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A Study on Agent-Based Box-Manipulation Animation
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This paper focuses on push-manipulation in an agent-based animation. A policy is
learned in a learning session in which an agent perceives its own internal state and the sur-
rounding environment and determines its actions. In each time step, the agent performs an
action. Then it receives a reward that is a combination of different types of reward terms, in-
cluding forward progress, orientation progress, collision avoidance, and finish time. Based
on the received reward, the policy is improved gradually. We develop a system that controls
an agent to transport a box. We investigate the effects of each reward term and study the
impacts of various inputs on the performance of the agent in environments with obstacles.
The inputs include the number of rays for perceiving the environment, obstacle settings, and
box sizes. We performed some experiments and analyzed our findings in details. The exper-
iment results show that the behaviors of agents are affected by the reward terms and various
inputs in certain aspects, such as the movement smoothness of the agents, wandering about
the box, loss of orientation, sensitivity about collision avoidance, and pushing styles.
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1. INTRODUCTION

Agent-based box manipulation has been researched in robotics and computer an-
imation. The basic idea is to control a single agent or multiple agents to transport a
box to a predefined destination. Techniques for agent-based box manipulation have wide
applications in robotics, computer games, movies, and computer animations. Various
classes of techniques have been developed, such as rule-based, sensor-based, and rein-
forcement learning. Reinforcement learning techniques have been applied to robot con-
trol [1], robotic soccer [2], and motion of biped characters [3]. In reinforcement learning
techniques, there is a learning session in which policies are learned based on rewards re-
ceived by an agent in a learning environment. The agent collects the information of the
surrounding environment and then performs an action. The reward received by the agent
depends on the degree of forward progress and the system stability. After the learning
session, the learned policies are adopted to control the agent to carry out certain tasks in
environments similar to the learning environment. Reinforcement learning [4] and deep
neural networks [5] can be integrated to achieve deep reinforcement learning [6].
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Box-manipulation techniques have been developed in crowd animation. In [7, 8],
agents are simulated to manipulate boxes in an environment with pedestrians. In [7],
the behaviors of agents in pushing, pulling with ropes, and carrying are simulated. A
user edits a path for the agents to push a box along the path. The process of editing
the path is time consuming and tedious. In [8], only push-manipulation is considered
and collision probability fields are employed for achieving collision avoidance [9]. In
both methods [7, 8], the contact points between agents and the box are assumed to be
fixed. The methods rely on some fixed rules to control the agents to perform actions.
The disadvantage of using rules is that they may not be applicable in environments with
different settings. Such rules have parameters which are required to tune carefully. Also,
the agents and the boxes look like a rigid body as a whole when they move.

Yang and Wong [10] proposed a method which incorporates deep reinforcement
learning and some heuristic rules. The method generates animations of agents pushing
and pulling boxes in an environment with obstacles and movable objects. Tools are pro-
posed to assist the completion of animations, including 1) moving objects away from
the path of a main object and 2) assigning agents to move unassigned objects. Thus,
the method reduces unnecessary labor effort. But the method has several reward terms
whose effects are unclear. We adopted the same deep reinforcement leaning approach
as [10] and developed a system for generating box-manipulation animation. Our prelim-
inary study investigated the effects of reward terms [11]. In this version, we studied the
impacts of various inputs and performed an in-depth analysis about the performance of
the agents. Our contributions are as follows.

1. Investigate the effects of the reward terms in-depth. It is importance to understand
well the reward terms so that further improvement can be conducted.

2. Study the impacts of various inputs on the performance of the system, e.g., the
number of rays, obstacle settings, and box sizes.

3. Analyze the behaviors of the agents under different inputs.

2. RELATED WORK

Neural networks and genetic algorithm have been employed in building controllers
in games [12]. Human-level controllers can play games based on raw images of game
content [13]. Agents learn to navigate in a Minecraft maze based on a memory-based ar-
chitecture integrated with deep reinforcement learning [14]. Techniques are developed to
automatically generate animation of biped characters [3,15,16]. Deep learning techniques
are employed in building controllers in physics based simulation, such as rigid body con-
trol [17], cloth dressing [18], and winged creatures [19]. Deep learning techniques are
applied in crowd simulation [20-22].

