
s2
) is five (timestamp(A, node1

s1
))

and the last index of s1 in path(node3
s2
) is two. The pseudo code of PSAlgorithm is given

in Fig. 6. Consequently, whenever updating a tuple, the update process of PSAlgorithm is
to recognize and to concatenate an item’s path without timestamps assignment and up-
date. The timestamps assignment and update are only involved in nodes at level one.

3.3 The Variation: GAlgorithm

In the previous section, two algorithms are proposed to compute frequent paths over
data streams within a sliding window. Upon those algorithms, the paths maintained by
Ptree are within the current window. However, people may be interested in other types of
frequent paths, for example, mine out the complete set of frequent paths among each path
<st1, st2, …, stk> that tl  tl-1  gap, where the gap is a user specified parameter. In this sec-
tion, we propose a variational algorithm, GAlgorithm, to deal with the problem of mining
frequent paths with a gap limitation.

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1160

 

 

Fig. 5. PTree constructed by PAlgorithm.

PSAlgorithm()
Input: a stream of tuples gathered by sensors, a user-specified min_sup, error parameter
 and window size D.
Output: Frequent path set F.
1: while(1) do
2: wtk = tuple of time period tk
3: foreach appearance esjtk  wtk do
4: foreach item i  esjtk do
5: foreach node node1

sm
 contains i do

6: node1
sm

.PSUpdate(i, sj);
7: if node1

sj
 contains i then

8: update timestamp(i, node1
sj
) to

k
t ;

9: else
10: insert i with timestamp tk into node1

sj
;

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1161

11: if sup_count(node1
sj
)  n then

9: PathExtension;
10: Pruning Process;
PSUpdate(i, sj)
Input: an item ID i and label of current appearance sj.
1: foreach child nodesm

l+1 contains i do
2: nodesm

l+1.PSUpdate(i, sj);
3: if !(nodesj

l+1 contains i)then
4: insert i into nodesj

l+1;
5: if sup_count(nodesj

l+1)  n then
6: path extension;

Fig. 6. PSAlgorithm.

s1 {A} {A} {A} {A}

S
en

so
rs

ID

s2 {A} {A}
Time Period 1 2 3 4 5 6 7 8 9 10 11

Fig. 7. Data of sensors gathered in each time period.

We refer to Fig. 7, and assume the value of gap is three. The paths of pathA are <s1>
and <s1s2> after time periods 1 and 2 respectively. Accordingly, pathA is <s1s2s1s1> after
time period 6. The pathA would be maintained in PTree until the end of time period 9,
since the deviation between time period six and ten exceeds the gap. In this case, the
pathA <s1s2s1s1> would be dropped and refreshed by <s1>. According to the problem,
discovering the complete set of frequent paths with gap limitation, we have the following
property.

GAlgorithm()
Input: a stream of tuples gathered by sensors, a user-specified min_sup , error parameter
 and gap D.
Output: Frequent path set F.
1: ts = {}; // set of item’s timestamp
2: while(1) do
3: wtk = tuple of time period tk
4: foreach appearance esjtk  wtk do
5: foreach item i  esjtk do
6: foreach node node1

sm
 contains i do

7: node1
sm

.GUpdate(i, sj);
8: if !(node1

sj
 contains i)then

9: insert i into node1
sj
;

10: if sup_count(node1
sj
)  n then

11: PathExtension;
12: if i  ts then
13: update timestamp(i) to tk;
14: else

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1162

15: insert timestamp(i) into ts with value of tk;
16: pruning process;

GUpdate(i, sj)
Input: an item ID i and label of current appearance sj.
1: foreach child nodesm

l+1 contains i do
2: nodesm

l+1.GUpdate(i, sj);
3: if !(nodesj

l+1 contains i)then
4: insert i into nodesj

l+1;
5: if sup_count(nodesj

l+1)  n then
6: path extension;

Fig. 8. GAlgorithm.

Property 7: The whole pathi of an item i <st1, st2, …, stk> can be dropped whenever tk +
gap < current timestamp.

According to Property 7, we drop an item’s path as long as the last timestamp of the
path satisfies the drop condition. Thus, we monitor an item’s path upon one timestamp
instead of timestamps in nodes. The pseudo code of GAlgorithm is shown in Fig. 8. Ba-
sically, GAlgorithm is similar to the algorithms discussed in the previous section. GAl-
gorithm enumerates the frequent paths from the PTree and keeps one timestamp for each
item. Whenever a path extension is performed, GAlgorithm extends a node nodel

sm
 with

sibling sj according to Property 1 and Property 5, since there are no more timestamps to
perform pruning checks. Finally, in the pruning process, GAlgorithm traverses the PTree
in a DFS manner and drops items away from the PTree upon Property 7.

