
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 611-634 (2019)
DOI: 10.6688/JISE.201905_35(3).0008

611

Breaking Text-Based CAPTCHAs
using Average Vertical Partition

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

Institute of Software Engineering
Xidian University

Xi’an, Shaanxi, 710071 P.R. China
E-mail: {xyliu; hchgao}@xidian.edu.cn

CAPTCHA, which stands for Completely Automated Public Turing Test to Tell

Computers and Humans Apart, has been widely used as a security mechanism to defend
against automated registration, spam and malicious bot programs. There have been many
successful attacks on CAPTCHAs deployed by popular websites, e.g., Google, Yahoo!,
and Microsoft. However, most of these methods are ad hoc, and they have lost efficacy
with the evolution of CAPTCHA. In this paper, we propose a simple but effective attack
on text-based CAPTCHA that uses machine learning to solve the segmentation and
recognition problems simultaneously. The method first divides a CAPTCHA image into
average blocks and attempts to combine adjacent blocks to form individual characters. A
modified K-Nearest Neighbor (KNN) engine is used to recognize these combinations,
and using a Dynamic Programming (DP) graph search algorithm, the most likely combi-
nations are selected as the final result. We tested our attack on the popular CAPTCHAs
deployed by the top 20 Alexa ranked websites. The success rates range from 5.0% to
74.0%, illustrating the effectiveness and universality of our method. We also tested the
applicability of our method on three well-known CAPTCHA schemes. Our attack casts
serious doubt on the security of existing text-based CAPTCHAs; therefore, guidelines for
designing better text-based CAPTCHAs are discussed at the end of this paper.

Keywords: CAPTCHA, security, text-based, K-nearest neighbor, average vertical parti-
tion

1. INTRODUCTION

Since its inception, CAPTCHA (Completely Automated Public Turing Test to Tell
Computers and Humans Apart) has been widely used as a security mechanism to defend
against automated registration, spam and malicious bot programs [1, 2].

Text-based CAPTCHA is the most widely deployed CAPCHA scheme [3]. It gen-
erally asks users to recognize the English letters or Arabic numerals shown in the CAP-
TCHA image. Researchers usually attempt to attack text-based CAPTCHA to verify their
robustness.

Many successful attacks, such as those reported in [4-6], have emerged. However,
the main limitation is that they are neither generalizable nor robust in detecting slight
changes in the CAPTCHA. Previous work [7, 8] claimed that their generic methods can
solve a large family of text-based CAPTCHAs with distinguished design features. How-
ever, existing CAPTCHAs have been improved, and various resistance mechanisms,
such as noise arcs, complicated backgrounds and two-layer structures, have been adopted
to make them difficult to attack by early generic methods.

Received November 1, 2017; revised May 4, 2018; accepted October 10, 2018.
Communicated by Jing-Ming Guo.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

612

Moreover more websites randomly send CAPTCHAs with different design features
to users. Baidu’s user register mechanism (see Fig. 1). Therefore, it is clear that the crea-
tion of a generic attack method able to attack different text styles is needed.

 (a) (b) (c)
Fig. 1. Three styles of Baidu CAPTCHAs using: (a) Character isolation; (b) Picture reversal; (c)

Solid characters blended with hollow characters.

In this paper, we propose a simple but effective attack. It divides challenge images
into average width blocks along the vertical direction. A modified KNN engine then tests
different combinations of adjacent blocks to form individual characters. Finally, an effi-
cient graph search algorithm is used to find the most likely combination as the final
recognition result.

Our attack is effective on a wide range of text-based CAPTCHAs. We tested our
attack against real CAPTCHAs selected from the top 20 websites identified by Alexa [9]
in January 2015. Judged by the criteria commonly used as noted in [10, 11] our attack
successfully broke all these schemes. The lowest success rate that we achieved was 5.0%
on Google Street View, and the highest, at 74.0%, was on Google Maps. To verify its ap-
plicability, we also tested our attack on generally considered difficult versions of CAP-
TCHAs.

In contrast to the common practice of CAPTCHA analysis, our attack only includes
two main steps and handles CAPTCHAs in a unified approach, except for pre-processing.
Although appropriate pre-processing techniques were used for some complex CAP-
TCHAs, our attack is still simple, low-cost and powerful.

We believe that the high performance achieved by our attack has significant value.
On The one hand, our work gives suggestions to corresponding websites. On the other
hand, our attack does not indicate all the text-based CAPTCHAs are dead. Instead, our
work plays a key role in promoting the next generation of text-based CAPTCHAs.
Moreover, CAPTCHA designers can use our attack to test their new designs.

This paper is organized as follows. Section 2 introduces the real-world popular
CAPTCHAs we collected from the top 20 websites. We describe our attack in detail in
Section 3 and propose an approach to speed up the attack in section 4. Section 5 presents
the attack results. In section 6, we verify the applicability of our attack, compare it with
previous literature and discuss some defenses for resisting our attack. Section 7 discusses
the value of the paper and draws conclusions

2. TARGETED CAPTCHAS

To evaluate the effectiveness of our attack, we selected a wide range of real-world
CAPTCHAs with distinct design features. We chose to use the top 20 most popular web-
sites in terms of Alexa ranking. Some of the websites use more Than one scheme simul-
taneously. Meanwhile, some websites use the same CAPTCHA scheme. In total we col-
lected 13 CAPTCHA schemes with 17 styles, as summarized in Table 1.

BREAKING TEXT-BASED CAPTCHAS USING AVP 613

Real-world text-based CAPTCHAs exhibit extensive variations in their designs.
Based on font styles and positional relationships between adjacent characters, current
text-based CAPTCHAs can be classified into three categories: character isolated CAP-
TCHAs, hollow character CAPTCHAs and CCT CAPTCHAs. Our attack schemes cover
all these categories. Additionally, some schemes use noise arcs; some schemes use com-
plex background; and some schemes use dynamic characters. Fonts and the number of
characters used also vary across different schemes. Given that these schemes cover all
the design styles, it is reasonable to evaluate the effectiveness of our attack using these
schemes.

Table 1. Targeted CAPTCHA schemes.