The common transportation techniques include pushing, pulling, grasping and cag-
ing. Push-manipulation skills of robots can be learned from experience in real world
[23]. Agents can form different formation patterns to transport a large set of passive
objects [24]. While agents are moving, they should avoid collision with other objects.
To achieve collision avoidance, factors such as obstacle fields and pedestrian flows are
considered [7, 8].
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(a) (b)         (c)
Fig. 1. Two scene examples and the user-interface (UI); Objects include an agent, a box, a goal, 
and some obstacles; (a) A sparse environment; The objects are organized in a sparse manner; (b) A 
dense environment; There are three layers of obstacles between the box and the goal; (c) The UI of 
the testing system.

                (a) (b) (c) (d)          
Fig. 2. A living room (a)-(b) and a library (c)-(d); An agent pushes a box to a destination; The 
yellow curves indicate the movement paths of the agent; Our method produces natural motion of 
the agent while the agent pushes the box.

3. SYSTEM OVERVIEW

We develop our simulation based on the work by Yang and Wong [10]. Objects (e.g.,
agents and boxes) move on the x-z plane in a three-dimensional space (i.e., world frame)
and the y-axis represents height. Each object is associated with a local reference frame
(shortly local frame). When the object moves (e.g., rotate or translate), its local frame
changes accordingly. There are three kinds of objects: agents, passive objects, and static
objects. An agent is controlled by a learned policy which is obtained in a learning session.
An object i has some attributes including position pi, velocity vi, and direction hi. hi is
a unit vector which is the x-axis of object i in the world frame. Passive objects are boxes
which are movable. Static objects cannot be moved. Agents and movable objects can
rotate about the y-axis. In an animation, there is a target box which is movable; and an
agent can push it. Figs. 1 shows two scene examples for tests. We consider that objects
are organized so that they do not overlap with each other and there are no dead-ends. Our
method can be applied in producing an agent-based animation in different environments
such as a living room and a library (Fig. 2).

The orientation φi of an object i is the signed angle between hi and the x-axis of
the world frame. An object can be determined uniquely by its geometric center, pi, and
its orientation φi in the 2D spatial domain. We consider a target box j. A goal of the
target box has two conditions: 1) position condition and 2) orientation condition. Denote
εp and εφ as the control parameters for the two conditions. The two conditions of goal
g( j,Cp,Cφ ) are as follows:

1. Position condition. Cp( j,g) : ‖p j−qg‖ ≤ εp, where qg is the goal position.
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(a) The learning process.

(b) The animation process.
Fig. 3. The flowcharts of the learning process (a) and the animation process (b).

2. Orientation condition. Cφ ( j,g) : |φ( j,g)| ≤ εφ , where φ( j,g) is the signed angle
between h j and hg; and hg is the goal direction (or goal orientation).

When all the conditions are satisfied, the goal g( j,Cp,Cφ ) is finished. The orientation
condition is ignored if εφ →+∞.

There are two main processes: 1) learning and 2) animation. In the learning process,
two policies are learned, one for controlling an agent to navigate and another for con-
trolling an agent to push a box to a destination. The learning process has the following
steps:

1. Policy specification. Set a behavior to be learned by a policy and initialize the
policy parameters.

2. Scene construction. In an environment, randomly generate an agent, a target box,
a goal, and static objects. The objects do not overlap and there are no dead-ends.

3. Observation gathering. Collect environment observations of the agent.
4. Action computation. Employ the policy to compute an action of the agent.
5. State update. Update the states of the agent and the box based on the agent action.
6. Reward computation. Compute the reward for the agent based on the simulation

result.
7. Policy update. Update the policy of the agent.
8. Repeat steps 3 to 7 until the episodic session is finished.

After the learning process, the learned policies are employed in the animation pro-
cess to control agents. Fig. 3 shows the flowcharts of the learning process and the anima-
tion process.

