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In this work we present two mathematical models for the infection dynamics of scabies.
The dynamics is described by four-dimensional system of ordinary differential equations
that expresses the transmissions between susceptible and infectious/infective individuals. In
the second model, we include the importance of adult scabiei mite in the real interaction
with hosts. Nonnegativity and boundedness of solutions of the models are conducted. A
threshold parameter is calculated for each model which ensures the existence of all corre-
sponding equilibria. Using candidate Lyapunov functions, it is shown that whenever the
threshold parameter is less than or equal unity, the models have an associated disease-free
equilibrium that is globally asymptotically stable. In addition, when the threshold exceeds
unity the models have a globally asymptotically stable endemic equilibrium. Finally, us-
ing some parameter values related to the scabies infection dynamics, numerical simulation
results are demonstrated to clarify the main theoretical results.

Keywords: scabies transmissions, infectious diseases, local stability, global stability, infec-
tion rate, Lyapunov function

1. INTRODUCTION

Scabies is one of the infectious diseases caused by an ectoparasitic mite known as
Sarcoptes scabiei and belonged to a kind of skin infestations. Worldwide, around three
hundred million cases diagnosed with scabies annually and this fact makes scabies glob-
ally a significant public health matter [1-3]. In fact, scabies is commonly transmitted in
poor communities living in crowded conditions. As an example, prevalence in northern
Australia is as high as 49% compared to the percentage of infested individuals in Fiji
prevalence and Solomon Islands which is 28% and 43% [4, 5]. Based on the Saudi Min-
istry of Health, in the first six months of 2018, more than 1700 infected individuals were
diagnosed with scabies in Mecca which is located in the western region of Saudi Arabia
[6].
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The major mode of scabies transmission in individuals is direct contact through skin-
to-skin. Another way of transmission is due to sharing articles or the usage of personal
stuff that are infected with mites such as bed sheet, clothing, towels, etc. In addition, sex-
ual contact is a direct path to spread the infestation [4, 7-9]. Actually, there is a prolong
period up to ten weeks between the first infestation and the time when the infected indi-
vidual begins to develop symptoms. During the asymptomatic period, infected individuals
with scabies can spread the infestation throughout the population [4, 9].

There are three general life stages for scabies mite progression inside the hosts: egg,
young mite and adult [3, 4]. In the beginning, the pregnant mites start tunneling as soon
as they transferred, and lay two to three eggs each day [4, 10]. The incubation time for
eggs before being hatched is about two days [11, 13]. Then, larvae with three pairs of
legs reaches the skin surface and starts borrowing for approximately five days [11, 13].
After that, there is two developmental stages for larvae passing through before the nymph
(young mites) stage that are Protonymphs and Tritonymphs [11, 12]. In the meantime, the
mites keep roaming about the body for the nymph stage [14]. The last stage is for young
mites being either male or female adult in approximately five days [11, 12]. These adult
mites takes around two weeks searching for a partner. After sexual contact the pregnant
female mites start to lay eggs completing the cycle of infestation. In fact, male mites die
immediately after mating. Comparing to the male, female mites can survive up to one-two
months [3]. After approximately 30 days of initial infestation the second generation of
adult mites appears and start the cycle of infestation from the beginning [4, 14].

In the last decades, studying a population dynamics of infectious diseases transmis-
sions has attracted much efforts and considerations from researchers. Many sophisticated
mathematical models have been developed to investigate the transmission dynamics of
infectious diseases through entire populations such as dengue [15], malaria [16], yellow
fever [17], Zika [18] and cholera [19]. The great advantage of mathematical models and
their analysis is to understand the disease transmissions and to play a crucial role in con-
trolling the infection within entire populations. In fact, mathematical modeling has a
pivotal ability in expressing the most important experimental observations and features of
real phenomenons. It seems like an adaptive procedure which develops new models using
collected information from experimental trials. The affordability in the clinical trial needs
and medication costs reflect a significant importance of modeling.

From an epidemic point of view, some researchers have paid their attention to inves-
tigate scabies infection dynamics [2, 7, 20]. However, these models have neglected the
aspects of Sarcoptes scabiei life cycle as well as the real interaction between mites and
susceptible individuals. In a very recent work, Lydeamore et al. [4] have formulated a
mathematical model which described the scabies infection dynamics and considered the
mite’s life cycle and its interact to hosts. Nevertheless, the basic and global properties of
their model have not been studied.

