
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 1329-1341 (2019) 
DOI: 10.6688/JISE.201911_35(6).0010     

1329  

Amended Kalman Filtering  
with Intermittent Measurements in Target Tracking 

 
YONG-JIAN YANG1,2, XIAO-GUANG FAN2, SHU-JUAN TANG2, HAI-BAO XIA2,  

ZHEN-FU ZHUO2 AND MING WAN2 
1School of Electronics and Information 
Northwestern Polytechnical University 

Xi’an, 710038 P.R. China 
2Astronautics Engineering College 
Air Force Engineering University 

Xi’an, 710038 P.R. China 
E-mail: yangyongjian_king@126.com; 645970360@qq.com; busybring@163.com;  

Haibaoxia@163.com; zzf_tiger@126.com; afwanming@163.com 

 
This paper focuses on the state estimation problem of target tracking with intermit-

tent measurements. Leveraged by the posterior measurements, an amended Kalman filter 
is proposed in this paper to improve the precision of the current estimated state. Both the 
deduction and proof of the amended Kalman filter are discussed specifically to distin-
guish amended Kalman filter from the Kalman smoother. Extensive simulations are con-
ducted and the simulation results verify the excellent tracking performance of the 
amended Kalman filter.    
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filter, tracking performance 
 
 

1. INTRODUCTION 
 

The state estimation for networked systems has motivated a significant number of 
researches due to its wide application in many engineering fields, such as target tracking, 
navigation, and so on [1-3]. However, in many real-world applications, such problems 
are inescapable as packet dropout, random time delay and uncertain measurements [4-6], 
which causes some challenges for the optimal state estimation. 

To deal with the above problems, a number of methods regarding state estimation 
have been proposed. The optimal state estimation problem with uncertain measurements 
is investigated in [7, 8], but its estimation performance is dissatisfactory because only 
noises are used for updating the state estimation when the measurements are missing. By 
reorganizing measurements, the delayed system is transformed into a delay-free one in [9] 
and [10]. By augmenting state space model, an optimal linear estimation method with 
random measurement delays is proposed in [11]. As for the filtering problem with miss-
ing measurements, Sinopoli proposes a modified Kalman filter (MKF) when the meas-
urements’ arrival sequence {k} is known [12]. [13, 14] propose a new model to describe 
the measurements arrival conditions considering the measurements delay and missing. 
[15] proposes a recursive estimation method for nonlinear stochastic systems with mul-
ti-step transmission delays, multiple packet dropouts and correlated noises. Recently, 
fusion estimation methods in networked systems with random time delay, packet dropout 
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and uncertain measurements have been investigated in [1, 2, 16-19]. 
In target tracking system, as we know, there are few references considering the 

random time delay, packet dropout and uncertain measurements. Usually, the missing 
measurement or uncertain measurement is related with detection probability in target 
tracking systems, such as radar tracking system [20]. And most methods mentioned 
above are unsuitable in tracking systems because the spectrum radius of state transmis-
sion matrix is not less than 1. 

Kalman filter is one of famous state estimation methods, and it has been widely 
used in target tracking, control, integrated navigation, and so on [21, 22]. Motivated by 
the above discussion, we investigate the state estimation with intermittent measurements 
in target tracking system based on improved Kalman filter presented in [12]. Generally 
speaking, the performance of current estimated state will be deteriorated when the cur-
rent measurements are missing. Thus, this paper uses the posterior measurements to im-
prove the precision of the current estimated state whether the current measurements are 
missing or not. This method sounds like Kalman smoother, but unlike Kalman smoother, 
this method improves tracking performance by minimizing the covariance of innovation 
rather than the covariance of estimated state.  

To the best of our knowledge, almost all the state estimation methods obtain optimal 
estimated state by minimizing the covariance of estimated state. However, minimizing 
the covariance of estimated state will deteriorate the precision of estimated state in some 
special situations, such as measurements missing. Based on Kalman filter, Kalman 
smoother uses the latter measurements to further improve the precision of estimated state 
by minimizing the covariance of estimated state. But the method minimizing the covari-
ance of estimated state leads Kalman smoother to have a poor precision in optimal esti-
mation while measurements missing. In this case, we must pay attention to the measure-
ments. Therefore, the method proposed in this paper improves tracking performance by 
minimizing the covariance of innovation because the innovation reflects the difference 
between measurements and predicted state. The innovation covariance includes more 
measurements information than estimated state covariance.  