3.4 Optimizations

Basically, our algorithms have three stages: Update, Path Extension and Pruning
Process. In this section, we will discuss some optimizations to improve the speed of al-
gorithms.

Update: This stage repeatedly checks children nodes and recursively updates children by
calling self-function. According to the algorithms, the timestamp timestamp(nodel

sj
) will

be updated whenever the label sj equals the sensor’s id of the current appearance. More-
over, the nodes with label sj of nodel

sm
’s sub-tree is existent if and only if the support

counts of nodel
sm

’s sibling with label sj and nodel
sm

 are exceeding n. We determine
whether the Update of a child is performed or not upon the following property:

Property 8: The update of a child nodel

sm
 is performed if and only if the support counts

of nodel
sm

 and nodel
sm

’s sibling with label sj are exceeding n, where sj is the sensor’s id of
the current appearance.

Path Extension: A Path extension is triggered whenever the support count of a node
exceeds n after the insertion of an item. To avoid redundant checks, we set a node to
passive state, when the node has triggered a path extension before. Nodes with a passive
state cannot trigger any path extension during later insertions, although they are still in-

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1163

volved in path extensions triggered by a sibling. The passive state of a node would be set
to an active state whenever its support count is less than n in that its support count has
the possibility to exceed n in later insertions.

Pruning Process: The pruning process is the bottleneck of our algorithms, since it trav-
erses the whole PTree and checks each timestamp of the items. To reduce the overhead
of the pruning process, we traverse the PTree in a DFS manner and employ a top-down
policy. During the traversing process, we check the items’ timestamps first and prune the
items whose timestamps are expired. We do not further prune the node’s sub-tree when-
ever the support count of the nose is less than n, since its sub-tree would be dropped
owing to the characteristics of -generation.

4. EXPERIMENTAL RESULTS

The simulation is implemented in JAVA, and performed on dual Xeon 2.80GHz
with 4 GB RAM. In the experiments, synthetic datasets and real datasets are used to
evaluate the efficiency, accuracy and scalability of our algorithms. We measured the ac-
curacy, the number of actual frequent paths as a percentage of the number of the frequent
paths mined by our algorithms. Since the PTree constructed by -generation is proven to
possess no false negative, our three algorithms achieve recall of 1.

The synthetic data is generated by an IBM synthetic data generator. Table 1 sum-
marizes the parameters used to generate synthetic datasets. For example, M100N50KTS-
400W20 means the dataset is generated with regards to 100 sensors, fifty thousand items,
during four hundred time periods and within a window size of 20. We identify that a
node is frequent if and only if its support is no smaller than min_supn, where n is the
total number of items. We define the total space of an algorithm as the value of total
items and counters maintained by the algorithm.

The two real datasets are the MSNBC Anonymous Web Data Set obtained from
KDD CUP and the Kosarak click-stream data of a Hungarian on-line news portal gath-
ered from http://fimi.cs.helsinki.fi/data/. Each dataset consists of a collection of sessions
where each session has a sequence of page references. The MSNBC dataset has 989818
sessions and the Kosarak has 990002 sessions, with each session containing one to thou-
sands of page references. One difference between two datasets is the number of distinct
pages. The MSNBC has only 17 distinct categories of pages, while the Kosarak has 41270
distinct pages. The parameter settings of the real datasets are summarized in Table 2.

Table 1. Parameter settings of synthetic datasets.

Notation Meaning Default Range
M Number of sensors 100 10~200
N Number of items 50K 10K~200K
TS Number of time periods 400 
W Window size (time period) 20 10~40
G GAP size 5 3~7

min_sup Minimum support threshold 0.04 0.01~0.2
 Error parameter 0.8  min_sup 0.2~1

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1164

Table 2. Parameter settings of real datasets.

Notation Meaning Range
M Number of pages 17 and 41270
N Number of users 10K~800K
TS Number of time periods 300
W Window size (time period) 20
G Gap size 5

min_sup Minimum support threshold 0.04
 Error parameter 0.5  min_sup

4.1 Synthetic Dataset

In the first simulation, the relationship between execution time and minimum sup-
port is conducted. As shown in Fig. 9, the execution time grows as the minimum support
decreases. Clearly, in Fig. 9 (a), the execution time of PAlgorithm increases slightly in
the range from min_sup = 0.2 to 0.02. Moreover, PAlgorithm outperforms PSAlgorithm
in both datasets. However, the execution time of PSAlgorithm increases significantly as
minimum support decreases, since the estimation approach is time consumed. Therefore,
the execution time of the PAlgorithm is a quarter of that of the PSAlgorithm. Because the
gap limitation has the possibility to form long paths, the execution time is much higher
than the others.