The aim of the present paper is to formulate two mathematical models that char-
acterize the scabies infection dynamics among susceptible and infective individuals in a
population. In the second model, we include the adult mite state into the dynamics. We
investigate the basic dynamical behavior of the constructed models such as the nonnega-
tivity and boundedness. We derive a threshold parameter that fully determined the exis-
tence and global stability of the model’s equilibria. We carry out numerical simulations
that substantiate the theoretical results.
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Fig. 1. Scheme of the basic model. Parameter β refers to the infection rate constant. In addition,
parameters κ, γ, ψ represent the birth rate constant of susceptible individuals, the transmission rate
constant of developing symptoms, and the transmission rate constant for egg hatching, respectively.
Furthermore, all individuals have a natural death rate constant µ which is independent of disease
status.

2. SCABIES TRANSMISSION MODEL

In this section, we aim to formulate and analyze the transmission of scabies disease
through its target population. In fact, the targeting population can be divided into four
categories: susceptible individuals (S), infectious individuals that having living mites and
eggs during the asymptomatic period after infection (I1), infectious individuals that having
living mites and eggs after developing symptoms (I2), and the infected individuals who
have only young mites (i.e. eggs have been hatched) (I3). Fig. 1 represents the transition
scheme of scabies transmission through its individuals in a population.

Consequently, our mathematical model which is characterizing the scabies dynamics
in a population is given by the following system of differential equations:

Ṡ(t) = κ−µS(t)−βS(t)
3
∑

i=1
Ii(t), (1)

İ1(t) = βS(t)
3
∑

i=1
Ii(t)− (γ +µ)I1(t), (2)

İ2(t) = γI1(t)− (ψ +µ)I2(t), (3)
İ3(t) = ψI2(t)−µI3(t), (4)

where βS
3
∑

i=1
Ii is the infection rate. All variables and parameters are described as above.

2.1 Basic Properties

In this subsection, we investigate the non-negativity and boundedness of the solu-
tions. In addition we calculate the equilibrium points. We consider the following lemma:
Lemma 1. Let Ω1 > 0 and define

Γ1 =
{
(S, I1, I2, I3) ∈ R4

≥0 : 0≤ S+ I1 + I2 + I3 ≤Ω1
}
.
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Then, the compact set Γ1 is positively invariant for system (1)-(4).
Proof: We have

Ṡ |S=0= κ > 0, İ1 |I1=0= βS (I2 + I3)≥ 0 for all S, I2, I3 ≥ 0,
İ2 |I2=0= γI1 ≥ 0 for all I1 ≥ 0, İ3 |I3=0= ψI2 ≥ 0 for all I2 ≥ 0.

Hence, the orthant R4
≥0 is positively invariant for system (1)-(4).

Next we prove that the solutions of system (1)-(4) are bounded. Let Φ1(t) = S(t)+
3
∑

i=1
Ii(t), then

Φ̇1(t) = κ−µS(t)−µ
3
∑

i=1
Ii(t) = κ−µ

(
S(t)+

3
∑

i=1
Ii(t)

)
= κ−µΦ1(t).

It follows that, 0≤Φ1(t)≤Ω1 if Φ1(0)≤Ω1 for t ≥ 0, where Ω1 =
κ

µ
. This implies that,

0≤ S(t)+
3
∑

i=1
Ii(t)≤Ω1 if 0≤ S(0)+

3
∑

i=1
Ii(0)≤Ω1. Hence, Γ1 is positively invariant with

respect to model (1)-(4). �
We define a threshold parameter R0 = βS0

µ
where S0 = κ/µ . The parameter R0

determines whether the disease will progress or not and defines as the number of sec-
ondary scabies cases produced by one infectious individual during his/her entire infec-
tious period. system (1)-(4) admits two equilibrium points that are disease-free equilib-
rium Q0 = (S0,0,0,0) and endemic equilibrium Q̄ = (S̄, Ī1, Ī2, Ī3) where

S̄ =
S0

R0
, Ī1 =

µ2

β (γ +µ)
(R0−1) ,

Ī2 =
γµ2

β (γ +µ)(ψ +µ)
(R0−1) , Ī3 =

γψµ

β (γ +µ)(ψ +µ)
(R0−1) .