The method in this paper is developed for scalar measurements but is also valid for 
vector measurements. The case of vector measurements is obviated in this paper since 
the development of the method is very complex. The rest of this paper is organized as 
follows. Section 2 presents the problem under investigation. In Section 3, the amended 
Kalman filter (AKF) is presented based on the minimum innovation covariance, and the 
differences between AKF and Kalman smoother are also discussed in this section. In 
Section 4, target tracking examples with CA model are given. 

2. PROBLEM FORMULATION 

Consider the following discrete-time linear dynamical system: 

1 1|k k k k kx Φ x w       (1) 

k k k kz H x v      (2) 

where xkRn is the state vector, zkR1 is the measurement scalar. wkRn and vkR1 are  
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the process and measurement noise, respectively. Φk+1|k and Hk are constant matrices with 
suitable dimensions. 

When the measurement zk is transmitted to a processing unit through an unreliable 
network, there exist possible data losses. In [12], The arrival of measurement at time k is 
defined as a binary random variable k, with probability pk

(1) =  and with k independ-
ent of s if k  s. The measurement noise vk is defined in the following way: 

2

(0, ),     1
( | ) .

(0, ),   0
k

k k
k

N R
p v

N I




 


  
    (3) 

When the measurements are missing,   ∞. 
 
Assumption 1: wk and vk are uncorrelated white noises with zero mean and covariance 
matrices Q ≥ 0 and R > 0 (Note: R is a scalar in this paper).  
 
Assumption 2: The initial state x0 is independent of wk and vk, and 

E(x0) = 0, E[(x0  0) (x0  0)] = P0.   (4) 

Under these assumptions, the equations of Kalman filter are modified as follows: 

1| 1| |ˆ ˆk k k k k kx Φ x      (5) 

1| 1| | 1|k k k k k k k kP Φ P Φ Q        (6) 

1| 1 1| 1 1 1 1 1|ˆ ˆ ˆ( )k k k k k k k k k kx x K z H x              (7) 

1| 1 1| 1 1 1 1|k k k k k k k k kP P K H P            (8) 

where Kk+1 = Pk+1|kHk+1(Hk+1Pk+1|kHk+1 + R)-1 is the Kalman gain matrix. 
Considering the measurements {zk} and their arrival sequence {k}, the minimum 

state-error variance filter will be obtained by using Eqs. (7) and (8). However, the esti-
mated state x̂k|k has a big error when measurement is missing at time k, and its covariance 
Pk|k is also enlarged. 

Augmenting state space model is a widely used state estimation method when mea- 
surements are missing, such as [2, 13-15], but these methods require the stability of Φk+1|k. 
However, the state transmission matrix Φk+1|k is unstable due to (Φk+1|k) = 1 in target 
tracking, which leads to a monotonically increasing estimation error. 

As commented above, we propose a new algorithm to improve the precision of es-
timated states at time k when measurement is missing by using posterior measurements 
in target tracking. By minimizing covariance of innovation, the new algorithm obtains 
the weighting matrix to improve the estimation precision using posterior measurements, 
which can improve the estimation precision when measurement is missing, and the esti-
mation precision is almost equal to OSFL smoother when measurement is not missing. 
For the new algorithm adopts different minimum criterion and posterior measurements, 
the precision of estimated state can be improved. The principle and deducing of the new 
algorithm can be found in next section. 
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3. AMENDED KALMAN FILTER 

3.1 The Principle of Amended Kalman Filter 

Given the modified Kalman filter (MKF) Eqs. (5)-(8), we now study a method us-
ing k+1th measurement to improve the precision of estimated states at time kth.  

When the k+1th measurement and the estimated state of KF at time kth have been 
obtained, the kth estimated state can be amended as follows. 

| | 1 1 1ˆk k k k k k kx x C z          (9) 

where Ck+1 is the n  1 weighting matrix, 1 1 1 1|ˆk k k k kz z H x      is the innovation and its 
variance is Sk+1 = Hk+1Pk+1|kHk+1 +R > 0. 
 