4. REINFORCEMENT LEARNING

An agent exhibits navigation and pushing behaviors. An agent performs navigation
to move to a position or a box. When the agent is near to the box, it pushes the box
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to the goal position. In the following, we consider that a policy b (either pushing or
navigation) is learned to control the agent. The policy πb(a|s) represents a conditional
distribution of actions a over a given state s. The agent’s state is st at time t. The next
action at+1 which maximizes the long term reward is determined by the policy. After the
agent performs the action, it receives a reward rt . Then st+1 is obtained as the new state
of the agent. Consequently, a sequence of states, actions, and rewards, is obtained, i.e.,
{(s0,a0,r0),(s1,a1,r1), · · ·}. Denote r(st+i,at+i) as the received reward and γ (∈ [0,1]) a
discount factor. The cumulative reward is computed as

Rt = Σ
∞
i=0γ

ir(st+i,at+i). (1)

The parameters θ of the policy are adjusted to maximize the expected reward J(θ) =
Eπ [Rt ]. Proximal policy optimization [25] is employed to update the parameters. Please
refer to [25] for details.

4.1 States of an Agent

At each simulation step, the state of an agent i is determined based on the goal
conditions and the observation information of the agent. We consider a goal g( j,Cp,Cφ )
for a target j. The two goal conditions are Cp( j,g) and Cφ ( j,g). Here, the target j can be
either an agent or a box. If j is an agent, the agent performs navigation.

The state st of agent i at time t has two components: an internal state sint and an
external state sext (Figs. 4 (a) and (b)). We have sint = (sp,sh,si), where sp = (qg−p j)
(measured in the local frame of j), sh = φ( j,g), and si = (p j − pi) (measured in the
local frame of i); and sext contains the depths of a set of rays and the labels of the hit
objects (i.e., obstacles and target box). The agent has two layers of rays [10], i.e., a set
of horizontal rays and another set of rays with a tilt angle, e.g., 15 degrees. If the agent
pushes a box, rays are also attached at the box and such rays represent the observation of
the agent about the surrounding environment of the box. A pair of values are stored for
each ray. The first value indicates whether the ray hits an object and the second value is
the distance between the ray’s origin and the hit object. Intuitively, the rays encode how
far an agent can see or how far a box can be pushed forward.

4.2 The Learning Process

A policy is learned in an episodic task in which an agent i performs a behavior. The
state of the agent can be obtained in a physics based engine. In our case, we use Unity
and set the simulation time step as ∆t (e.g., 0.02s). Two output format can be constructed:
continuum format and discrete format. In continuum format, the policy πb returns an
action a = (kφ ,kv). Then we update the orientation, velocity, and position of the agent as
follows [10]:

φi← φi + kφ ∆t

vi← vi +kv∆t

pi← pi +vi∆t +
1
2

kv∆
2t

(2)
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(a) (b)
Fig. 4. Rays for gathering environment observations. In (a), an agent and a target box have their
own set of rays. In (b), the (black) rays associated with an agent and a target box. The chessboard
is the goal.

where kφ ∈ [−1,1], vi is the velocity, and kv is the acceleration. In the discrete format,
the policy returns an action that encodes six movements which are forward, backward,
moving left, moving right, clockwise rotation, and anti-clockwise rotation. The physics
engine performs collision detection and collision response. After that all the objects are
updated at the end of each simulation step. The process is repeated until a termination
condition is reached, e.g., the maximum number of steps or finishing the goal conditions.

4.3 Rewards

In general, a reward r can be computed as a sum of several independent reward
terms ri. These reward terms should capture the forward progress of a task and maintain
the system stability. Formally, we have r = ∑i ri. In the simulation space, there are an
agent, a box, and a set of static obstacles. While the agent moves or pushes the box,
collision may occur. In such case, the adopted action should be discouraged. However,
if the agent moves closer to a goal position or avoids collision, such action should be
encouraged. Of course, if the agent finishes the goal faster, a higher reward should be
received. Four reward terms are considered. They are forward progress rd , orientation
progress ro, collision avoidance rc, and finish time r f . The Appendix details the four
reward terms. The term rd monitors the degree of forward progress. When the target
is getting closer to the goal position, a higher reward is received. The term ro monitors
the degree of orientation progress. The term r f monitors the finish time and a higher
reward is received if the goal is finished earlier. The term rc discourages collision with
obstacles while the agent moves or pushes a box. However, there is no penalty for the
agent colliding with the box.

