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TLB miss-based incremental, concurrent checkpoint mechanism for real-time and 

interactive applications called TIC-CKPT has been proposed, implemented and evalu-
ated in this paper. TIC-CKPT allows setting the checkpoints overlaps with the execution 
of the chekcpointed processes. By resorting to tracking TLB misses to stop the first ac-
cesses to the target memory pages while saving memory address space to non-volatile 
storage. Meanwhile, a thread, which works in the privileged mode, copies the target 
pages to the designated memory buffer first, and then resumes the memory accesses. Fi-
nally the original pages in the designated memory buffer are used to construct a consis-
tent state of the checkpointed process. From the experimental results, in contrast to a tra-
ditional concurrent checkpoint system, TIC-CKPT saves more than 2% of the checkpoint 
time and decreases the stopped time of the checkpointed process by around 10%. More-
over, concurrent incremental checkpointing has been designed and implemented in 
TIC-CKPT as well. Compared with a conventional incremental checkpoint approach, 
TIC-CKPT can reduce the downtime introduced by setting an incremental checkpoint to 
a great extent while the benchmarks keep the principle of locality.       
 
Keywords: TLB miss, concurrent, incremental checkpoint, real-time and interactive ap-
plications   
 
 

1. INTRODUCTION 
 

The modern microprocessor and devices are susceptible to transient hardware 
faults due to several causes, such as the increasing number of transistors, decreasing fea-
ture sizes, reduced chip voltages and the noise margins etc. [1, 2]. Despite the number of 
those transient hardware fault is not as many as software faults, they may collapse the 
operating system and make the whole system go to crash with very high probability [3, 
4]. From the view of software, hence, the operating systems should be reliable to recov-
ery from such kinds of system crashes by resorting to fault-tolerant techniques. The 
checkpoint/ restart mechanism is a typical and effective fault-tolerant technique, which 
saves the state of the running process to the nonvolatile storage in the form of an image 
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file. When the process fails caused by some external faults, such as transient hardware 
faults, then the stopped execution of the target process can be resumed from the latest 
checkpoint by reloading the state saved on the nonvolatile storage [5]. 

For some specified high availability and reliability applications which run in a long 
period, the checkpoint/restart mechanism can be employed to achieve the fault tolerance. 
In traditional checkpoint/restart systems, before saving the state of the checkpointed pro-
cess (also called checkpointee), these checkpoint/restart techniques require stopping the 
checkpointee for getting its consistent state. In other words, the checkpointee cannot 
keep running or providing service while setting the checkpoint, and that period is re-
ferred as downtime in this paper. As we know, however, interactive applications and 
real-time applications need rigid timing restrictions, such as a finish time and a response 
time. For such applications, the downtime required while using traditional checkpoint 
mechanisms to set a checkpoint is always too long to be accepted. Though many check-
pointing optimization techniques have been proposed to aim at these applications, the 
results are not general and attractive. Kai Li et al. [6] proposed the Low-Latency Con-
current (CLL) checkpointing, which is a technique solution designed for such applica-
tions; it enables the execution of the checkpointee overlapped with setting the check-
points to a certain degree. However, too much memory accesses caused by the heavy 
operations on the checkpointee’s page table reduce the benefit brought by that traditional 
concurrent checkpoint mechanism. 

By the inspiration of CLL checkpoint system, we have proposed a new concurrent 
checkpoint mechanism for real-time and interactive processes in our previous work [7], 
which employs tracking TLB misses to block the memory accesses until the target pages 
are copied to the designated memory buffer during setting the checkpoint, it allows the 
execution of the checkpointee to overlap with the dumping of memory address space 
without operating on page table. Moreover, it employs two buffers to store the whole 
address space and the original copies of the accessed pages, and then constructs the im-
age file of the checkpointee by using the contents in these two buffers. 