Theorem 1: For system (1)-(3) which satisfies Assumptions 1 and 2, 
(a) the covariance of amended innovation 1kS 


 has a minimum value when 

1
1 1 1| 1 1 1| 1( )k k k k k k k k kC H Φ S H P H 

           (10) 

where ()+ represents Moore-Penrose pseudo-inverse. 
(b) the covariance of amended estimated error is 

2
| | 1 1 1 1 1 | 1| 1 1 1 1 1 1| |k k k k k k k k k k k k k k k k k k k k k kP P C S C P H C C H P                     


.    (11) 

Proof: (a) For system (1)-(3), when the estimated state is amended according to Eq. (9), 
the prediction error equation is as follows: 

1| 1 1| 1 1| | 1 1 1

1| 1 1| 1 1 1| 1 1 1

ˆ( )

       
k k k k k k k k k k k k k

k k k k k k k k k k k k

x x x x Φ x C z

x Φ C z x A z



 
       

        

    

   

  
  

    (12) 

where Ak+1 = Φk+1|kCk+1. 
From Eq. (12), the covariance of prediction error is deduced as follows: 

1| 1| 1| 1 1 1 1| 1 1 1 1| 1|

2
1 1 1 1 1 1 1| 1 1 1 1 1 1|

cov( ) E[( )( ) ] E( )

        E( ) E( ) E( )

k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k

P x x A z x A z x x

A z z A x z A A z x

 

  
           

            

     

      


     

    
   (13) 

Because 

1| 1| 1|E[ ]k k k k k kx x P         (14) 

1 1 1 1 1 1E( )k k k k k kAz z A A S A             (15) 

1| 1 1 1| 1 1| 1 1 1| 1 1E( ) E[ ( ) ]k k k k k k k k k k k k k k kx z A x H x v A P H A                        (16) 

1 1 1| 1 1 1| 1 1| 1 1 1|E( ) E[ ( ) ]k k k k k k k k k k k k k k kA z x A H x v x A H P                   (17) 

Then, Eq. (13) can be rewritten as  
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2
1| 1| 1 1 1 1 1 1| 1 1 1 1 1 1| .k k k k k k k k k k k k k k k k k kP P A S A P H A A H P                    


    (18) 

The amended innovation is 1 1 1 1|k k k k kz z H x    
   and its covariance is 

1 1 1| 1

2
1 1 1 1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1 1 1

k k k k k

k k k k k k k k k k k k k

k k k k k k k k k k k

S H P H R

S H A S A H BA H H A B

S L S L B L L B

  

  

   

            

          

 

      

    

 

    (19) 

where Bk+1 = Hk+1Pk+1|kHk+1 and Lk+1 = Hk+1Ak+1. 
When k+1 = 0, 1 1k kS S 


, which indicates the zk+1 is missing, thus Ck+1 = 0. 

When k+1 = 1, to satisfy the minimum of 1kS 


, it requires that 

21
1 1 1 1 1 1 1 1

1

( ) 0.k
k k k k k k k k

k

S
S S L B B

L
  

       


      



    (20) 

Note 

2
1 1 1k k     and the symmetry of Sk+1 and Bk+1, we have the following equa-

tion 

1
1 1 1.k k kL S B

       (21) 

Thus, the expression of Ck+1 can be written as follows: 

1
1 1 1| 1 1( ) .k k k k k kC H Φ S B 

         (22) 

1kS 


 has a minimum value when 

1
1 1 1| 1 1 1| 1( )k k k k k k k k kC H Φ S H P H 

       . 
(b) The estimated error equation is 

| | | 1 1 1 | 1 1 1ˆ( ) .k k k k k k k k k k k k k k k kx x x x x C z x C z            
        (23) 

From Eq. (23), the covariance of estimated error is deduced as follows:  

| | | 1 1 1 1| 1 1 1

2
| | 1 1 1 1 1 1 | 1 1 1 1 1 |

cov( ) E[( )( ) ]

     E( ) E( ) E( ) E( ).

k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k

P x x C z x C z

x x C z z C x z C C z x

 

  
      

          

    

        


   

      
  (24) 

Because 

| | |E( )k k k k k kx x P       (25) 

1 1 1 1 1 1 1E( )k k k k k k kC z z C C S C              (26) 

| 1 1 | 1 1 1 1 1| 1

| 1 1| 1 1 1 1| | 1

| 1 1| | 1 1

ˆE( ) E[ ( ) ]

ˆ                       E[ ( ) ]

                       E[ (

k k k k k k k k k k k k k

k k k k k k k k k k k k k k k

k k k k k k k k k k

x z C x H x v H x C

x H Φ x H w v H Φ x C

x H Φ x H w v

       

      

   

     

    

  

 

  1 | 1| 1 1) ]k k k k k k kC P Φ H C       

  (27) 

1 1 | 1 1 1| | 1 1 | 1 1 1| |E( ) E[ ( ) ]k k k k k k k k k k k k k k k k k k k k kC z x C H Φ x H w v x C H Φ P                  (28) 

Thus, 
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2
| | 1 1 1 1 1 | 1| 1 1 1 1 1 1| |k k k k k k k k k k k k k k k k k k k k k kP P C S C P H C C H P                     


.     