5. EXPERIMENT DESIGN

We investigated the effects of the reward terms in two different environments as can
be seen in Figs. 1 (a) and (b). In Fig. 1 (a), objects are far away from each other. In
Fig. 1 (b), there are three layers of obstacles between a box and a goal position. During
the learning session, the position, orientation and dimension of each obstacle were fixed
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in every episode. Furthermore, the position of the box and the goal position were the
same in episodes. But the orientation of the box and the goal orientation were randomly
generated. The dimensions of the agent and the box were 13 and 6×3×2, respectively. A
standard set of weights for the four reward terms was tuned to produce desired animation
results. Then two schemes were performed: ablation analysis and variations of weights.
In ablation analysis, a reward term was ignored. In variations of weights, we doubled or
took half of each reward weight in the learning processes. Furthermore, we conducted
experiments with different conditions to analyze the system performance. The conditions
included different number of rays, obstacles with different scale factors, and boxes (or
blocks) with different sizes. Furthermore, we reported how the agents performed under
these conditions.

6. EXPERIMENTS AND RESULTS

Our system was built in Unity which had a deep reinforcement learning toolkit [26].
Fig. 4 (b) shows an example in a learning session.

6.1 Ablation Analysis

Our experiments were performed on an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
quad core with 16.0 GB RAM and an NVIDIA GeForce GTX 1080. Our system adopted
the default setting in the Unity Machine Learning toolkit. We used a fully connected
neural network consisting of two hidden layers and each layer had 256 nodes. The inputs
contained the relative position between the agent and the box, distance between the box
and the goal, relative orientation between the box and the goal (if adopted), and the hit
distances of the rays associated with the box and the agent. The activation function was
swish. The continuum format was adopted for the output. Interactive performance was
achieved in all the examples in the animation process. Figs. 5 (a1) and (a2) show the
cumulative rewards in the sparse environment. The agent can push the box to the goal
when all the four reward terms are adopted. The followings summarize our findings:

1. Without the distance reward rd in the learning session, an agent does not know in
which direction that it should push the box towards the goal. In the learning process,
the agent may get penalty if it rotates the box in a wrong direction or the target box
collides with the obstacles. Thus, the agent learns that it should not touch the box.
It wanders near the target box.

2. Without the orientation reward ro, the agent does not adjust the orientation of the
box to satisfy the goal orientation. While the box is satisfied with the position
condition Cp(pi,q), the agent may receive the large penalty if it moves the box far
away from the goal. Thus, the agent is not willing to interact with the box if the
position condition is satisfied.

3. Without the collision reward rc, the agent may not avoid the obstacles while trans-
porting the box. Even the obstacles are right in front of the box, the agent attempts
to push the box to hit the obstacles.

4. Without the finished time reward rt , the agent gets higher cumulative reward in the
learning session. But sometimes the agent does not adjust the orientation of the box
to satisfy the goal orientation when the box is getting closer to the goal.
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We also trained the agents in the dense environment. Figs. 5 (b1) and (b2) show the
reward curves. In this case, the agents failed to push the target box to the goal most of
time. Thus, the received rewards were pretty low. The target box was stuck at the static
obstacles and the agents could not move the target box away from them. However, if we
set some intermediate points at open places and instructed the agents to move the target
box to them one by one, the agents could successfully push the target box to desired
positions. We found that if the target box was smaller, its chance of getting stuck might
be lower.

6.2 Variations of Weights for Reward Terms

Fig. 6 shows the cumulative reward in different cases in the sparse environment. The
results are summarized as follows:

1. Distance reward is w1
2 rd . The agent may push the target box in an opposite direction

to the goal at the beginning.
2. Distance reward is 2w1rd . The agent performs in a way similar to the case in which

there is no orientation reward ro. Furthermore, the agent may not be willing to
adjust the orientation if the position condition is satisfied.