For the purpose of reducing the checkpoint overhead and improving the usage of 
memory, based on our previous work [7], we will propose and implement an improved 
Transparent, Incremental, Concurrent checkpoint mechanism with a small memory buff-
er called TIC-CKPT in this paper. While TIC-CKPT dumps memory pages in the check-
pointee’s address space, the checkpointee can keep running until a memory access re-
quest (Only the first request to this memory page) is captured by tracing TLB misses, 
then the checkpointer(a kernel thread) copies the memory access target page to the des-
ignated memory buffer, and then unblock the memory access request. Therefore, while 
TIC-CKPT dumps the checkpointee’s address space to disk directly, it uses the original 
pages stored in the designated memory buffer to construct a consistent state of the 
checkpointed process. Compared with CLL checkpoint system, since it does not need to 
operate on page table which will cause extra memory accesses, much more concurrency 
can be obtained by using TIC-CKPT to set checkpoints. Moreover, for the purpose of 
reducing the checkpoint time, TIC-CKPT supports incremental checkpointing, which 
means only the dirty pages after the previous checkpoint are saved to the nonvolatile 
storage. Compared with CRAK [8] incremental checkpoint mechanism, TIC-CKPT per-
forms better with less checkpoint time and downtime brought by setting incremental 
checkpoints, while the benchmarks keep the principle of locality. 
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This paper is organized as follow: Section 2 introduces the background knowledge 
and related work. Section 3 describes the overview of the algorithm of TIC-CKPT. Sec-
tion 4 presents experimental results obtained in evaluating the performance associated 
with TIC-CKPT. Finally, we present concluding remarks and the direction of future 
work. 

2. BACKGROULD AND RELATED WORKS 

According to the degree of checkpointing transparency, there are mainly two levels 
of checkpoint/restart systems [8, 9], user-level [10-12] and system-level [13, 14]. A us-
er-level checkpoint/ restart system offers a checkpoint library, then the programmers can 
determine what part of the process to be checkpointed and when to set the checkpoints by 
calling the functions provided by the library in the application source code. A system 
level checkpoint/restart system is transparent to, and independent of the applications. 
That means neither the source code of the checkpointed application nor the compiler has 
to be modified for the process to be checkpointable. Due to the purpose of transparency, 
we just care about the system-level checkpoint mechanisms, and will refer the check-
point/restart system as the system-level checkpoint/restart system by default in the re-
maining part of this paper. 
 
2.1 Traditional Checkpointing 
 

Lots of system-level checkpoint/restart systems have been implemented as a part of 
operating systems. BLCR [15] is a typical checkpoint/restart module for the Linux kernel 
developed and maintained by Berkeley Lab of USA; it supports for x86, ARM and PPC 
systems running Linux 2.6.x kernels. Kernel-based Checkpoint/Restart System [16] is an 
active project issued by Oren Laadan, which is a kernel-based checkpoint/restart system 
for the Linux kernel. In fact, traditional checkpoint systems [17-19], including those 
mentioned above, need to stop the checkpointed process to ensure the consistent state of 
the checkpointee during setting the checkpoints. 
 
2.2 Checkpointing Optimization 
 

To satisfy the strict timing requirements of setting checkpoints for real-time or in-
teractive processes, several checkpoint optimization techniques have been proposed to 
decrease the checkpoint time. In traditional checkpoint mechanisms, reducing the check-
point time means the downtime of the checkpointed process can be reduced as well. De-
creasing the content that needed to save to the nonvolatile storage is the main direction to 
reduce the checkpoint time, the techniques including copy-on-write [6], diskless check-
pointing [20]. Moreover, for some long time running processes which need multiple 
checkpoints during execution, in order to obtain an optimal interval for setting a check-
point, Young [21] has figured out an optimal checkpoint interval, based on the assump-
tion of Poisson failure arrivals. At last, incremental checkpointing is a wellknown tech-
nique to reduce the checkpoint time, space-efficient page-level incremental checkpoint-
ing [8, 22] and other incremental checkpointing methods [23-25] have been proposed 
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successively. The core idea of the incremental checkpoint mechanism is to save the 
modified pages (i.e. dirty pages) in address space of the checkpointed process from the 
previous checkpoint, compared with the number of all pages in the checkpointee’s ad-
dress space, the number of the modified pages is always smaller. Consequently, the 
downtime of the checkpointee while setting a checkpoint is also decreased. 
 