Scheme Website Example image Characteristic

Baidu
baidu.com

hao123.com

CCT scheme, rotation
used, background confu-
sion, varied font size,
hollow and solid combi-
nation

Taobao taobao.com

CCT scheme, rotation
used, large alphabet set

Google

google, twitter,
youtube, linkedin,
twitter, wordpress,

blogspot,
google.co.in

Background confusion,
varied CAPTCHA length,
varied font size,
background confusion

Sina sina.com.cn

CCT scheme, hollow
scheme, noise interfer-
ence, varied font size

Weibo weibo.com
CCT scheme, rotation used

Amazon amazon.com
CCT scheme, rotation
used, constant font

QQ qq.cn
Background confusion,
rotation used, varied fonts

eBay ebay.com
Only digits used, rotation
used, varied fonts

Microsoft
live.com
bing.com

Hollow and solid combi-
nation, CCT scheme,
rotation used

Yahoo!
yahoo.com
yahoo.co.jp

Dynamic characters,
varied CAPTCHA length,
overlap used

Facebook facebook.com

Rotation used, varied
CAPTCHA length,
complex lines

Wikipedia wikipedia.org

Character isolated
scheme, varied CAP-
TCHA length, rotation
used

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

614

3. ATTACK DETAILS

Our attack uses machine learning to simultaneously solve the segmentation and
recognition problems. The key processes behind our attack are as follows.

We first divide a challenge image into different blocks in the vertical direction. This
partition is an average vertical partition (AVP) based on average character width. Then, a
modified version of KNN [12] is used as the recognition engine to test different combi-
nations of adjacent blocks to form individual characters based on its reputation as a top
performer in text recognition. For character recognition, the modified KNN engine
works by computing the similarity between corresponding pixels of the unknown image
(the image to be classified) and the known sample image (the image already classified).
To decrease the influence of background pixels, it distributes a larger weight for a
matched black pixel and a smaller weight for a matched white pixel but a negative
weight for a pixel that does not match. The KNN algorithm analyzes the K most similar
known sample images and then determines which character the unknown image is. The
sum of each pixel’s weight is returned as the confidence level of a recognition result. The
value of K, as a significant element of the KNN engine, can be found by cross-validation.
Finally, a graph search algorithm is used to find the most likely combination as the final
result.

Our attack includes two main steps: pre-processing, partition and recognition. Pre-
processing uses standard techniques to eliminate the noise of the CAPTCHA images.
During partition and recognition, the KNN engine and graph search algorithm are used
to test possible combinations and find the most likely one as the recognition result. Fig. 2
shows the pipeline of our attack.

Fig. 2. The pipeline of our attack.

3.1 Pre-processing

As presented in Table 1, most of the targeted schemes are relatively complicated.

Therefore, appropriate pre-processing is necessary in attacking CAPTCHAs. First, this
pre-processing binarizes the challenge images which convert the challenge image to
black and white. Second, it removes background patterns or eliminates other noise in the
image that could interfere with further extraction and recognition.

BREAKING TEXT-BASED CAPTCHAS USING AVP 615

One form of background interference is complicated backgrounds, where, as the
QQ scheme shows (see Fig. 3), characters are embedded in street view. Large differences
between background and foreground pixel HSV (Hue, Saturation and Value) values are
used to remove the background. Fig. 3 (b) illustrates the pre-processing result on a sam-
ple image.

As an alternative interference measure, noise arcs appear in many CAPTCHAs, in-
cluding Facebook and Sina CAPTCHAs. The noise arcs appearing in Facebook CAP-
TCHA can be easily removed by erosion and dilation (see Fig. 4). For Sina CAPTCHA,
analysis shows that the pixels of these noise arcs are the same color, and the pixels at the
intersections of character contours and noise arcs are also the same color (see Fig. 5).
Based on these characteristics, noise arcs and junction pixels can be easily found. Pixels
in noise arcs but not in the junctions are set to white.

(a) Original image. (b) After pre-processing.
Fig. 3. QQ CAPTCHA.

(a) Original image. (b) After pre-processing.
Fig. 4. Facebook CAPTCHA.

 (a) Original image. (b) Noise arcs and intersection pixels. (c) After preprocessing.
Fig. 5. Sina CAPTCHA.

For the Microsoft scheme, the two-layer image is separated into two single-layer
images. First, we use Color Filling Segmentation (CFS) [4] to convert hollow characters
to solid. Then, we detect the top pixels of the CAPTCHA image to generate an envelope
line and detect the bottom pixels to generate another envelope line. Finally, the border-
line of the upper layer and lower layer can be identified by examining these two enve-
lope lines, as Fig. 6 shows.

(a) Original image. (b) After CFS. (c) Borderline. (d) After preprocessing.

Fig. 6. Microsoft CAPTCHA.

(a) Original image. (b) After pre-processing.
Fig. 7. Yahoo! CAPTCHA.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

616

The Yahoo! scheme uses dynamic CAPTCHA with vertically moving foreground
characters and horizontally moving background characters. The background characters
are typically much thinner than the foreground characters; thus, the background charac-
ters can be easily removed by a double erosion and dilation (see Fig. 7) process.

3.2 Partition and Recognition

After pre-processing, we divide a binarized image into average blocks in the verti-

cal direction and attempt to find the most likely combination of adjacent blocks to form
individual characters and recognize the characters. In general, the number of blocks ex-
tends far beyond the number of characters to be formed, creating many possible combi-
nations. A modified KNN engine is used to test and recognize these combinations. With
an efficient graph search algorithm, we can find the most likely combinations as the final
result.

Due to page limits, the Taobao scheme is used to explain key techniques in this
process, with details of the Baidu and Sina attack schemes in the Appendix. The tech-
nical details are as follows:

Step 1: Average vertical partition (AVP) The AVP is a simple partition method to
divide a challenge image into different blocks. The widths of the first and the last block
are set equal to the smallest possible character width (see Fig. 8), which can reduce the
block numbers and reduce the attack time. The smallest possible character width can be
found by a statistical analysis of the widths of all individual characters in the training set.
The retained middle part is then divided into average blocks along the vertical direction
based on the average character width.