3. Orientation reward is w2
2 ro. The agent performs similar to the normal condition.

But it takes longer time and less reward in the learning process.
4. Orientation reward is 2w2ro. The agent adjusts the orientation earlier than the nor-

mal condition.
5. Collision reward is w3

2 rc. The agent collides with the obstacles for around two or
more times with obstacles in the same environment.

6. Collision reward is 2w3rc. The agent makes sure that the box does not collide with
the obstacles before it pushes the box to the goal position.

7. Finish-time reward is w4
2 rt . The agent takes longer time to adjust the orientation of

the box. And it may not rotate the box in the fastest way.
8. Finish-time reward is 2w4rt . The agent transports the box in a way with a shorter

distance. But it does not avoid collision with the obstacles.

An animator can set the weights to achieve the desired effects in an animation. Some-
times, the animator may want to make the agent push the box carefully or carelessly. Dif-
ferent animation styles of an agent can be achieved by setting the weights properly. Of
course, it is desirable to be able to set the weights automatically so that labor work can
be reduced. In the future, we shall collect motion data of all the objects and then analyze
motion patterns of the main objects (e.g., the agent or the box) in an automatical way. In
this way, an animator can intuitively select a desired animation type.

6.3 Results With Various Inputs

We investigated how the agent performed for various inputs. The training environ-
ment was computed as follows. In each epoch, the positions of the obstacles were gen-
erated randomly. Furthermore, a gap between obstacles must be 3 units or higher so that
the agent did not push the target box to a dead end. Based on our observations, the agent
could push the target box to the destination when the reward was higher than 4. For the
reward lower than 4, the agent often failed to push the target box to the destination. In



BOX-MANIPULATION ANIMATION USING DEEP REINFORCEMENT LEARNING 543

(a1) Reward with all terms in the sparse environment.   (a2) Reward with one term taken out.

(b1) Reward with all terms in the dense environment.   (b2) Reward with one term taken out.
Fig. 5. (a1)-(a2) Cumulative rewards of agents in the sparse environment; (b1)-(b2) Cumulative
rewards of agents in the dense environment.

(a) (b)

(c) (d)
Fig. 6. Cumulative rewards in cases with different reward weights in the learning session; (a) Double
and half distance reward weights; (b) Double and half orientation reward weights; (c) Double and
half collision reward weights; (d) Double and half time reward weights.
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(a) (b)
Fig. 7. Rewards v.s. number of rays; (a) Numbers of rays are 4, 8, and 12; (b) Number of rays is 30.

general, an acceptable approach for training the agent was that the convergence occurs at
around 40k episodes. In the following experiments, the discrete format was adopted for
the output and the orientation constraint was ignored. The setting was: 1) number of rays
was 12; 2) the box size was one; and 3) the obstacle size was randomly generated.

6.3.1 Number of rays

The rays attached at the agent represent the perception of the agent about the environ-
ment. Each ray is an input. Thus, for a higher number of rays, more inputs are fed to the
neural network and the number of the neurons becomes higher. More samples of the envi-
ronment should be used for training the agent. Therefore, the network takes more number
of episodes to converge for higher number of rays. However, if the number of rays is too
few, the agent cannot recognize the environment fully. Consequently, the agent cannot
make a reliable action when it is at the same position of the environment. This is because
the orientation of the agent may be different and the rays cannot capture the surrounding
environment consistently. Thus, the agent may not perform well in navigation and the
box transportation task. We studied how the agent behaved under the conditions that had
different numbers of rays. The numbers of rays were in the set Rray = {4,8,12,30}.