The aforementioned proof is similar to our proposed method in [21]. However, in 
this paper, we pay attention to arrival sequence {γk} and its effect on estimation. 
 
Theorem 2: The innovation covariance of amended Kalman filter is smaller than Kal-
man filter’, i.e. 1 1.k kS S 


 

 
Proof: According to Eqs. (19) and (22), 

1 1
1 2 1

1 1 1 1 1

,                                 0

,       1
k k

k
k k k k k

S
S

S B S S




 
 

    


    


     

Theorem 2 indicates that amended Kalman filter (AKF) has a less innovation co-
variance than Kalman filter. Actually, when zkRm (m > 1), the amended Kalman filter 
also has a less innovation covariance, but the deducing of Lk+1 is very complex according 
to matrix analysis if the dimensions of zkRm (m > 1) are correlated. However, the de-
ducing of Lk+1 can be operated in each dimension if each dimension of zkRm (m > 1) is 
uncorrelated to each other. 

3.2 Comparison of Amended Kalman Filter with Kalman Smoother 

The Kalman smoother usually includes fixed point smoother, fixed lag smoother 
and fixed interval smoother [23]. From Eq. (9) of AKF, it is obvious that AKF uses the 
k+1th measurements to improve the precision of estimated state at time k, which is simi-
lar to one step fixed lag (OSFL) smoother [24]. The equations of OSFL smoother are as 
follows: 

| 1 | 1 1
ˆ

k k k k k kX X M z     ,    (29) 

| 1 | 1 1 1k k k k k k kP P M S M    － ,    (30) 

where  

1
1 | 1| 1 1k k k k k k kM P Φ H S 
     .    (31) 

When there exist possible data losses, OSFL smoother cannot be used directly. But 
we can modify the equations of OSFL smoother based on MKF algorithm as follows: 

| 1 | 1 1 1
ˆ ,k k k k k k kX X M z          (32) 

| 1 | 1 1 1 1.k k k k k k k kP P M S M     －     (33) 

Theorem 3: the variance of amended estimated error |k kP


 has a minimum value when  

1
1 | 1| 1 1.k k k k k k kC P Φ H S 
         (34) 

Proof: From Theorem 1, we can find that the expression of Ck+1 has no relation with k+1, 
thus k+1 is omitted in the proof. To satisfy the minimum of |k kP


, it requires that 
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1 1 1 | 1| 1
1

( ) 2 0.k
k k k k k k k k

k

P
S S C P Φ H

C     


      



    (35) 

Therefore,  

1
1 | 1| 1 1.k k k k k k kC P Φ H S 
          

Obviously, AKF is equal to OSFL smoother when Ck+1 is calculated by minimizing 
the covariance of amended estimated error | .k kP


 To distinguish the two kinds of AKF, in 

this paper AKF calculates Ck+1 by minimizing the covariance of amended innovation 
according to Eq. (10). Thus, AKF is different from OSFL smoother because the weigh- 
ting matrix Ck+1 is calculated by minimizing the covariance of amended innovation 1kS 


 

rather than amended estimated error | .k kP


 Furthermore, OSFL smoother does not use the 
current smoothed state and covariance to update the estimated state and covariance of 
next time. And AKF has a better performance than OSFL smoother when the measure-
ments are missing seriously, which can be found in Section 4. 

Actually, |k kP


 is almost equal to Pk|k+1 when the covariance of process noise is small. 
This is because  

| | 1 1 1 1 1 1 1 | 1| 1 1 1 1 1| |

1| 1| | 1| 1 1

| 1| 1| 1| 1 1

                  = [( ) ]

                     [ ( ) ]

k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

P P C S C M S M P Φ H C C H Φ P

Φ P P Φ H C

P Φ Φ P H S

            


    


    

        

  

  



1
1 1| |

1
1| 1 1 1| 1 1 1 1| |

1
1| 1 1 1| 1

                  = ( ) ( )

                  = ( ) [( ) ] .

k k k k k

k k k k k k k k k k k k k

k k k k k k k

H Φ P

Φ QH C Φ QH S H Φ P

Φ QH S Φ QH


 

  
       

  
    

  

  

 (36) 

Generally, the diagonal elements of Sk+1 have a big value, and the diagonal elements 
of Q have a small value. Thus, the diagonal elements of Eq. (36) have a small value (al-
most equal to 0). Therefore,

 
|( )k ktr P


 is almost equal to tr(Pk|k+1)(tr is a symbol of trace of 
matrix), which indicates the precision of AKF is almost equal to OSFL smoother. 