2.3 CLL Concurrent Checkpointing 
 

However, the optimized techniques mentioned in section 2.2 are solutions to the 
symptoms but not to the causes, they cannot reduce the downtime of the checkpointee 
fundamentally. As showed in our previous work [7], dumping memory address is re-
sponsible for the major part of the checkpoint time, if the execution of the checkpointee 
can overlap with the dumping memory address space, the downtime of the checkpointee 
due to setting the checkpoint can be decreased to a great extent in theory, that is motiva-
tion of the concurrent checkpoint mechanisms. 

As a matter of fact, the concept of concurrent checkpointing in this paper is not a 
new theory, K. Li and J. S. Plank are pioneers in the study of checkpoint systems[6, 10, 
20], they have proposed a low-latency, concurrent checkpoint system for parallel pro-
grams called the Concurrent Low-Latency (CLL) checkpoint system, which aims at over-
lapping the execution of the checkpointee with the dumping of memory address space, 
distinct form traditional checkpoint systems, the CLL checkpoint system works as fol-
lows: 
 
(1) Stop the checkpointed process; 
(2) Save the values of registers, thread information etc. to the nonvolatile storage; al-

though they did not mention that TLB entries should to be flushed, this operation 
should be done before the 3th step. 

(3) Turn off all the access right bits in checkpointee’s page table; then resume the check-
pointee; 

(4) Issue copying the memory address space to a memory buffer concurrently with a ker-
nel thread (called Copier). After copying a page, turn on the corresponding access bit. 
During the Copier copies the memory pages, the modified page fault handler blocks 
the write accesses, and invokes the Copier to copy the original target page to memory 
buffer first, then switch on the access right bit of the corresponding page table entry; 

(5) After the Copier copies the whole address space, another kernel thread called Writer 
stores the data in the memory buffer to the nonvolatile storage to form an image file 
which contains the original copies of the write target pages. 

 
CLL checkpoint system works quite like copy-on-write technique, it allows setting 

checkpoints concurrently with the checkpointee, interrupts the checkpointee only for 
small, fixed amounts of time, and is transparent to the checkpointee. In order to maintain 
consistency of the state, every write access to a page can be captured if the page has not 
been copied to another place because the corresponding access right bit has been turned 
off. After copying this write target page to the memory buffer or nonvolatile storage, the 
access write bit of the corresponding page table entry is restored. This means CLL check- 
point system should also operate on the page table after dumping the write target page. 
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After the whole checkpoint process is over, it restores all access right bits in the page 
table. From the description above, we can see that there are too many page table opera-
tions, which lead to extra memory references. In addition, it seems that CLL assumes all 
memory access requests are legal during setting checkpoints If there is an illegal write 
request to a read-only memory page, this request will be allowed because the access right 
bits in the page table are set to read-only before setting the checkpoint, operating system 
cannot discern whether the requests are legal or not. Of cause, it can employ two page 
tables or resort to hardware support, but both of them will result extra overhead, either 
memory accesses or the budget.    

From the published literature, Li’s CLL checkpoint mechanism is the sole concur-
rent checkpoint system that traces the modified memory pages when dumping memory 
address space. In this paper, we refer CLL concurrent checkpoint mechanism as the tra-
ditional concurrent checkpoint mechanism. In fact, Li’s works inspired us greatly, espe-
cially, CLL checkpoint mechanism shows, the checkpointed process can keep running 
while dumping memory address space. Needless to say, CLL is quite suitable to set the 
checkpoints for real-time and interactive processes. However, the CLL checkpoint sys-
tem needs too many extra memory accesses, such as setting and restoring all access right 
bits in the page table, which weaken the benefit brought by this kind of concurrent 
checkpointing directly. In addition, CLL concurrent checkpoint mechanism does not 
support incremental checkpointing, which is suitable for setting multiple checkpoints for 
the long-time running applications with quite short checkpoint time.    

3. DESIGN AND IMPLEMENATION OF TIC-CKPT 

A new transparent, incremental, concurrent checkpoint mechanism called TIC- 
CKPT in the Linux kernel will be proposed in this section, which does not require extra 
page table operations and supports the incremental checkpointing. Because the algorithm 
of the incremental checkpointing is quite different, we will present that in much more 
details in section 3.2. 
 