Fig. 8. Average vertically partition.

To discover a suitable width for average blocks, we defined the average character

width ωa, the average CAPTCHA string length la and the width of average blocks ωb for
each challenge: ωa = W/la, la = (lmax + lmin)/2 and ωb = ωa/p, where W denotes the effec-
tive width of the challenge, lmax and lmin denote the maximum and minimum CAPTCHA
string length, respectively, and p denotes the number of blocks into which a character will
be divided on average. If one scheme has a fixed CAPTCHA string length, the fixed length
is the average CAPTCHA length (e.g., Taobao, Baidu, and Sina).

The success rate increases nonlinearly with increasing p value, but the time con-
sumption rapidly increases. To find an appropriate p, we empirically tested different
values in experiments to create a balance. Typically, the value of p that we chose varies
across different schemes; it always ranges from 6 to 8. For example, 6 is chosen as the p
value for the Taobao scheme.

Note, it is difficult to display and explain the following search graph if we use p = 6
directly. The search graph and table are too large and complicated. Under the premise of

BREAKING TEXT-BASED CAPTCHAS USING AVP 617

1 2 3 4 5 6 7 8 9 10 11
1 E/0.67 E/0.77 E/0.76 E/0.64
2 f/0.60 6/0.59 Z/0.50 Z/0.49
3 S/0.67 S/0.68 V/0.55 V/0.57
4 S/0.59 V/0.55 V/0.56 U/0.60

9 10 11 12 13 14 15 16 17
5 U/0.55 U/0.57 J/0.61 V/0.49
6 J/0.74 J/0.74 J/0.60 P/0.61
7 J/0.65 J/0.60 n/0.61 P/0.64
8 P/0.57 n/0.59 W/0.59 N/0.60
9 n/0.66 h/0.55 d/0.60 d/0.62

10 n/0.54 m/0.60 d/0.59
11 V/0.64 f/0.60
12 d/0.67
13
14 H/0.74
15 H/0.81
16 H/0.58
17 Y/0.56

not affecting the attack results, we set p = 4 in the Taobao example. Thus, we can present
our tables and figures on one page and illustrate our attack more clearly. In a real attack
of the Taobao scheme, p = 6 is used. We applied the same process for the examples in
Baidu and Sina (see the Appendix).

Once the width of the average blocks ωb is obtained, the retained middle sections
(AVP part) are divided into blocks with width ωb, as Fig. 8 shows. All blocks in a chal-
lenge are numbered from left to right. There are 17 blocks for the example shown in Fig.
8. Note that with differing effective challenge image lengths and the value of p chosen,
the total number of blocks for each challenge will be different.

Step 2: Combination and recognition. In this step, we test different combinations of
adjacent blocks to form and recognize individual characters.

To record the recognition results, an n n table is built for each image, where n is
the total number of blocks. If combining blocks i, i + 1, ..., j together is feasible to form a
single character, KNN is used to determine which character such a combination is likely
to be, and the cell (i, j) at the intersection of row i and column j in the table will be filled
with the recognition result returned by the KNN engine. Otherwise, the cell (i, j) will be
set to NULL if the combination is unfeasible. This occurs in one of the following two
scenarios: 1) when its row index i is larger than its column index j and 2) when the width
of the combination is greater than the largest possible character width or less than the
smallest possible character width. The largest possible character width and the smallest
possible character width can be easily received by a simple analysis of the training set,
and the value of K, as a significant element of KNN, can be found by cross-validation.

Table 2 shows the nn table for the Taobao sample, in which cell (1, 3) indicates
that KNN recognizes the combination of blocks 1 to 3 as ‘E’ with a confidence level of
0.76. Cells highlighted in the table are the combinations that we aim to detect finally.
This process will be illustrated in detail in step 3.

Table 2. nn table for Taobao scheme.

Step 3: Find optimal combination In this step, we converted the n n table into an
equivalent graph, and a graph search algorithm is used to find an optimal combination as
the final result.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

618

Create equivalent graph If cell (i, j) in the n n table is not NULL, it will be repre-
sented as an edge from node i to node j + 1 in the equivalent graph. According to the
principle, we build the equivalent graph of Table 2, as shown in Fig. 9. This means that
both cell (1, 3) in Table 2 and the edge from node 1 to node 4 in Fig. 9 indicate that the
KNN engine recognizes the combination of blocks 1 to 3 as ‘E’ with a confidence level
of 0.76.

Fig. 9. The equivalent graph of Table 2.

In Section 4, we propose an approach to improve the efficiency of our attack. Those
edges and nodes marked with dotted lines in Fig. 9 will be removed because such recog-
nition results are useless for our purpose in most cases; this will be explained in detail
later.

Search the equivalent graph Now, the problem of finding an optimal combination is
converted into a problem of finding a path ending at node n + 1 with the largest average
confidence level, and its step (the number of edges on the corresponding path) is equal to
the CAPTCHA string length (the number of characters in the challenge). Note that our
algorithm manages to find a path with the largest average confidence level but not the
largest confidence level sum, which means that it works on not only CAPTCHAs with a
fixed string length but also CAPTCHAs with varying string lengths.

We propose a dynamic programming (DP) graph search algorithm. The overlapping
sub-problem for DP is for each node j and for each step number (the number of edges)
required, the average confidence level along the path ending at node j with this step
number should be the largest. The algorithm examines all paths for each node j, and where
there may be several possible paths with different step numbers for one node, each case
should be recorded. We use a bottom-up approach to find the sub-problem’s solution.

The following pseudocode illustrates our process. The traversal starts from node 1
and ends at node n + 1, with R being final recognition result. path stores a possible path
in the equivalent graph, and we define three parameters for it: value, result, and step.
value stores the confidence level sum of the possible path, result stores the correspond-
ing result string, and step stores step number of the possible path (the number of edges
on the corresponding path or the number of currently recognized characters). newPath is
a path whose value is 0, the result is NULL, and the step is 0. An array pathList stores
the paths found by our algorithm for each node. Each element is a list of paths. Pathj is a
temporary variable; it is also a list of path, which is used to store the paths for one node
casually. prej is a list that stores all the precursors of node j. con[i; j] is the confidence

BREAKING TEXT-BASED CAPTCHAS USING AVP 619

level calculated by KNN for the combination formed by combining blocks from i to j,
and char[i; j] is its corresponding recognition result. averageValue represents the aver-
age confidence level.