M100N50KTS400W20

0

20

40

60

80

100

0.2 0.1 0.08 0.04 0.02 0.01

Minimum support

E
xe

cu
ti

on
 t

im
e

(s
ec

) PAlgorithm

PSAlgorithm
GAlgorithm

M100N50KTS400W20

0

2000

4000

6000

8000

10000

12000

14000

16000

0.2 0.1 0.08 0.04 0.02 0.01

Minimum support

E
xe

cu
ti

on
 t

im
e

(s
ec

)

PAlgorithm
PSAlgorithm
GAlgorithm

(a) (b)

Fig. 9. Execution time: (a) peak execution time of time periods; (b) total execution time.

Fig. 10 shows the maximum nodes and space during the mining process maintained

by PAlgorithm, PSAlgorithm and GAlgorithm. Note that the maximum nodes maintained
by PSAlgorithm almost keep up with PAlgorithm as the minimum support threshold is
decreasing, although PSAlgorithm has a loose support count guarantee. In Fig. 10 (b), the
maximum space maintained by the PSAlgorithm is two thirds of the PAlgorithm, since
the maximum counters maintained by the PSAlgorithm are steadily bounded. The maxi-
mum space and nodes maintained by GAlgorithm are large, because the length of the
paths may be long.

Fig. 11 (a) shows the average accuracies of frequent algorithm mined temporal
paths over data streams. The average accuracy of the PAlgorithm is admirably perfect,

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1165

M100N50KTS400W20

0

10000

20000

30000

40000

50000

0.2 0.1 0.08 0.04 0.02 0.01

Minimum support

P
ea

k
no

de
s

PAlgorithm

PSAlgorithm

GAlgorithm

M100N50KTS400W20

0

5000000

10000000

15000000

20000000

25000000

30000000

0.2 0.1 0.08 0.04 0.02 0.01

Minimum support

P
ea

k
sp

ac
e

(b
yt

es
) PAlgorithm

PSAlgorithm

GAlgorithm

(a) (b)

Fig. 10. Space usage: (a) nodes; (b) bytes.

M100N50KTS400W20

0

0.2

0.4

0.6

0.8

1

0.2 0.1 0.08 0.04 0.02 0.01

Minimum support

A
ve

ra
ge

 a
cc

ur
ac

y

PAlgorithm

PSAlgorithm

GAlgorithm

M100N50KTS400W20

0

0.2

0.4

0.6

0.8

1

0.2 0.5 0.8 1
ε

A
ve

ra
ge

 a
cc

ur
ac

y

PAlgorithm

PSAlgorltim

Galgorithm

(a) (b)

Fig. 11. Average accuracy: (a) min_sup; (b) .

since it nearly stores every timestamp of an item. The PSAlgorithm shows its exceptional
competence with regard to memory usage and accuracy. However, the accuracy and
speed of the PSAlgorithm is influenced by the distribution of the dataset. We will explain
how the distribution of the dataset affects the PSAlgorithm in a later paragraph. The ac-
curacy of the GAlgorithm is perfect since its timestamps of each item always match the
real timestamp. Referring to Fig. 11 (b), the effect of ε is shown. As shown in the result,
the accuracy is very stable as the error parameter increases. The stable curve of the
PSAlgorithm shows that the PSAlgorithm has competitive behavior under situations of
silent distribution.

Referring to Fig. 12, the total execution time and peak space decreases as the num-
ber of sensors increases. The reason is that the shape of PTrees will become thin and high
as the number of sensors decreases. As a result, the probability of timestamps getting
updated becomes higher. On the other hand, the support count of a node is easier to ex-
ceed n; therefore, we need to maintain more items in PTree and to check the pruning
process. Moreover, the paths reported by GAlgorithm would be much longer when the
number of sensors is small as shown in Fig. 12 (b).

Fig. 13 (a) shows the total execution times of algorithms under different window
sizes. It is clear that the total execution times increase as the window or gap increases.
Moreover, the peak spaces increase as the window size increases.

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1166

M100N50KTS400

0

10000000

20000000

30000000

40000000

50000000

10 20 30 40 50

Window size

P
ea

k
sp

ac
e

(b
yt

es
) PAlgorithm

PSAlgorithm

GAlgorithm

(a) (b)
Fig. 12. Different number of sensors (a) total execution time; (b) peak space.

(a) (b)

Fig. 13. Different window size (a) total execution time; (b) peak space.