3.1 The Architecture of TIC-CKPT 
 

The architecture of the full checkpoint mechanism [7] is shown in Fig. 1, where 
checkpointer stands for the kernel thread that sets the checkpoint and works in privileged 
mode; Buffer B is a designated memory buffer to save the values of registers, informa-
tion of the thread et cetera and the copies of memory access target pages during saving 
address space. Different from the CLL checkpoint mechanism, TIC-CKPT works as fol-
lows: 
 
(1) Stop the checkpointed process by sending a “stop” signal; 
(2) Copy the values of registers and thread information to the designated Buffer B rather 

than nonvolatile storage for decreasing the stopped time of the checkpointed process. 
(3) Set the checkpoint flag to indicate that a checkpoint is being set now, and invalidate 

TLB entries;  
(4) Resume the checkpointee by sending a “continue” signal;   
(5) Save memory address space to the nonvolatile storage; meanwhile, if there is a mem-
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ory access request during saving of the memory address space, since the TLB handler 
was modified to support concurrent checkpointing, it blocks the access request until 
the original target page is copied to Buffer B; then completes the loading of TLB en-
try; finally, the memory access proceeds as usual.    

While copying the address space to the nonvolatile storage, the checkpointer 
scans the virtual memory areas of the checkpointee’s address space, gets the virtual 
address of every page, and checks whether the virtual address of the page is in 
Buffer B or not. If not, then saves this page to the nonvolatile storage directly. If the 
virtual address is in Buffer B, that means there were memory accesses to this page 
after the starting of dumping memory address space, then the copy of the original 
page in Buffer B will be moved to the nonvolatile storage. Therefore, we only need a 
quite small memory buffer to store a list and the copies of the accessed pages rather 
than a big memory buffer to save a copy of the whole address space, this property 
enables the TIC-CKPT to be applied in memory-limited systems. 

(6) Clear the checkpoint flag after the checkpointee’s address space is saved to the non-
volatile storage to represent the checkpointing is completed; an image file contains a 
consistent state of the checkpointee is constructed and saved on the nonvolatile stor-
age. Because both write and read requests to memory pages can be captured by trac-
ing TLB misses [17, 26], before copying memory address space of the checkpointee, 
TLB should be invalidated (i.e. flushed), and as a result, every write or read to a page 
for the first time will cause a TLB miss. If the checkpoint flag is set, then every read 
or write request cannot be fulfilled until the original target page is copied to Buffer B. 
It is different from the traditional concurrent checkpoint mechanism, there are no ex-
tra memory accesses brought by the operations on page table.  

 
Fig. 1. Workflow of TIC-CKPT. 

In TIC-CKPT, saving memory address space is being processed concurrently with 
the execution of the checkpointed process to a great extent. Thus, it is necessary to block 
the checkpointee when copying the original access target page to Buffer B before the 
first access request to that page. According to the locality of reference, compared with 
the number of pages in the whole address space, the number of the original copies of 
access target pages is much smaller.       
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Fig. 2. Tracing dirty pages used in TIC-CKPT. 

3.2 Incremental Checkpointing 
 

As mentioned in Section 2, incremental checkpointing is a widely used technique to 
reduce the checkpoint time, it saves the dirty pages after the previous checkpoint; there 
are two kinds of methods to keep track of the dirty pages. The first mechanism is using 
dirty bit. After setting a checkpoint, all the writable pages are cleaned as non-dirty. While 
the process writes the pages, operating system will set the dirty bits in corresponding 
page table entries. In other words, we can discern which pages are modified since the 
previous checkpoint, then just these pages are saved to the nonvolatile storage; the other 
mechanism is called bookkeeping [17], it sets all writable pages as read-only after a 
checkpoint, there must be a page fault exception when the page has been written. Then, 
the modified page fault handler inserts the address of corresponding page to a designated 
data structure, such as a list. At last, incremental checkpointing just need to save the 
pages whose addresses are in the designated data structure. However, both of mecha-
nisms mentioned above require operating on the page table, needless to say, they bring 
about much longer checkpoint time. In TIC-CKPT, incremental checkpointing is also 
supported; it provides a mechanism like bookkeeping to track the dirty pages but without 
any extra operations on page table. 