Procedure Main()
 Begin
 RNIL
 for j 1 to N + 1
 pathList[j] null
 GetValue(j, pathList)
 Select(n + 1, pathList, R)
End

Procedure GetValue(j, pathList)
 Begin
 path j null
 if j = 1
 newPath.step 0
 newPath.value 0
 newPath.result null
 Add(path j, newPath)
 else
 for each i in pre j
 for each path in pathList[i]
 n 1
 if ExistStep(path j, path.step + 1, n)
 if path.value + con[i; j] > path j[n].value
 path j[n].value path.value + con[i; j]
 path j[n].result path.result + char[i; j]
 else
 newPath.step path.step + 1
 newPath.value path.value + con[i; j]
 newPath.result path.result + char[i; j]
 Add(path j, newPath)
 pathList[j] path j
 End

Procedure ExistStep(path j, step, num)
Begin
for i 1 to path j.length

if path.step in Captcha length
if path j[i].step = step

num i
return true

return false
End

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

620

Procedure Select(num, pathList, R)
Begin
averageValue 0
for each path in pathList[num]

if path.step in Captcha length
if path.value/path.step > averageValue

averageValue path:value/path:step
R path:result

End

Table 3 shows the procedure of finding the optimal partition with our DP algorithm

for the example in Fig. 8. DP simplifies the search process by recording the largest con-
fidence sum of each node and each reachable step number. The path marked with red in
Fig. 9 is the final path that our algorithm detected, and the italic item highlighted in Ta-
ble 3 indicates the optimal combination that has the largest average confidence level.
Specifically, “ESnH” is the recognition result in this case.

With this early version of our attack method, we achieved a success rate of 24.2%
on the Taobao scheme, and its average attack speed was 4.89 seconds. The attack speed
increases with the effective width of a CAPTCHA image since AVP will produce nu-
merous blocks. Thus, there will be a large number of possible combinations, and then,
the increased number of times that we call the KNN engine will decrease the attack
speed. The lowest average attack speed was on the Facebook scheme, approximately 28
seconds. However, this is acceptable because the requirement of usability in CAPTCHA
design is to demand that each human user solve a CAPTCHA within 30 seconds. How-
ever, we still propose an approach in Section 4 to speed up our attack and improve the
performance of our method.

Table 3. The search process for Taobao CAPTCHA.
j step Path value result
2 1 1→2 0.67 E
3 1 1→3 0.77 E
4 1 1→4 0.76 E
5 1 1→5 0.64 E
7 2 1→2→7 1.27 Ef
8 2 1→3→8 1.44 ES
9 2 1→3→9 1.45 ES

10 2 1→3→10 1.32 EV
11 2 1→3→11 1.34 EV
12 2 1→4→12 1.36 EU
12 3 1→2→7→12 1.87 EfJ
13 2 1→5→13 1.13 EV
13 3 1→3→8→13 2.01 ESP
14 3 1→3→9→14 2.11 ESn
15 3 1→3→8→15 2.03 ESW
16 3 1→3→9→16 2.05 ESd
17 3 1→3→9→17 2.07 ESd
17 4 1→2→7→12→17 2.54 EfJd
18 4 1→3→9→14→18 2.85 ESnH

BREAKING TEXT-BASED CAPTCHAS USING AVP 621

4. SPEED UP

In this section, we propose an approach that makes our attack faster at the expense
of success rate. Note that the approach proposed in this section applies equally well to all
CAPTCHA schemes. Therefore, it has no influence on the generality of our attack.

A simple time cost analysis shows that a significant percentage of the attack time is
spent on calling the KNN engine in our attack because each scaled combination image
must be compared with known sample images in the training set. Thus, we propose some
methods to reduce the use of the KNN engine.

During cross-validation, we test our KNN engine with different values of K and
then find a K with the largest recognition rate. We choose the smallest confidence level
of the correct recognition results as a threshold from cross-validation. If the confidence
level of one combination is smaller than this threshold, we consider the corresponding
recognition result to be incorrect or that such a combination is unreasonable. We can
remove those combinations from the graph to reduce the search space; however, a far
better approach would be to not use KNN to recognize them any more if we can predict
that their confidence levels are very small. To our surprise, we indeed found some ap-
proaches to achieve this.

After an exhaustive analysis of the data presented in Table 2, we find that within the
width range, combining with block i, the confidence level varied depending on the num-
ber of combined blocks. If the combinations with a higher confidence level than the
threshold that we detected have appeared, then a combination with a smaller confidence
level than this threshold appears, and almost all later possible combinations have a con-
fidence level that is smaller than the threshold. Thus, the confidence level that was
smaller than the threshold first appeared to be chosen as a sign of stopping the later
combination process. Once it appeared, we no longer continue to use KNN to attempt
later combinations, even though these combinations’ widths seem to be feasible for for-
ng individual characters. In addition, for each start block i, the three components with the
three largest confidence levels are always concentrated, and this centrostigma is most
likely the break point between characters. The final optimal combination chosen by our
algorithm also proves this. Therefore, we do not need to use each block as the start block
to combine with later blocks to form a possible component. Instead, for the current start
block, we discover the three components with the three largest confidence levels and
mark their next block as the start block for the next combination process.

Based on the above analysis, we propose a dynamic combination method. This
method examines the process of combination and recognition and generates a new nn
table. The details are as follows:

1. Initialize an empty queue to store blocks that can be a start block and initially add

block 1 to the queue.
2. Take out a start block i, use the KNN engine to attempt combinations that start from it

until the stopping condition is satisfied. The stopping condition is when a combination
with a higher confidence level than the threshold is found and when a combination
with a smaller confidence level than this threshold first appears.