4. PERFORMANCE EVALUATION 

In this section, we present some cases of target tracking when using amended Kal-
man Filter with intermittent measurements. 

According to CA model in target tracking [21, 25],  

2

1|

1 / 2

0 1

0 0 1
k k

T T

Φ T

 
   
  

    (37) 

 1 0 0kH      (38) 
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T T T

 
   
  

    (39) 

where T is the time interval between two consecutive measurements, and q is the power 
spectral density of the continuous-time white noise wk. 
 

  
(a)                                          (a) 

  
(b)                                          (b) 

  
(c)                                          (c) 

Fig. 1. Tracking results of AKF when  = 1.        Fig. 2. Tracking results of AKF when  = 0.5. 
(a), (b) and (c) are RMSE of position, velocity and acceleration, respectively. 
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Obviously, the Moore-Penrose pseudo-inverse will lead to a big bias of the esti-
mated velocity and acceleration, because the (Hk+1Φk+1|k)-1 does not exist and the meas-
urement only includes position information.  

To reduce the bias caused by Moore-Penrose pseudo-inverse, we modify Eq. (10) as 
follows: 

1,1 1,2 1,3

1 1,2 1 1,1 1,2 1,3

1,3

/ ( )k k

p p p

C p L p p p

p
 

  
    
  

☉     (40) 

where pij is the ith row jth column element of Pk+1|k, and ⊙ means element-by-element 
multiplication.  

We modify Eq. (10) using the covariance of prediction error because it includes the 
covariance of position (p1,1), the cross-covariance of position and velocity (p1,2), and the 
cross-covariance of position and acceleration (p1,3). 

Assuming T = 1s and the movement time of target is 100s. The target begins to move 
at a constant speed of 20m/s. R = 100, q = 1, 0 = [0, 20, 0] and P0 = diag(100, 100, 1). 

Figs. 1 and 2 respectively present the tracking results, when  = 1 and  = 0.5. The 
simulations have been operated M = 1000 times, and the root mean square errors (RMSE) 
are used to evaluate the performance of AKF and other algorithms [26]. 

MKF proposed in [12] is equal to Kalman filter when  = 1. It is apparent that the 
tracking performance of AKF and OSFL smoother are better than MKF whether the 
measurements are missing or not. The position tracking results of AKF is worse than 
OSFL smoother, but the velocity and acceleration tracking results of AKF is better than 
OSFL smoother. The computational time of MKF, OSFL and AKF are 3.3ms, 5.8ms and 
6.4ms, respectively. AKF needs more computational time than MKF and OSFL, because 
AKF amends the estimated state, and the amended estimated state is also used to update 
the estimated state of the next time. 

Fig. 3 shows the tracking performance of MKF, OSFL smoother and AKF with dif-
ferent . Obviously, the more serious the loss of measurements is, the worse the tracking 
performance becomes. The tracking results of AKF are better in velocity and accelera-
tion than MKF and OSFL smoother, and when the measurements are missing seriously, 
the tracking results of AKF are also better in position than MKF and OSFL smoother. 

From these examples, it is found that the precision of estimation state can be im-
proved by directly using the next time’s measurements when the measurements’ arrival 
sequence {γk} is known. However, it is a challenge issue to directly use more posterior 
measurements to improve the current estimated precision. Future work will explore this 
possibility. 

5. CONCLUSIONS 

Target tracking with intermittent measurements is investigated in this paper. Alt-
hough there are a large number of references considering the state estimation problem 
with packet dropouts, most of those methods are unsuitable for target tracking due to the 
unstable state transmission matrix. Leveraged by posterior measurements, an amended 
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Kalman filter is proposed to improve the precision of the current estimated state. Both 
the deduction and proof of this new method are discussed in detail to distinguish it from 
the Kalman smoother. Simulation results further verify the effectiveness of the proposed 
method. In our future work, we will continue to optimize the target tracking performance 
by adopting the proposed method when zkRm (m > 1) and extend this method by using 
more posterior measurements. 
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Fig. 3. Tracking results of amended Kalman filter with different ; (a), (b) and (c) are mean error 
in position, velocity and acceleration, respectively. 
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