TIC-CKPT tracks the dirty pages by resorting to TLB modification misses (i.e. write 
violations). As mentioned before, both write and read accesses result in TLB misses, in 
order to distinguish them, and track the write target pages only, the modified TLB han-
dler clears the read/write bit of the page table entry before loading it into TLB for the 
first time. Therefore, a write access to that ‘read-only’ page leads to a page fault excep-
tion, then page fault handler works as normal, finally, it calls TLB handler to load the 
corresponding page table entry again with the original read/write bit. 

For tracing dirty pages, TLB handler has to detect that the page table entry has been 
loaded into TLB or not, thus a loaded list is introduced and kept by TLB handler. Before 
loading a page table entry into TLB cache, TLB handler checks whether the page table 
entry is in the list or not, if it is in, then loads that page table entry normally, otherwise, 
loads it after clearing the read/write bit. Fig. 2 shows how TIC-CKPT traces the dirty 
pages by resorting to TLB handler. 
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The main idea for collecting the dirty pages is to resorts to the loaded entry list, the 
checkpointer traverses that loaded entry list, and gathers the virtual address of the pages 
whose page table entries have been loaded more than once, then saves the corresponding 
physical pages to nonvolatile storage. At last, an incremental checkpointing image file is 
formed which only contains small part of pages in checkpointee’s address space.  

Quite different from full checkpointing workflow discussed in Section 3.1, incre-
mental checkpointing has to invalidate all TLB entries and clear the loaded entry list be-
fore the ending of setting a checkpoint. In other words, invalidating TLB entries and 
clearing the loaded entry list is the last step of setting an incremental checkpoint, and the 
motivation of that is for supporting tracking dirty pages and making the next incremental 
checkpoint. 

 
3.3 Implementation 

 
TIC-CKPT has been implemented as a Linux module, and the target architecture is 

SH4 platform [27]. There are also 200 lines of source code modification in the TLB han-
dler (the file is named tlb-sh4.c) and 8 lines patch that involves two files of the Linux 
kernel. Though we did not discuss the design and implementation of the restart mecha-
nism in this paper, this functionality has been also implemented to verify the checkpoint 
functionality. Li’s proposed CLL checkpoint system is a typical concurrent checkpoint 
system, for the comparison experiments, we have implemented this checkpoint system in 
the Linux kernel for the SH4 architecture, but we need to declare this again although it 
has been mentioned in Section 2.3, the experimental Linux version of CLL concurrent 
checkpoint system assumes all memory write requests are legal. We admit that we can 
use two page tables to ensure the illegal write request cannot write the read-only memory 
page, however, not only the degrade of concurrency due to much more comparison 
should be processed, but also much more modification in Linux kernel internals. 

4. EXPERIMENTS AND EVALUATION 

4.1 Experimental Platform and Benchmarks 
 

In order to evaluate the performance of our proposed TIC-CKPT, we used a multi-
ple core SH4 board as our experimental platform, called SH-4A [28], it is a 32-bit RISC 
microprocessor that is upward compatible with the SH-1, SH-2, SH-3, and SH-4 micro 
computers at instruction set code level. SH-4A has a quad-core CPU, each core equips 
with a maximum operating frequency of 600MHz, and 128 MB of memory. Besides, 
network file system has been adopted as persistent storage to save the root file system 
and the checkpointed image. 

Before presenting the experimental results in this section, we will introduce three 
benchmarks used in evaluation experiments: Matrix multiplication (MAT), the size of 
Matrix, such as 256*256, means there are 256*256 elements in this matrix, the type of 
the element is double precision floating-point format; a benchmark called memperf [29], 
which access memory randomly; besides, according to the principles of Hartstone re-
al-time benchmark [30], we have implemented a real-time benchmark named rt-bench, 
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which runs various periodic and sporadic tasks used in real-time DSP (Digital Signal 
Processing). The periodic task is the FIR (Finite Impulse Response) filter task. In addi-
tion, there are 8 sporadic tasks, such as the FFT (Fast Fourier Transform) task, the 
ADPCM (Adaptive Differential Pulse Code Modulation) task, the forward DCT (Dis-
crete Cosine Transform) task and the LMS (Least Mean Square) task. 
 