3. For the current start block i, find three components with the three highest confidence
levels and examine the next block for each of them to determine whether it has been
added to the queue of the start blocks. If not, add it to the queue.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

622

1 2 3 4 5 6 7 8 9 10 11
1 E/0.67 E/0.77 E/0.76 E/0.64
2 f/0.60 6/0.59 Z/0.50
3 S/0.67 S/0.68 V/0.55 V/0.57
4 S/0.59 V/0.55 V/0.56 U/0.60

9 10 11 12 13 14 15 16 17
5 U/0.55 U/0.57 J/0.61 V/0.49
6
7 J/0.65 J/0.60 n/0.61 P/0.64
8 P/0.57 n/0.59 W/0.59 N/0.60
9 n/0.66 h/0.55 d/0.60 d/0.62

10
11 V/0.64 f/0.60
12 d/0.67
13
14 H/0.74
15 H/0.81
16 H/0.58
17 Y/0.56

Fig. 10. The equivalent graph of Table 4.

4. Repeat steps 2 and 3 until the queue is empty.
5. Remove all the components whose confidence level is smaller than the threshold.

The threshold for the Taobao scheme is 0.50. Table 4 shows the final n n table ob-

tained by our new dynamic combination method, where only the components useful for
finding the optimal partition are retained. Fig. 10 shows the equivalent graph of Table 4.
The edges and nodes marked with dotted lines in Fig. 9 are removed because the dy-
namic combination method did not test these useless combinations further or because
such a combination is incorrect; the usage of the KNN engine decreases noticeably. For
the Taobao scheme, when the dynamic combination method was used, we achieved a
final success rate of 24.6%, with an average attack speed of 3.43 seconds. The success
rate is slightly higher than previously found in this case, and the improvement in speed is
obvious.

The approach speeds up the attack which forecasts all the components that seem to
have relatively small confidence levels. It also removes the components that have been
recognized but seem to be incorrect or unreasonable. Compared with the original attack,
our speed-up method will lead to varying success rates (see Section 5), and it is difficult
to confirm that the success rate of a scheme will increase or decrease. However, this var-
iability is trivial. What is more important is that the improvement in our speed is huge.

Table 4. The final nn table for Taobao scheme received by using dynamic combination.

BREAKING TEXT-BASED CAPTCHAS USING AVP 623

5. RESULTS

We tested our attack on all schemes in Table 1. For each scheme, we collected 500
random CAPTCHAs as the sample sets (used for extracting character samples) and an-
other 500 as test sets from the corresponding websites. All these challenge images were
collected in January 2015.

We ran both our early attack (without using the dynamic combination method) and
the improved attack (using the dynamic combination method) on the test set, where our
program had no prior knowledge about any particular sample within. The success rate
and average attack speed for each scheme are shown in Table 5.

Table 5. Attack results.

Scheme

 Without using dynamic Using dynamic
 combination method combination method
Success rate Speed(s) Success rate Speed(s)

Baidu 54.2% 10.47 52.0% 6.28
Taobao 24.2% 4.89 24.6% 3.43

Google Street View 5.0% 3.77 5.0% 2.10
Google Map 74.0% 5.04 74.0% 3.67

Sina 37.6% 15.00 35.6% 8.53
Weibo 31.8% 8.25 32.6% 4.02

Amazon 51.6% 20.72 49.2% 7.47
QQ 46.4% 10.62 43.0% 5.57

eBay 47.2% 11.62 45.6% 5.48
Microsoft 15.2% 19.66 14.2% 6.12
Yahoo! 20.4% 21.16 20.0% 12.58

Facebook 12.4% 28.06 13.0% 16.56
Wikipedia 37.4% 10.99 36.6% 5.37

Success rate The 1500 selected character samples that we extracted from sample sets
were normalized to 2828 pixels as the training sets for the KNN engine. This meant that
not all the CAPTCHA images in the sample sets are used to extract character samples.
The number of CAPTCHA images in the sample sets that we used varies between
CAPTCHA schemes. However, we ensured that we used 1500 character samples for
each scheme.

The success rates of our final attack range from 5.0% to 74.0%. Our attack can
break most schemes with a success rate of greater than 13% except for Google Street
View (5.0%). A commonly accepted goal for CAPTCHA robustness is to prevent auto-
mated attacks from achieving greater than a 0.01% success rate [10]. However, this goal
was considered too ambitious by some researchers. For example, [11] suggested that a
CAPTCHA scheme is broken if an automated attack achieves a success rate of 1%. Ac-
cording to either criterion, our attack has broken all the CAPTCHAs deployed by the top
20 websites.

Our success rates for breaking the Google Street View scheme, Microsoft scheme and
Facebook scheme are relatively low, and we attempted to determine possible reasons for this.

The Google Street View scheme uses street view pictures with digits and characters,
and our attack achieved the lowest success rate on it. Although the QQ scheme also uses

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

624

street views as background, they are essentially different. Obvious differences between
the foreground and background in the QQ scheme can be used to easily find and erase
the background. However, the foreground characters of the Google Street View scheme
are part of Google Street View (see Table 1). It is difficult to precisely detect where the
characters are, and thus, it is difficult to completely remove the background for each
challenge. All these factors affected the success rate.

Microsoft’s CAPTCHA, a two-layer structure that uses both solid and hollow char-
acters, is a relatively complicated scheme. For this scheme, pre-processing played an
important role in our attack. It is clear that the failure of filling the hollow characters by
CFS and separating the upper and lower layers will influence our success rate. Moreover,
the characters in the Microsoft challenge images are rotated by different angles. This is a
defense against our attack (see Section 6).

For the Facebook CAPTCHA, erosion and dilation were used to remove its inten-
sive noise arcs. However, the foreground characters are also seriously damaged during
this process and will further affect the recognition accuracy of individual characters and
the success rate.

Average attack speed We implemented our attack in C# and tested all the target
schemes on a desktop computer with a 3.3GHz Intel Core i3 CPU and 2 GB of RAM.

The time required by our final attack ranged from 2.10 seconds to 16.56 seconds.