2.2 Local Stability Analysis of the Equilibria

In order to investigate the local stability of the two equilibria, we linearize system
(1)-(4) which results in the following Jacobian matrix:

J(S, I1, I2, I3) =


−µ−β

3
∑

i=1
Ii −βS −βS −βS

β
3
∑

i=1
Ii βS− (γ +µ) βS βS

0 γ −(ψ +µ) 0
0 0 ψ −µ

 . (5)

Accordingly, we have the following results:
Theorem 1: For system (1)-(4) the disease-free equilibrium Q0 is locally asymptotically
stable when R0 < 1, and unstable when R0 > 1.
Proof: The Jacobian matrix given in (5) at the disease-free equilibrium Q0, J(Q0) pro-
vided us with four eigenvalues

λ1 =−µ, λ2 =−(γ +µ), λ3 =−(ψ +µ), λ4 =
κβ −µ2

µ
= µ (R0−1) .
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Clearly, all eigenvalues of the characteristic equation at Q0 are negative when R0 < 1.
Thus, the disease-free equilibrium Q0 is locally asymptotically stable when R0 < 1, and
unstable when R0 > 1. �
Theorem 2: For system (1)-(4) the endemic equilibrium Q̄ is locally asymptotically stable
when R0 > 1.
Proof: The Jacobian matrix given in (5) at the endemic equilibrium Q̄, J(Q̄) provided us
with four eigenvalues

λ1 =−µ, λ2 =−(γ +µ), λ3 =−(ψ +µ), λ4 =
µ2−κβ

µ
= µ (1−R0) .

Clearly, all eigenvalues of the characteristic equation at Q̄ are negative when R0 > 1.
Thus, the endemic equilibrium Q̄ is locally asymptotically stable when R0 > 1. �

2.3 Global Stability Analysis of the Equilibria

In this subsection we investigate the global asymptotic stability of the equilibria of
model (1)-(4) using Lyapunov method which has been used in epidemiological mod-
els [21-24], and virological models [25-36]. We will use the notation (S, I1, I2, I3) =
(S(t), I1(t), I2(t), I3(t)). Let us define the function z : (0,∞)→ [0,∞) as z(η) = η −
1− lnη . It is clear that z(η)≥ 0 for any η > 0 and z(η) = 0 if and only if η = 1. The
stability of the infection-free equilibrium Q0 will be given in the following result.
Theorem 3: For system (1)-(4) suppose that R0 ≤ 1, then the disease-free equilibrium Q0
is globally asymptotically stable in Γ1.
Proof: We construct a Lyapunov function candidate as:

L0(S, I1, I2, I3) = S0z
(

S
S0

)
+ I1 + I2 + I3. (6)

It is seen that, L0(S, I1, I2, I3)> 0 for all S, I1, I2, I3 > 0 and L0(S0,0,0,0) = 0. We calculate
dL0
dt along the solutions of model (1)-(4) as:

dL0

dt
=

(
1− S0

S

)(
κ−µS−βS

3
∑

i=1
Ii

)
+βS

3
∑

i=1
Ii− (γ +µ)I1

+ γI1− (ψ +µ)I2 +ψI2−µI3

=−µ
(S−S0)

2

S
+µ

3
∑

i=1
Ii (R0−1) . (7)

Therefore, if R0 ≤ 1, then dL0
dt ≤ 0 for all S, I1, I2, I3 > 0 with equality holding when

S = S0 and I1 = I2 = I3 = 0. We note that solutions of system (1)-(4) are limited to ϒ
′
0, the

largest invariant subset of ϒ0 =
{
(S, I1, I2, I3) : dL0

dt = 0
}

[37]. Using LaSalle’s invariance

principle, we conclude that ϒ
′
0 = {Q0} and the equilibrium Q0 is globally asymptotically

stable. �
Theorem 4: For system (1)-(4) assume that R0 > 1, then the endemic equilibrium point

Q̄ is globally asymptotically stable in
◦
Γ1.
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Proof: To prove that the system is globally asymptotically stable at Q̄, we investigate this
system by introducing the following Lyapunov function candidate:

L1(S, I1, I2, I3) = S̄z
(

S
S̄

)
+

(
3
∑

i=1
Īi

)
z
(

3
∑

i=1
Ii/

3
∑

i=1
Īi

)
,

where L1(S, I1, I2, I3)> 0 for all S, I1, I2, I3 > 0 and L1(S̄, Ī1, Ī2, Ī3) = 0. Now, we need to
show that the equilibrium point is globally attractive. The derivative of L1 with respect to
time along the trajectories of system (1)-(4) is given as follows:

dL1

dt
=

(
1− S̄

S

)(
κ−µS−βS

3
∑

i=1
Ii

)
+

(
1−
(

3
∑

i=1
Īi/

3
∑

i=1
Ii

))(
βS

3
∑

i=1
Ii−µ

3
∑

i=1
Ii

)
=

(
1− S̄

S

)
(κ−µS)+β S̄

3
∑

i=1
Ii−µ

3
∑

i=1
Ii−βS

3
∑

i=1
Īi +µ

3
∑

i=1
Īi. (8)

Using the equilibrium point conditions of Q̄

κ = µ S̄+β S̄
3
∑

i=1
Īi, β S̄

3
∑

i=1
Īi = µ

3
∑

i=1
Īi,

we obtain

dL1

dt
=−µ

(
S− S̄

)2

S
+β S̄

3
∑

i=1
Īi

(
2− S̄

S
− S

S̄

)
=−

(
µ +β

3
∑

i=1
Īi

) (
S− S̄

)2

S
.

Clearly, dL1
dt ≤ 0 for all S, Ii > 0, i = 1,2,3 with equality holding when S = S̄. Let ϒ1 ={

(S, I1, I2, I3) : dL1
dt = 0

}
and ϒ

′
1 is the largest invariant subset of ϒ1. We note that, the

solutions of system (1)-(4) are confined to ϒ
′
1 [37]. The set ϒ

′
1 is invariant and contains

elements which satisfy S(t) = S̄. Then, Ṡ(t) = 0 and from Eqs. (1) and (2), we have

0 = Ṡ(t) = κ−µ S̄− (γ +µ)I1(t),

which gives that I1(t) = Ī1 for all t. Similarly, one can easily verified that ϒ
′
1 contains

elements satisfying I2(t) = Ī2 and I3(t) = Ī3 for all t. Therefore, from the local stability
result constructed earlier and global attractive property proven here, we have shown that
the solution trajectories will approach Q̄ asymptotically and Q̄ is globally asymptotically
stable using LaSalle’s invariance principle [37]. �

3. SCABIES TRANSMISSION WITH ADULT MITES

The model presented in the previous section does not consider the adult mites state
and the effect of this on the infectiousness and scabies transmissions. This omission leads
us to modify model (1)-(4) by incorporating the adult mites state (M). In fact, the infection
rate which describes the probability of contact and infectiousness transmissions between
adult mites and susceptible individuals is represented by the term (φβMS), where φ ∈
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Fig. 2. Scheme of model (9)-(13).

[0,1] is the susceptibility to infection due to mites. Fig. 2 illustrates the structure of this
dynamics.

Our proposed model is given by five-dimensional ODEs in the form:

Ṡ(t) = κ−µS(t)−βS(t)
3
∑

i=1
Ii(t)−φβM(t)S(t), (9)

İ1(t) = βS(t)
3
∑

i=1
Ii(t)+φβM(t)S(t)− (γ +µ)I1(t), (10)

İ2(t) = γI1(t)− (ψ +µ)I2(t), (11)
İ3(t) = ψI2(t)− (δ +µ)I3(t), (12)
Ṁ(t) = δ I3(t)− cM(t), (13)

where δ is the transmission rate constant for mites mature and become adults. More-
over, c represents the natural death rate constant of the adult mites which is independent
of disease status. Moreover, this model includes all biological relevant features for the
remaining variables and parameters.

3.1 Properties of Solutions

In this subsection, we study some properties of solutions of the model such as the
non-negativity and boundedness. Moreover, we calculate the equilibrium points. Let
R5
≥0 = {(x1,x2,x3,x4,x5) : xi ≥ 0, i = 1, ...,5} and consider the following lemma:

Lemma 2. Let Ω2 > 0 and define

Γ2 =
{
(S, I1, I2, I3,M) ∈ R5

≥0 : 0≤ S+ I1 + I2 + I3 +M ≤Ω2

}
.

Then, the compact set Γ2 is positively invariant for system (9)-(13).
Proof: The proof is similar to the proof of Lemma 1. �

Let us define the threshold parameter for system (9)-(13) as:

RM
0 =

βS0 {c(γ +µ)(δ +µ)+ cψ(γ +δ +µ)+φγδψ}
c(γ +µ)(δ +µ)(ψ +µ)

.