4.2 Overhead: Checkpoint Time 
 

Fig. 3 indicates the comparison of the checkpoint times by using three checkpoint 
systems mentioned in Section 3.3 to set one checkpoint. We can see that checkpoint 
times by using both TIC-CKPT and CLL checkpoint systems are almost 20% longer than 
that by using non-concurrent checkpoint system. 

 
Matrix Size 

Fig. 3. Checkpoint time. 

Because both TIC-CKPT and CLL checkpoint mechanisms need to check whether 
the pages are in the designated buffer or not before saving a page. Moreover, other op-
erations such as invalidating TLB entries and operations on the page table take up a part 
of the checkpoint time. Fortunately, the focus of our work is to allow the setting of the 
checkpoint and running of the checkpointed process to take place concurrently; therefore, 
although the checkpoint times introduced by TIC-CKPT and CLL are longer than non- 
concurrent checkpoint system does, the absolute stopped time of the checkpointed proc-
ess is much more less, such information will be presented in Section 4.3. 

In addition, since the CLL checkpoint system sets all access right bits of the page 
table entries to be read-only before dumping memory and restores them after saving a 
page to non-volatile storage, it takes around 2% more time to set a checkpoint than TIC- 
CKPT. 

 
4.3 Overhead: Downtime and Deadline Misses 
 

We use the term ’downtime’ to show the stopped time of the checkpointed process 
while using different checkpoint mechanisms to set one checkpoint. For TIC-CKPT and 
CLL checkpoint mechanisms, downtime means the time needed for saving registers, 
thread information etc. and the time needed for copying the access target pages to the 
designated buffer before fulfilling these access requests during setting the checkpoint. In 
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other words, the downtimes by using them to set a checkpoint are much smaller than the 
checkpoint time because setting checkpoints overlaps with the execution of the check-
pointee. On the other hand, for non-concurrent checkpoint mechanism, the downtime is 
equivalent to the checkpoint time.  

 
Fig. 4. Downtime while setting a checkpoint. 

Fig. 4 shows that TIC-CKPT brings about the least downtime while setting a check- 
point for the matrix multiplication, in contrast to non-concurrent checkpoint system, it 
can reduce more than 50% downtime, especially, while the matrix size is 512*512, the 
reduced downtime can reach 90%. In addition, compared with CLL checkpoint system, 
TIC-CKPT can reduce around 10% downtime. Though 10 percent seems like a slight 
improvement, TIC-CKPT does not assume anything, such as all memory writes are legal 
during setting the checkpoint. 

Moreover, to illustrate that TIC-CKPT will introduce less deadline misses by com-
parison to CLL checkpoint system caused by downtime; we have set various checkpoints 
for rt-bench, which runs a certain number of real-time tasks, by using both TIC-CKPT 
and CLL, and counted the numbers of deadline misses. We scheduled rt-bench to run 
10000 tasks and all tasks’ deadlines were configured as 1.2 times the execution time (i.e. 
20% slack time). The first checkpoint was set at 50 ms after the start of execution, and 
the following checkpoints were set every 1 second if multiple ones are required. Two 
configurations of real-time tasks in rt-bench are employed in our experiments: 
 
(1) One con_guration is that all tasks are periodic ones. Fig. 5 (a) shows the percentages 

of deadline misses, which is de_ned as the number of deadline misses divided by the 
number of total real-time tasks with various checkpoints; 

(2) Another configuration is that there are 5000 periodic tasks and 5000 sporadic tasks. 
Fig. 5 (b) shows the percentages of deadline misses with various checkpoints. 
 
From Figs. 5 (a) and (b), it is obvious that TIC-CKPT performs better than CLL. For 

instance, compared with the CLL checkpoint system, TIC-CKPT can reduce 17.4% dead-
line misses while there are 80 checkpoints and all tasks are periodic ones, which is 
shown in Fig. 5 (a). Accordingly, it is safe to conclude that TIC-CKPT introduces less 
deadline misses since it requires less downtime for setting checkpoints. 
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Fig. 6. Incremental checkpoint time.       Fig. 7. Downtime with incremental checkpoint. 

 
(a) All periodic tasks.                (b) Periodic task & sporadic tasks (1:1). 

Fig. 5. Percentages of deadline misses. 