The Yahoo! and Facebook schemes took longer (12.58 seconds and 16.56 seconds, re-
spectively). The following explains why it takes more time to attack these two schemes.
First, both Yahoo! and Facebook have a wider range of individual character widths,
leading to the production of a larger number of possible combinations. Additionally, they
use a relatively larger value of p (7 is chosen for the Yahoo! Scheme, and 8 is chosen for
the Facebook scheme), which increases block production. The increased KNN engine
use and the enlargement of the search space of the equivalent graph result in increased
attack time. Additionally, the longer CAPTCHA string lengths of Yahoo! and Facebook
also have a similar influence on the speed.

Comparison The success rates of the schemes using the dynamic combination method
decreased slightly (no more than 3.4%) than before (e.g., Baidu, Sina, Amazon, QQ,
eBay, Microsoft, Yahoo! and Wikipedia), which is trivial. However, the time consump-
tion is greatly reduced (49% decrease on average). More importantly, the success rates of
some other schemes increased (e.g., Taobao, Weibo and Facebook).

As illustrated in Section 4, the variations in success rates cannot be avoided. Rela-
tive to the negligible decrease in success rates under some schemes, the significant im-
provement in speed is quite important. Therefore, our speed-up method still has a posi-
tive effect on the attack performance.

6. DISCUSSION

6.1 Redundant Nodes Removal

Obviously, some nodes in the equivalent graph are redundant (e.g., nodes 5, 10 and

13) and will never be on the targeted path (see Fig. 10). To reduce the complexity of the

BREAKING TEXT-BASED CAPTCHAS USING AVP 625

graph search and save time, we can remove them with a simple algorithm.
For each node i, we compute the shortest path from node 1 to node i and the shortest

path from node i to node n+1. If the sum of the steps of these two shortest paths is larger
than the largest possible CAPTCHA string length, node i is considered redundant and
will be removed, as well as the edges connected to it. Fig. 11 shows the equivalent graph
after removing redundant nodes (e.g., nodes 5, 10 and 13) and their connected edges.

Fig. 11. The equivalent graph after removing redundant nodes.

However, the time required for graph searching only represents a small proportion
on the total attack time, whereas a greater proportion of time is spent using the KNN
engine. Although removing these redundant nodes can save some time, this reduction is
less than 0.1 seconds on average. It demonstrates that this step does not add value. We
did not implement it in our final attack.

6.2 Effects of Pre-processing

Pre-processing techniques were used to remove background, noise arcs and other

aspects in certain complicated schemes. To investigate how pre-processing effects our
attack results, we take the QQ and Sina schemes as representatives of CAPTCHAs. In-
stead of removing their background or noise arcs, we simply binarize them during
pre-processing. The later segmentation and recognition process is similar to that in Sec-
tion 3. The difference is a noise class added to cover segmented blocks that only contain
background or noise arcs.

Without special pre-processing techniques, our attack achieves success rates of
5.0% and 12.5% on the QQ and Sina schemes, respectively, which are much lower than
those achieved by previous attacks (46.4% on QQ and 37.6% on Sina). This indicates
preprocessing contributes significantly to our performance. Existing CAPTCHAs are
significantly more sophisticated than previous schemes; therefore, we believe appropri-
ate preprocessing techniques are necessary. However, our attack still successfully broke
these two CAPTCHA schemes according to the commonly used criteria [10, 11] even
without removing background or noise arcs.

6.3 Applicability

To verify the simplicity and effectiveness of our attack method, we tested it on oth-

erCAPTCHAs.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

626

The first case is the Yandex scheme (see Fig. 12 (a)). It is used by the Russian
search engine Yandex in its user password recovery mechanism. This is a hollow CAP-
TCHA, blending thick intersecting interference arcs and broken contours. Previous work
[13] proposed a general method to break hollow CAPTCHAs, but both broken contours
and thick interference are actually the main defense methods recommended in [13] to
defeat their attack.

Another scheme is the difficult Yahoo! scheme (see Fig. 12 (b)). The Yahoo! ver-
sion that we broke in the previous section is a new, dynamic version that was rolled out
by Yahoo! in January 2015. [7] considered the difficult Yahoo! scheme as the most dif-
ficult, and they achieved the lowest success rate on it using their attack method.

We also tested our method’s applicability to an old version of reCAPTCHA (see
Fig. 12 (c)). Characters in this version of reCAPTCHA are heavily rotated and closely
connect. This strong defense method defeats attacks and will be illustrated in detail in a
later section. In CCS’11, [11] reported that the Stanford team achieved a zero success
rate on this version.

 (a) Yandex CAPTCHA. (b) Hard Yahoo! CAPTCHA. (c) Early reCAPTCHA.

Fig. 12. Three generally considered difficult CAPTCHAs.

In contrast, our attack achieves a success rate of 9.0% on the Yandex scheme, 8.0%
on the difficult Yahoo! scheme and 2.6% on reCAPTCHA. The average attack speed is
8.45, 11.56 and 14.4 seconds, respectively.

According to the criteria proposed in [11], the results indicated that we have suc-
cessfully broken all three difficult schemes. We broke the Yandex scheme without re-
moving its interference arcs or repairing the broken contours. For the difficult Yahoo!
scheme, our attack achieved a success rate of 8%, which is significantly better than the
result reported in [7] (5.33%). Our success rate in attacking the old version of reCAP-
TCHA is significantly lower than that of a recent work by Google [14]. However, for our
attack, we only used 300 training samples (including 1500 extracted character images)
compared with the millions of training samples used by Google. Additionally, Google’s
approach requires sophisticated deep-learning algorithms, tens of millions of training
images, an advanced distributed computing infrastructure, and computers with powerful
CPUs and huge memory resources. Our attack is simple and does not have special hard-
ware requirements. It is designed to work on standard computers.

6.4 Comparing with Prior Work

Since Moni Naor [15] first proposed the concept of automated Turing tests, many

scholars have focused on proposing valid automated Turing tests and methods for
breaking them.