System (9)-(13) admits two equilibria as follows:
(i) Disease-free equilibrium point QM

0 = (S0,0,0,0,0), where S0 =
κ

µ
.
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(ii) Endemic equilibrium point Q̄M = (S̄, Ī1, Ī2, Ī3,M̄), where

S̄ =
S0

RM
0
, Ī1 =

cµ(δ +µ)(ψ +µ)

ϒ

(
RM

0 −1
)
,

Ī2 =
cµγ(δ +µ)

ϒ

(
RM

0 −1
)
, Ī3 =

cµγψ

ϒ

(
RM

0 −1
)
, M̄ =

µγδψ

ϒ

(
RM

0 −1
)
.

3.2 Global Stability Analysis of the Equilibria

In this subsection, we study the global stability of system (9)-(13) by using Lyapunov
method. We will use the notation (S, I1, I2, I3,M) = (S(t), I1(t), I2(t), I3(t),M(t)).
Theorem 5: For system (9)-(13) suppose that RM

0 ≤ 1, then the disease-free equilibrium
QM

0 is globally asymptotically stable in Γ2.
Proof: A Lyapunov function candidate is given by:

V0(S, I1, I2, I3,M)= S0z
(

S
S0

)
+I1+

βS0 (cδ + cµ + cψ +φδψ)

c(δ +µ)(ψ +µ)
I2+

βS0 (c+φδ )

c(δ +µ)
I3+

φβS0

c
M.

It is seen that, V0(S, I1, I2, I3,M) > 0 for all S, I1, I2, I3,M > 0, and V0(S0,0,0,0,0) = 0.
Calculating dV0

dt and collecting terms we get

dV0

dt
=−µ

(S−S0)
2

S
+(γ +µ)

(
RM

0 −1
)

I1.

Therefore, if RM
0 ≤ 1, then dV0

dt ≤ 0 for all S, I1, I2, I3,M > 0 with equality holding when
S = S0 and I1 = 0. The solutions of system (9)-(13) reach Λ

′
0, the largest invariant subset

of Λ0 =
{
(S, I1, I2, I3,M) : dV0

dt = 0
}

. The set Λ
′
0 is invariant and for any element belongs

to Λ0 satisfies S(t) = S0 and I1(t) = 0. According to the LaSalle’s invariance principle
lim
t→∞

S(t) = S0 and lim
t→∞

I1(t) = 0. Then, Ṡ(t) = 0 and İ1(t) = 0. From Eqs. (11)-(13), we
have

İ2(t) =−(ψ +µ)I2(t), (14)
İ3(t) = ψI2(t)− (δ +µ)I3(t), (15)
Ṁ(t) = δ I3(t)− cM(t). (16)

Let us define a Lyapunov function as Ṽ0 = I2(t)+ I3(t)+M(t). Therefore, the time deriva-
tive of Ṽ0 along the solutions of (14)-(16) can be calculated as follows:

dṼ0

dt
=−µI2(t)−µI3(t)− cM(t)≤ 0.

Clearly dṼ0
dt = 0 if and only if I2(t) = I3(t) = M(t) = 0 for all t. Let Λ

′′

0 = {(S, I1, I2, I3,

M) ∈ Λ
′
0 : dṼ0

dt = 0} =
{
(S, I1, I2, I3,M) ∈ Λ

′
0 : S = S0, I1 = I2 = I3 = M = 0

}
=
{

QM
0
}

.

Hence, all solutions trajectories approach QM
0 and this means that QM

0 is globally asymp-
totically stable [37]. �
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Theorem 6: For system (9)-(13) assume that RM
0 > 1, then the endemic equilibrium point

Q̄M is globally asymptotically stable in
◦
Γ2.

Proof: We consider a candidate Lyapunov function as:

V1(S, I1, I2, I3,M) = S̄z
(

S
S̄

)
+ Ī1z

(
I1

Ī1

)
+

β S̄ (Ī2 + Ī3 +φM̄)

(ψ +µ) Ī2
Ī2z

(
I2

Ī2

)
+

β S̄ (Ī3 +φM̄)

(δ +µ)Ī3
Ī3z

(
I3

Ī3

)
+

φβ S̄M̄
δ Ī3

M̄z
(

M
M̄

)
.