4.4 Incremental Checkpointing 
 

There are two kinds of incremental checkpoint implementations in TIC-CKPT, one 
is called concurrent incremental checkpointing (label as TIC-CKPT-CI), that means 
dumping dirty pages overlaps with the execution of the checkpointed process; another 
one stops the checkpointed process during dumping dirty pages (labeled as TIC-CKPT). 
In addition, we employed CRAK [8] as our comparison counterparts to set the incre-
mental checkpoints as well. Fig. 6 reports checkpoint times by using TIC-CKPT-CI, 
TIC-CKPT and CRAK to set the incremental checkpoints every 10 seconds; we record 
the checkpoint time for the second incremental checkpoint.  

First of all, we should mention that while the benchmark is memperf, TIC-CKPT 
performs a little worse than CRAK, that because memperf reads and writes memory ran-
domly, these random accesses cause much checks in TLB loaded list; for other bench-
marks, TIC-CKPT reduces the checkpoint time from 2.5% to 7.1% compared with 
CRAK; on the other hand, Compared with TIC-CKPT and CRAK, TIC-CKPT-CI takes 
more than 10% time for setting an incremental checkpoint because before saving a page 
to the nonvolatile storage, that is because it has to check whether the page has been ac-
cessed or not after the start of dumping dirty pages. 

Fig. 7 shows the downtimes while using three incremental checkpoint mechanisms. 
We can see that for both TIC-CKPT and CRAK, the downtime is the checkpoint time 
since during setting the incremental checkpoints, the checkpointed process is stopped. 
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However, it is obvious that TIC-CKPT-CI brings about the least downtime to set the in-
cremental checkpoints for all benchmarks on our experimental platform with quad-core 
CPU. Taking MAT with size 1024*1024 as an example, TIC-CKPT-CI brings about only 
one-fifth of the downtime brought by CRAK for setting one incremental checkpoint. We 
should point out that the downtime brought by TIC-CKPT-CI is equal to the checkpoint 
time while the target platforms are uni-core systems. Therefore, on the uni-core plat-
forms, TIC-CKPT is a better choice in the most of cases; but for some processes which 
access memory randomly and run on the uni-core systems, the traditional incremental 
checkpoint techniques are supposed to be employed. 

5. CONCLUSIONS AND FUTURE WORK 

TLB miss-based concurrent, incremental checkpoint mechanism called TIC-CKPT 
has been designed, implemented and evaluated in this paper. This mechanism allows the 
checkpointed process to keep running while setting the checkpoints for it to a certain 
degree without any extra operations on the page table and extra hardware. Much more 
exactly, the most time-consuming step of setting a checkpoint (i.e. dumping address 
space) is overlapped with the running of the checkpointed process. In addition, in order 
to reduce the checkpoint time for setting checkpoints for long-time running processes 
which may need multiple checkpoints during their life time; incremental checkpointing 
has also been proposed and implemented in TIC-CKPT. The experimental results show 
that in contrast to non-concurrent checkpoint, for our selected benchmarks, it can reduce 
the downtime of the checkpointed process by 50%-90%. In addition, compared with the 
CLL checkpoint system proposed by Kai Li et al., it can reduce the downtime by around 
10%. For this reason, TIC-CKPT is suitable for real-time and interactive processes which 
have stringent timing requirements, such as a finish time or a response time. 

Moreover, from the experiments on incremental checkpointing, TIC-CKPT reduces 
not only the checkpoint time, but also the downtime during setting incremental check-
points. Accordingly, compared with incremental checkpoint approach implemented 
based on page table, TIC-CKPT performs better while the benchmarks do not access 
memory randomly since there are no extra operations on page table. 

Though TLB misses and loads are transparent to IA-32 and IA-64 platforms, some 
other architectures, such as MIPS, can employ TIC-CKPT mechanism since the page 
table entries are loaded to TLB by operating system; Sparc and Power PC have hashed 
page tables that act as extended TLBs, so every TLB miss causes a fault, which is han-
dled by the operating systems, therefore, TIC-CKPT can also be implemented in those 
operating systems with some minor modifications by tracing the hashed page tables on 
these platforms. TIC-CKPT only supports single process applications currently, it cannot 
set the checkpoints for multi-process applications, we will implement the checkpoint func- 
tionality to support setting the checkponts for multi-process and multi-thread applications. 
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