0

0.2

0.4

0.6

0.8

1

20000 50000 100000 200000 400000 800000

Number of users

A
ve

ra
ge

 a
cc

ur
ac

y

PAlgorithm-MSNBC
PSAlgorithm-MSNBC
GAlgorithm-MSNBC

Fig. 14. Mining accuracy on MSNBC.

4.2 Real Dataset

Fig. 14 shows the average accuracy of the PAlgorithm and PSAlgorithm. As shown
in the results, the accuracy of PSAlgorithm is not as high as shown in Figs. 11 (a) and (b).
This is because the number of sensors in MSNBC is much smaller than that of dataset

3 4 5 6 7
Gap

3 4 5 6 7 Gap

N50KTS400W20

0

10000

20000

30000

40000

50000

60000

70000

20 40 80 100 150 200

Number of sensors (M)

E
xe

cu
tio

n
tim

e
(s

ec
)

PAlgorithm

PSAlgorithm

GAlgorithm

N50KTS400W20

0

20000000

40000000

60000000

80000000

100000000

20 40 80 100 150 200

Number of sensors (M)

P
ea

k
sp

ac
e

(b
yt

es
)

PAlgorithm

PSAlgorithm

GAlgorithm

M100N50KTS400min_sup0.04

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50

Window size (W)

E
xe

cu
ti

on
 t

im
e

(s
ec

)

PAlgorithm
PSAlgorithm
GAlgorithm

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1167

N100C50KTS400W200.8, which increases the probability of timestamps getting updated. As a
result, the estimated timestamp tends to be overestimated, and decreases the accuracy of
the PSAlgorithm.

0

1000

2000

3000

4000

5000

6000

20000 50000 100000 200000 400000 800000

Number of users

E
xe

ct
io

n
ti

m
e

(s
ec

)

PAlgorithm-MSNBC
PSAlgorithm-MSNBC
PAlgorithm-kosarak
PSAlgorithm-kosarak
GAlgorithm-MSNBC
GAlgorithm-korasak

0

2000000

4000000

6000000

8000000

10000000

12000000

20000 50000 100000 200000 400000 800000

Number of users

M
ax

im
um

 s
pa

ce

PAlgorithm-MSNBC

PSAlgorithm-MSNBC

PAlgorithm-kosarak

PSAlgorithm-kosarak

GAlgorithm-MSNBC

GAlgorithm-korasak

(a) (b)

Fig. 15. Simulations on two real dataset: (a) execution time; (b) maximum space.

The execution times for the two real datasets are shown in Fig. 15 (a). As shown in

the result, the execution times of both algorithms increase as the number of users in-
crease. Moreover, the PAlgorithm performs better than the PSAlgorithm in the two dif-
ferent real datasets. Fig. 15 (b) shows the maximum spaces for two algorithms.

5. CONCLUSIONS

In this paper, the problem of mining temporal frequent paths over data streams is
introduced. Furthermore, a different type of problem, mining frequent paths with a gap
limitation over data streams, is also discussed. A data structure, PTree, is introduced to
maintain the possible paths of users. Based upon the -generation technique, the PTree is
guaranteed to achieve a recall of 1 and support count with error bounded. Using the
PTree, three algorithms are proposed to deal with these problems of frequent path mining.
According to the PTtree, some pruning mechanisms are proposed to reduce an unex-
pected error whenever a path candidate is generated. PAlgorithm provides an efficient
way for mining results with dramatic accuracy, owing to the error bounded PTree. To
further ease the maintenance overhead, the PSAlgorithm is proposed to mine frequent
paths with estimated timestamp. The Experiment’s results indicate that the PSAlgorithm
can achieve an acceptable behavior of accuracy through the estimation. The third algo-
rithm, GAlgorithm, shows that the PTree can be utilized to cope with different problems
without modification. The PTree exhibits an ability to handle a diversity of problems.

REFERENCES

1. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of ACM
International Conference on Data Engineering, 1995, pp. 3-14.

GUANLING LEE, YI-CHUN CHEN AND KUO-CHE HUNG

1168

2. Y. C. Chen and G. Lee, “Mining sequential association rules efficiently by using
prefix projected databases,” Special Issue on Design and Mining for Social-Aware
Services, Journal of Computers, Vol. 22, 2011, pp. 33-47.

3. G. Chen, X. Wu, and X. Zhu, “Sequential pattern mining in multiple streams,” in
Proceedings of IEEE International Conference on Data Mining, 2005, pp. 27-30.

4. M. Chen, J. S. Park, and P. S. Yu, “Efficient data mining for path traversal patterns,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 10, 1998, pp. 209-
221.