Clearly, V1(S, I1, I2, I3,M) > 0 for all S, I1, I2, I3,M > 0 and V1(S̄, Ī1, Ī2, Ī3,M̄) = 0. The
derivative dV1

dt is calculated as:

dV1

dt
=

(
1− S̄

S

)
(κ−µS−βS (I1 + I2 + I3 +φM))+

(
1− Ī1

I1

)
(βS (I1 + I2 + I3 +φM)− (γ +µ)I1)

+
β S̄ (Ī2 + Ī3 +φM̄)

(ψ +µ) Ī2

(
1− Ī2

I2

)
(γI1− (ψ +µ)I2)+

β S̄ (Ī3 +φM̄)

(δ +µ)Ī3

(
1− Ī3

I3

)
(ψI2− (δ +µ)I3)

+
φβ S̄M̄

δ Ī3

(
1− M̄

M

)
(δ I3− cM) . (17)

Collecting terms of Eq. (17) and using the equilibrium point conditions of Q̄M:

κ−µ S̄ = β S̄ (Ī1 + Ī2 + Ī3 +φM̄) = (γ +µ)Ī1,

γ Ī1 = (ψ +µ)Ī2, ψ Ī2 = (δ +µ)Ī3, δ Ī3 = cM̄,

we obtain

dV1

dt
=−(µ +β Ī1)

(
S− S̄

)2

S
+β S̄Ī2

(
3− S̄

S
− SĪ1I2

S̄I1 Ī2
− I1 Ī2

Ī1I2

)
+β S̄Ī3

(
4− S̄

S
− SĪ1I3

S̄I1 Ī3
− I1 Ī2

Ī1I2
− I2 Ī3

Ī2I3

)
+φβ S̄M̄

(
5− S̄

S
− SMĪ1

S̄M̄I1
− I1 Ī2

Ī1I2
− I2 Ī3

Ī2I3
− M̄I3

MĪ3

)
. (18)

Since the arithmetical mean is greater than or equal to the geometrical mean, then, dV1
dt ≤ 0

for all S, Ii,M > 0, i = 1,2,3 with equality holding when S = S̄, I1 = Ī1, I2 = Ī2, I3 = Ī3

and M = M̄. Let Λ1 =
{
(S, I1, I2, I3,M) : dV1

dt = 0
}

. It is easy to verify that Λ
′
1 =

{
Q̄M
}

is the largest invariant subset of Λ1 and each solution of system (9)-(13) are eventually
approaches Λ1 [37]. Noting that RM

0 > 1, then Q̄M is globally asymptotically stable em-
ploying LaSalle’s invariance principle. �

4. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we present computer simulation results for models (1)-(4) and (9)-
(13) to illustrate numerically our theoretical results given in Sections 2 and 3. All compu-
tations are carried out by MATLAB.
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4.1 Numerical Studies of Model (1)-(4)

For model (1)-(4) we consider three different initial conditions as:
IC1 : (S(0), I1(0), I2(0), I3(0)) = (300,10,10,10),
IC2 : (S(0), I1(0), I2(0), I3(0)) = (200,30,20,20),
IC3 : (S(0), I1(0), I2(0), I3(0)) = (100,60,30,30).
In addition, we fix some parameters of the model as κ = 200, γ = 0.4, ψ = 0.4 and

µ = 0.5. Besides, we choose two different values of β as given bellow which leads to the
following cases:

(i) when β = 0.001 the threshold parameter is calculated as R0 = 0.8 < 1. Fig. 3
illustrate that when R0 ≤ 1 the susceptible individuals S(t) tend to its equilibrium value,
while I1(t), I2(t) and I3(t) approach zero as time increases for initial conditions IC1-IC3.
This means that the disease dies out. Then, the unique disease-free equilibrium Q0 =
(400,0,0,0) exists and it is globally asymptotically stable and this result is compatible
with Lemma 2 and Theorem 3.

(ii) when β = 0.002 the threshold parameter is given as R0 = 1.6 > 1. Fig. 3 demon-
strate that when R0 > 1 the solutions starting from the initial conditions IC1-IC3 tend to
the endemic equilibrium Q̄ = (250,83,37,30). It means that Q̄ exists and it is globally
asymptotically stable and this support the result of Lemma 2 and Theorem 4. In this case
the disease becomes endemic.

In fact, the value of R0 depends on the effect of the infection transmission parameter
β . As β increases the threshold parameter increases as well and the stability behavior is
changed. Moreover, we calculate β critical as:

β criticalκ

µ2 = 1 =⇒ β
critical =

µ2

κ
.