Many innovations and notable attack methods have been proposed. Jeff Yan and El
Ahmad [4-6] proposed methods, including histogram analysis, vertical segmentation
algorithms, and CFS, to extract individual characters. These methods often serve as a
part of a successful attack, but when used alone, only occasionally do they constitute a

BREAKING TEXT-BASED CAPTCHAS USING AVP 627

successful attack. Other ad hoc attacks also include [16-20], among which [16-18] re-
ported various attacks on early versions of reCAPTCHA, and [16, 19] presented attacks
against Microsoft’s CAPTCHA.

Gao et al. [14] reported an attack on a family of hollow CAPTCHAs at CCS’13.
This is the first research on solving CAPTCHAs in a single step. However, this method
only works on hollow CAPTCHAs because it utilizes the characteristics of hollow fonts
to extract character strokes, whereas our attack works on almost all CAPTCHAs. Be-
cause increasingly more websites use CAPTCHAs with different styles and design fea-
tures, there is an opportunity to create a simple and generic attack method to solve dif-
ferent text styles.

Bursztein et al. [11] proposed a CAPTCHA breaker, Decaptcha, which is claimed
to be a generic attack. It uses a five-stage pipeline: preprocessing, segmentation, post-
segmentation, recognition, and post-preprocessing. For each stage, various techniques
are used for different CAPTCHAs. However, our attack only requires two main steps.
Aside from special techniques used for some complicated CAPTCHA schemes to re-
move background and noise arcs or obtain foreground characters in pre-processing, all
these schemes are processed in the same manner during the partition and recognition
procedure. From Table 1, we find that multiple pre-processing techniques for different
CAPTCHAs are necessary with increasing CAPTCHA complexity. Undoubtedly, our
attack is simpler and more general than Decaptcha. Additionally, we tested our attacks
on early reCAPTCHA, eBay and Wikipedia schemes, which they reported as well.
Decaptcha failed to break the early reCAPTCHA, whereas our attack was able to break it.
Our attack also achieves a success rate of 45.6% on eBay CAPTCHA and 36.6% on
Wikipedia CAPTCHA, being better than the results (43% on eBay CAPTCHA and 25%
on Wikipedia CAPTCHA) reported in [11]. We used fewer than 300 CAPTCHAs (1500
character samples) as training sets for the KNN engine, whereas they used 500 CAP-
TCHAs. The line chart illustrated in [11] indicated that enlarging the training set would
increase the success rate. Previous work [7] proposed another generic attack that in-
cludes four components: cut-point detector, slicer, scorer and arbiter. The cut-point de-
tector finds all possible cuts by examining the second derivative of the curve generated
by following the top pixels of the CAPTCHA and the curve generated by following the
bottom pixels of the CAPTCHA.

Each cut is constructed by connecting the inflection points one from the top and one
from the bottom. Next, the slicer applies heuristics to extract the meaningful potential
segments based on the cut points. A large number of segments are generated in this step;
thus, their computation time in their early version of the algorithm is huge (a 12-letter-
long CAPTCHA took up to 9 hours to compute). Optimizations were proposed to make
their algorithm run faster but at the expense of accuracy. These optimizations included
reducing the number of cuts by removing all the cuts that have an angle of greater than
30 degrees as well as the cut lines that pass through too many black pixels, therein per-
forming local decision recognition rather than looking at the entire CAPTCHA. Then,
the scorer performs OCR on segments and assigns a recognition confidence score to each
of them, and the arbiter processes the scores and determines which letters have the high-
est probability.

It is obvious that their attack is significantly more complex than our attack. Alt-
hough they have taken measures to reduce the number of segments, their segment num-
ber is still significantly higher than our segment number. Although we also propose an

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

628

approach to increase the attack speed, our method is still simpler than their method.
More importantly, we do not rely on any human intervention, as in their method.

At NDSS’16, Gao et al. [8] proposed a simple generic attack based on Gabor filters.
The novelty of their method was utilizing Gabor filters to first extract character compo-
nents along four different directions. Their method seems to be effective on the schemes
presented in their paper, but when we tested it on CAPTCHAs with complicated back-
ground, it always introduced extra noise components. In addition, currently deployed
text-based CAPTCHAs have various defense mechanisms, some of which being ex-
tremely new, e.g., two-layer structures, backgrounds of natural scenes, and dynamic cha-
racters, as shown in Table 1. These CAPTCHAs are significantly more complicated than
prior CAPTCHAs; thus, the applicability of their emphasized method is suspect. In con-
trast, our attack overcame not only some of the most promising defenses but also these
new defense mechanisms; certainly, our attack has greater applicability.

Recent attacks on text-based CAPTCHAs are typically based on deep learning tech-
niques. Previous work [21] introduced a Captcha-breaking network combining convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs). However, they
only tested two real-world CAPTCHA schemes (Facebook and Wikipedia), whereas our
work has utilized a more comprehensive analysis that includes 13 CAPTCHA schemes.
Tang et al. [22] proposed a CNN-based method that successfully broke 14 text-based
CAPTCHAs and three Chinese CAPTCHAs. However, an important characteristic of
these deep-learning-based attacks is the large amount of training data, and advanced
hardware (e.g., GPUs) is necessary. Our attacks need less training data and can be run on
a standard desktop computer.

Reference [23] proposed a network named Recursive Cortical Network (RCN) to
break text CAPTCHAs and successfully broke four schemes, with success rates varying
from 57.1% to 66.6%. This is an important work that is based on deep learning that only
requires a few clean individual characters to train the network. However, some parame-
ters must be manually tuned to prepare these characters. Most importantly, their attack
time is 94 seconds, which is extremely slow.

6.5 Defense

Clearly, some countermeasures may circumvent our attack to an extent by mitigat-

ing segmentation and recognition. Considering these two perspectives, we derived the
following core set of design principles that CAPTCHA designers need to follow to create
schemes resilient to state-of-the-art attackers or mitigate our attack.

Rotation Our attack aims to find the separation lines between characters, and these
separation lines are vertical. By rotating the characters, the vertical separation lines will
no longer be able to be used to separate adjacent characters completely, as the old re-
CAPTCHA example shows in Fig. 12 (c). To evaluate the effectiveness of rotation as a
defense, the old reCAPTCHA is chosen for an experiment. We calculated the rotation
angles of the challenge images, and then rotated and straightened the characters (see Fig.
13). The success rate achieved by our attack on the rotated test set is 20.8% vs. 2.6% on
the original set. This indicates that rotating does have a positive effect in enhancing se-
curity.