5. L. Chang, T. Wang, D. Yang, and H. Luan, “SeqStream: Mining closed sequential
patterns over stream sliding windows,” in Proceedings of the 8th IEEE International
Conference on Data Mining, 2008, pp. 83-92.

6. B. R. Dai, H. L. Jiang, and C. H. Chung, “Mining top-K sequential patterns in the
data stream environment,” in Proceedings of International Conference on Technolo-
gies and Applications of Artificial Intelligence, 2010, pp. 142-149.

7. M. El-Sayed, C. Ruiz, and E. A. Rundensteiner, “FS-Miner: Efficient and incre-
mental mining of frequent sequence patterns in web logs,” in Proceedings of ACM
International Workshop on Web Information and Data Management, 2004, pp. 128-
135.

8. Y. H. Hu, Y. L. Chen, and K. Tang, “Mining sequential patterns in the B2B envi-
ronment,” Journal of Information Science, Vol. 35, 2009, pp. 677-694.

9. H. Kum, J. Pei, W. Wang, and D. Duncan, “ApproxMAP: Approximate mining of
consensus sequential patterns,” in Proceedings of SIAM International Conference on
Data Mining, 2003, pp. 311-315.

10. H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders, “Mining compressing sequen-
tial patterns,” in Proceedings of the SIAM 12th International Conference on Data
Mining, 2012, pp. 319-330.

11. G. Lee, K. C. Hung, and Y. C. Chen, “Path tree: Mining sequential patterns effi-
ciently in data streams environments,” in Proceedings of International Computer
Symposium Workshop on Database, Data Mining, and Information Retrieval, 2013,
pp. 261-268.

12. H. Li, S. Lee, and M. Shan, “On mining webclick streams for path traversal pat-
terns,” in Proceedings of ACM International World Wide Web Conference on Alter-
nate, Track Papers and Posters, 2004, pp. 404-405.

13. H. Li, S. Lee, and M. Shan, “DSM-TKP: Mining top-K path traversal patterns over
web click-streams,” in Proceedings of IEEE/WIC/ACM International Conference on
Web Intelligence, 2005, pp. 326-329.

14. S. Muthukrishnan, “Data streams: Algorithms and applications,” in Proceedings of
ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 413-413.

15. J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen, and M. Hsu, “Mining
sequential patterns by pattern-growth: The PrefixSpan approach,” IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 16, 2004, pp. 1424-1440.

16. S. Y. Yang, C. M. Chao, P. Z. Chen, and C. H. Sun, “Incremental mining of across-
treams sequential patterns in multiple data streams,” Journal of Computers, Vol. 6,
2011, pp. 449-457.

17. S. Y. Yang, C. M. Chao, P. Z. Chen, and C. H. Sun, “Incremental mining of closed
sequential patterns in multiple data streams,” Journal of Networks, Vol. 6, 2011, pp.

MINING SEQUENTIAL PATTERNS IN MULTIPLE DATA STREAMS ENVIRONMENT

1169

728-735.
18. C. Yu and Y. Chen, “Mining sequential patterns from multidimensional sequence

data,” IEEE Transactions on Knowledge and Data Engineering, Vol. 17, 2005, pp.
136-140.

19. Z. Zhao, D. Yan, and W. Ng, “Mining probabilistically frequent sequential patterns
in uncertain databases,” in Proceedings of the ACM 15th International Conference
on Extending Database Technology, 2012, pp. 74-85.

Guanling Lee received the B.S., M.S., and Ph.Dd degrees, all in
Computer Science, from National Tsing Hua University, Taiwan, in
1995, 1997, and 2001, respectively. She joined National Dong Hwa
University. Taiwan, as an Assistant Professor in the Department of
Computer Science and Information Engineering in August 2001, and
became an Associate Professor in 2005. Her research interests include
resource management in the mobile environment, data scheduling on
wireless channels, search in the P2P network and data mining.

Yi-Chun Chen received the B.S. degree in Applied Mathe-
matics from Feng Chia University, Taichung, Taiwan, in 2005 and
the M.S. degree in computer science from National Dong Hwa Uni-
versity, Hualien, Taiwan, in 2007. He is currently pursuing the Ph.D.
degree in the same department. His research interests include data
mining and search in the P2P network.

Kuo-Che Hung received the B.S. and M.S. degree, all in Com-
puter Science, from National Dong Hwa University, Taiwan, in 2004
and 2006, respectively. He is a Software Engineer at HTC Corpora-
tion, Taipei, Taiwan. His research interests include data mining and
database.