Denote nr as the number of rays. Fig. 7 shows the rewards for nr ∈ Rray. Fig. 7 (a)
shows that it takes fewer number of episodes to converge when the number of rays is
12, comparing to the alternatives {4, 8}. As can be seen, when the number of rays is few,
more samples of the environment are required for convergence. Furthermore, the received
reward is less for fewer number of rays. For nr ∈ {4,8,12}, the rewards and episodes are
(4,125k), (4,100k), and (4.5,102k). The agent can push smoothly the box along a curve
when nr = 12. In the case nr = 4, Fig. 8 shows that the agent may move along a narrow
passage and Fig. 9 shows that the agent does not understand well the relative orientation
between the target box and the destination. Fig. 10 (a) shows a case in which the agent is
stuck when the target box is at a corner. If nr is higher than 12, e.g., 30, the agent tends to
perform actions in a push-and-adjust manner (Fig. 10 (b)). That is that the agent pushes
the box and then adjusts its position immediately. After that it adjusts its orientation and
then goes on to push the box. The agent fails to push the box continuously along a smooth
curve but it tries to push the box along a straight line.
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              (a) (b) (c) (d)            
Fig. 8. The agent may make a poor decision when nr = 4; The agent (the blue block) may pick a 
narrow passage to move; It often collides with the obstacles.

              (a) (b) (c) (d)            
Fig. 9. The agent may not have a “good” understanding about the relative orientation of the target 
box (orange box) with respect to the destination when nr = 4; In this case, the agent fails to move 
the box towards the destination directly; (a)-(b) It moves too far away in front of the box; (c)-(d) 
Then it returns to push the box.

6.3.2 Obstacle size

In an environment, if the obstacles are fixed (i.e., same positions and sizes), the agent
tends to move in a similar path from a similar start position to the destination. Thus, the
agent has constructed a ”mental map” for the environment after it is trained. The agent
often moves along similar paths. We set the obstacles at fixed positions but their sizes
were changed with the same scale factors. We investigated how the agent performs.

To avoid obstacles that are too small or too large, we set the obstacles with four dif-
ferent sizes. Furthermore, we set the positions of the obstacles so that when the obstacles
had the largest scale factor, the gap between adjacent obstacles were large enough for the
agent to push the target box. Denote fscale as the scale factor. We have two different con-
ditions. CA) The first condition is that we scale the obstacles with the same scale factor
in a random manner. CB) The second condition is that we scale the obstacles individually
and each of them has a random scale factor.

Fig. 11 shows that it takes much fewer episodes (60k) to converge in CA, comparing
to CB (75k). One reason is that the number of possible combinations of obstacle settings
in condition CA is much fewer than those in condition CB. Thus, it is easier to train the
agent in condition CA than in condition CB. Fig. 12 shows the results for fscale ∈{1,4}. In
both conditions CA and CB, the agent tends to move along similar paths to the destination.
The agent performs quite well when the passage is narrow. However, when the gaps
between adjacent obstacles become larger, the agent tends to wander around for a while
(i.e., a few seconds) before it tries to push the target box.
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(a) nr = 4 (b) nr = 30
Fig. 10. Problems when nr = 4 and nr = 30; (a) When nr = 4, the agent cannot push the box around
an obstacle corner well. It takes several seconds to push the box away from the corner before
reaching to the destination; (b) When nr = 30, the agent tends to perform actions in a push-and-
adjust manner. After the agent pushes the target box each time, the orientation of the target box
may change. Thus, the agent adjusts its position and attempts to push the box straightly towards the
destination, i.e., the red dashed curve. When nr = 12, the agent pushes the box along the yellow
curve in a smooth manner. The agent does not push the box along the yellow curve when nr = 30.

Fig. 11. The reward curves for obstacles with the same scale factors and different scale factors.

6.4 Block Size

The block size affects how the agent pushes the target box around corners of obsta-
cles and navigates along narrow passages. In general, we can train the agent to push the
target box with a specific size. However, this requires us to learn one policy for control-
ling the agent to push the box with a specific size. Thus, for each specific block size,
the learnt policy can only be applied to the dedicated block size. Thus, we extended the
architecture so that it accepted the block size as an input. Not only that we could reduce
the training time but made the agent handle blocks with different sizes. Two conditions
are considered as follows. DA: the agent is trained for different specific block sizes. DB:
the agent is trained for taking the block size as input. Fig. 13 shows the rewards under
condition DA and DB.