Using the values of parameters given above we have β critical = 0.00125. Therefore, if
β ≤ 0.00125, then the system has only one equilibrium Q0. Moreover, if β > 0.00125,
then the system has two equilibria Q0 and Q̄.

4.2 Numerical Studies for Model (9)-(13)

In this subsection we only study the effect of parameter φ on the stability behavior
of the solutions.

We choose the parameters κ = 200, γ = 0.4, ψ = 0.4, µ = 0.5, δ = 0.4, c = 0.3,
β = 0.0013 and consider the following initial condition:

IC4 : (S(0), I1(0), I2(0), I3(0),M(0)) = (380,10,5,2.5,2.5).
Under this chosen values we consider the entire range of possible values for the

infection rate due to mites φ , and its influence on RM
0 . Let φ critical be calculated as:

RM
0 =

βS0
{

c(γ +µ)(δ +µ)+ cψ(γ +δ +µ)+φ criticalγδψ
}

c(γ +µ)(δ +µ)(ψ +µ)
= 1,

under the constraint 0 ≤ φ critical ≤ 1. In fact, the value of φ critical is calculated to be
φ critical = 0.337134. From Fig. 4 we have noticed that, if 0 ≤ φ ≤ φ critical , then RM

0 ≤ 1
and the solution trajectories tend to the equilibrium QM

0 . Besides, if φ critical < φ ≤ 1,
then RM

0 > 1 and the solution trajectories tend to the equilibrium Q̄M . This means that
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Fig. 3. The behavior of solution trajectories of system (1)-(4).

the stability behavior of all equilibria can be changed under the effect of φ . It is observed
from Fig. 4 that, for small amount of φ the infectious individuals, infected individuals
and number of adult mites are decreased while the susceptible individuals increase which
means that the population is more immune. This gives a significant meaning that as long as
the susceptible individuals starts treating sooner, the possible risk of reinfection becomes
less.

5. CONCLUSION AND DISCUSSION

In this paper, we have studied mathematical models for the infection dynamics of
scabies. We have considered four-dimensional system of ordinary differential equations
that described the transmissions between susceptible and infectious/infective individuals.
In the second model, we have included the importance of adult scabiei mite in the real
interaction to hosts. We have shown that the solutions of the system are nonnegative
and bounded, which ensures the well-posedness of the proposed model. For each model
we have derived a threshold parameters R0 which completely determine the existence
and stability of the disease-free equilibrium Q0 and endemic equilibrium Q̄. The global



1272 N. H. ALSHAMRANI, A. M. ELAIW, H. A. BATARFI, A. D. HOBINY

0 100 200 300 400 500

t

360

365

370

375

380

385

390

395

400

S
(t

)

=0.0 =0.1 =0.5 =0.7 =1.0

(a)

0 100 200 300 400 500

t

0

5

10

15

20

25

I 1
(t

)

=0.0 =0.1 =0.5 =0.7 =1.0

(b)

0 100 200 300 400 500

t

0

2

4

6

8

10

I 2
(t

)
=0.0 =0.1 =0.5 =0.7 =1.0

(c)

0 100 200 300 400 500

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

I 3
(t

)

=0.0 =0.1 =0.5 =0.7 =1.0

(d)

0 100 200 300 400 500

t

0

1

2

3

4

5

6

M
(t

)

=0.0 =0.1 =0.5 =0.7 =1.0

(e)

Fig. 4. The influence of the parameter φ on the evolution of solution trajectories of system (9)-(13).
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asymptotic stability of the two equilibria has been investigated by constructing Lyapunov
functions and applying LaSalle’s invariance principle. We have proven that if R0 ≤ 1,
then Q0 is globally asymptotically stable and if R0 > 1, then Q̄ is globally asymptotically
stable. To illustrate our theoretical results, we have presented conducted some numerical
simulations.

We note that the exact analytical solutions of our proposed models are not known,
therefore approximate solutions can only be found. Therefore, the corresponding discrete-
time models of the continuous-time models (1)-(4) and (9)-(13) needs to be studied. Non-
standard finite difference method is one of the discretization methods which has been
widely used to discretize the continuous time models in epidemiology [38] and virology
[39-41]. Further, it is commonly observed that in many biological processes, time delay
is inevitable [42-47]. Therefore our models can be extended to incorporate time delay.
These extensions require more investigations, therefore we leave it for future works.
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