In condition DA, we used three different block sizes which were small (LV1),
medium (LV6) and large (LV11). Fig. 13 (a) shows that the agent performed the worst in
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(a1) (b1) (c1) (d1)

(a4) (b4) (c4) (d4)
Fig. 12. Obstacles with different scale factors; (a1)-(d1): Scale factor fscale = 1; The agent can
push the box smoothly to the destination. (a4)-(d4): fscale = 4.

LV6, compared with LV1 and LV11. Not only that it took a large number of episodes
(over 220k) to train, but the reward was the poorest. Furthermore, there was a trend that
the performance of the agent became worse for training longer. We retrained the policy
for several times, we found that there was a probability that the learning session failed.
This was because during the learning session, the agent touched the block and pushed
it away from the the destination. Subsequently, the penalty was obtained. And thus the
agent “believed” in that pushing the box that would result in a penalty. Therefore, the
agent avoided moving the box completely. This case could be avoided if the block and
the agent could be generated properly. Thus, if the block and the agent were generated
properly in the training session for the case LV6, the reward curve was similar to the cases
for LV1 and LV11.

(a) (b)
Fig. 13. Rewards for block sizes; (a) The rewards for training the agent with different block sizes;
(b) The rewards for training the agent with block size as input.
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In condition DB, the block size was treated as an input of the neural network. We
trained the agent in the order of LV1, LV6, and L11. Fig. 13 (a) shows the reward curve.
The reward curve for LV1 is similar the curve for LV1 in condition DA. After the agent
was trained in LV1, we proceeded to train it in LV6 and LV11. As can be seen, the agent
could navigate and push the block properly in LV6 and LV11. Unfortunately, after the
learning session, the agent could not achieve what we expected when the block size was
set to LV1 and LV6. When the block size was changed, the agent confused to perform
actions properly. Therefore, we trained the agent in another condition DC. In DC, after
the agent was trained in the order of LV1, LV6, and LV11, it was trained in environments
with random box sizes (LV1, LV6, and LV11). Eventually the agent learned successfully
to manipulate the box with different sizes.

7. CONCLUSION

We implemented a system to learn policies to control agents to navigate and push a
box. We studied the effects of reward terms and highlighted the results. The results show
that the four reward terms are important. Furthermore, we investigated the performance
of the system and the agents for different settings, including the number of rays, obstacle
scale factors, and box sizes. The number of rays greatly affects how the agents perceive
the environment and makes correct decisions. If the box size is treated as an input to the
neural network, the learning session should be carefully designed so that the agents can
learn the pushing skill properly for boxes at obstacle corners. Our current result suggests
that we can train the agents to push boxes with a small scale factor to a large scale factor.
In the training session, the agents should be trained in environments in which the box
size is randomly generated. There are future avenues. Techniques can be developed to
intelligently overcome the collision avoidance problem when dealing with close obstacles
and floors with different friction coefficients. We would like to develop techniques for
effective object removal and helper modeling in crowd evacuation [27-29] and emotion-
based crowd behaviors [30]. We would like to extend our techniques in optimizing paths
for crowd simulation [31]. Also, human-like agents can perform stylized actions, e.g.,
manipulating objects in a good mood or in a bad mood, and moving in a sad, angry,
or happy manner. Finally, techniques with deep learning can be investigated to control
proactive and reactive agents in collaboration with users [32] in virtual reality. We thanked
the anonymous reviewers for their insightful comments. This project was supported by
the Ministry of Science and Technology, Taiwan under grant No. MOST 108-2221-E-
009-080 and MOST 109-2221-E-009-121-MY3.

APPENDIX

The reward weights are w1, w2, w3 and w4 which balance the reward terms. The
four terms are defined as follows. r f = −w3∆t. rc = 0 if there is no collision; otherwise
rc = −w4∆t. rd = 0 if collision occurs; otherwise rd = w1(dt−1− dt). Here, dt−1 and
dt are the distances between the target and the goal position at the previous and current



BOX-MANIPULATION ANIMATION USING DEEP REINFORCEMENT LEARNING 549

time-steps, respectively. Let ` j be the radius of the object field of target j. We have

ro =


0 if collision occurs
w2τ else if |φ t( j,g)| ≤ θα

w2τ|φ t−1( j,g)−φ t( j,g)| else if |φ(ht−1
j ,hg)| ≥ |φ(ht

j,hg)|
−w2τ|φ t−1( j,g)−φ t( j,g)| otherwise

where t is the current time; θα is a threshold; φ t−1( j,g) and φ t( j,g) are the signed angles
between the x-axis of the target and the goal orientation, respectively; ht−1

j is the x-axis

of the target; and τ = e
−λ1

(
‖dt ‖
λ2` j

)2

. λ1 and λ2 are parameters.
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23. T. Meriçli, M. Veloso, and H. L. Akın, “Push-manipulation of complex passive mo-
bile objects using experimentally acquired motion models,” Autonomous Robots,
Vol. 38, 2015, pp. 317-329.

24. S. Rodriguez, M. Morales, and N. M. Amato, “Multi-agent push behaviors for large
sets of passive objects,” in Proceedings of IEEE International Conference on Intelli-
gent Robots and Systems, 2016, pp. 4437-4442.

25. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint, 2017, arXiv: 1707.06347.

26. A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange,
“Unity: A general platform for intelligent agents,” arXiv preprint, 2018, arXiv:
1809.02627.

27. S.-K. Wong, Y.-S. Wang, P.-K. Tang, and T.-Y. Tsai, “Optimized evacuation route
based on crowd simulation,” Computational Visual Media, Vol. 3, 2017, pp. 243-261.

28. G.-W. Lin and S.-K. Wong, “Evacuation simulation with consideration of obstacle
removal and using game theory,” Physical Review E, Vol. 97, 2018, p. 062303.



BOX-MANIPULATION ANIMATION USING DEEP REINFORCEMENT LEARNING 551

29. J. Kwak, M. H. Lees, W. Cai, and M. E. Ong, “Modeling helping behavior in emer-
gency evacuations using volunteer’s dilemma game,” in Proceedings of International
Conference on Computational Science, 2020, pp. 513-523.

30. Y. Mao, Z. Li, Y. Li, and W. He, “Emotion-based diversity crowd behavior simulation
in public emergency,” The Visual Computer, Vol. 35, 2019, pp. 1725-1739.

31. S.-K. Wong, P.-K. Tang, F.-S. Li, Z.-M. Wang, and S.-T. Yu, “Guidance path schedul-
ing using particle swarm optimization in crowd simulation,” Computer Animation
and Virtual Worlds, Vol. 26, pp. 387-395.

32. K.-Y. Liu, M. Volonte, Y.-C. Hsu, S. V. Babu, and S.-K. Wong, “Interaction with
proactive and reactive agents in box manipulation tasks in virtual environments,”
Computer Animation and Virtual Worlds, Vol. 30, 2019, p. e1881.

Hsiang-Yu Yang was a master student in the Institute
of Computer Science and Engineering at National Yang Ming
Chiao Tung University, Hsinchu, Taiwan. His research interests
include reinforcement learning, machine learning, and computer
animation.

Chien-Chou Wong is a master student in the Institude
of Computer Science and Engineering at National Yang Ming
Chiao Tung University, Hsinchu, Taiwan. His research interests
include computer animation, machine learning, and crowd sim-
ulation.

Sai-Keung Wong received the M.Phil. and Ph.D. degrees
in Computer Science from the Hong Kong University of Sci-
ence and Technology in 1999 and 2005, respectively. Since Au-
gust 2020, he has been a Professor with the Department of
Computer Science and the Institute of Multimedia Engineering,
National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
His research interests include computer graphics, virtual reality,
and human-computer interaction. Dr. Wong received the Dis-
tinguished Mentor Award in 2011 and the Excellent Teaching
Award in 2014.