BREAKING TEXT-BASED CAPTCHAS USING AVP 629

 (a) (b) (c)

Fig. 13. Rotating defense on old reCAPTCHA: (a) Separation lines of an old reCAPTCHA exam-
ple; (b) Find rotation angel; (c) Rotated image.

Overlapping Overlapping removes space between characters and makes them more
complex; it is considered to be by far the most secure anti-segmentation technique [11].
Because of the strong overlap by the characters in eBay CAPTCHAs (Fig. 14), we chose
these CAPTCHAs as a case study to evaluate the effectiveness of overlapping. A total of
200 CAPTCHAs with overlapped characters are chosen manually as the test set. The
new success rate is 23.0%, which is significantly lower than the total success rate
(45.6%). Undoubtedly, overlapping can reduce the attack success rate.

(a) Example with overlapped characters. (b) Example without overlapped characters.
Fig. 14. Examples of eBay CAPTCHA.

Increasing the alphabet size To verify the influence of alphabet size on the success
rate, we chose the eBay and Taobao schemes for comparison. The two schemes have the
following in common: no noise arcs or background confusion, and they use rotation and
CCT to defend against attacks. Only digits are used in the eBay scheme, and the alphabet
size is 10, whereas Taobao uses both digits and letters and uses an alphabet size of 42.
The attack success rate of the eBay scheme is 45.6%, whereas Taobao’s success rate is
only 24.6%, significantly lower than that of eBay’s scheme. This indicates that increas-
ing the alphabet size has a positive effect on resisting our attack.

Increasing the effective length of the CAPTCHA image Using a relatively large
effective image increases the resistance to attack. The larger the effective length of the
utilized image, the more blocks that are retained after AVP, and the larger the solution
space will be. This will decrease the attack success rate and speed.

Enlarging the width range of individual characters This process contributes to se-
curity because the larger the width difference between the thinnest and widest characters,
the more possible combinations that will be produced and the more time that the KNN
engine requires to recognize them.

Using varying CAPTCHA string lengths When varying CAPTCHA lengths are used,
attackers must test different string lengths increases the search space of our graph search
algorithm, resulting in a longer selection time for the final partition.

The introduction of complex interference arcs and using two-layer structures and
dynamic characters are also defense alternatives that are effective in resisting our attack
because they increase the difficulty of pre-processing.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

630

7. CONCLUSION

This paper introduces a simple and generic method to attack CAPTCHAs that uses
machine learning to solve the segmentation and recognition problems simultaneously.
Our attack includes two key components. The pre-processing component uses image
processing techniques to remove additions. The partition and recognition component
divides challenge images into average blocks along the vertical; then, it uses a modified
KNN engine and an efficient graph search algorithm to test different combinations of
adjacent blocks to form individual characters and find the most likely combinations as
our recognition result.

To speed up the attack process, we also proposed an approach to make our algo-
rithm run faster for a trivial decrease in success rate. Our attack has successfully broken
all of the utilized CAPTCHAs, and most attacks showed a high success rate and a high
attack speed. In contrast to typical CAPTCHA analysis methods, the attack presented in
this paper is simple, low cost and powerful. A full defense against our attack is discussed
in the last section of this paper. We expect our work to inspire more novel attacks and
defenses as well as innovative designs in this interesting interdisciplinary area.

In summary, this work contributes to a comprehensive understanding of existing text-
based CAPTCHAs. What is the next step for text-based CAPTCHAs? Are there CAP-
TCHA alternatives with better security? These are interesting but challenging problems,
and we share them with all research communities.

ACKNOWLEDGMENT

The authors thank the reviewers for their careful reading of this paper and for their
helpful and constructive comments. This project is supported by the National Natural
Science Foundation of China (61472311).

REFERENCES

1. L. von Ahn, M. Blum, and J. Langford, “Telling humans and computers apart auto-
matically,” Communications of the ACM, Vol. 47, 2004, pp. 56-60.

2. L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard AI
problems for security,” in Proceedings of International Conference on Theory and
Applications of Cryptographic Techniques, 2003, pp. 294-311.

3. J. Yan and A. S. El Ahmad, “Usability of captchas or usability issues in captcha de-
sign,” in Proceedings of the 4th ACM Symposium on Usable Privacy and Security,
2008, pp. 44-52.

4. J. Yan and A. S. El Ahmad, “A low-cost attack on a Microsoft captcha,” in Pro-
ceedings of the 15th ACM Conference on Computer and Communications Security,
2008, pp. 543-554.

5. A. S. El Ahmad, J. Yan, and M. Tayara, The Robustness of Google CAPTCHA’s,
Computing Science, Newcastle University, 2011.

6. J. Yan and A. S. El Ahmad, “Breaking visual captchas with naive pattern recogni-
tion algorithms,” in Proceedings of the 23rd Annual IEEE Computer Security Ap-

BREAKING TEXT-BASED CAPTCHAS USING AVP 631

plications Conference, 2007, pp. 279-291.
7. E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell, “The end is nigh: Generic

solving of text-based captchas.” in Proceedings of Usenix Workshop on Offensive
Technology, 2014, pp. 1-15.

8. H. Gao, J. Yan, F. Cao, Z. Zhang, L. Lei, M. Tang, P. Zhang, X. Zhou, X. Wang,
and J. Li, “A simple generic attack on text captchas,” in Proceedings of Network and
Distributed System Security Symposium, 2016.

9. “Alexa top 500 global sites,” Alexa Internet, 2015.
10. K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski, “Building segmentation

based human-friendly human interaction proofs (hips),” Human Interactive Proofs,
Springer, 2005, pp. 1-26.

11. E. Bursztein, M. Martin, and J. Mitchell, “Text-based captcha strengths and weak-
nesses,” in Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, 2011, pp. 125-138.

12. B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-
niques, IEEE Computer Society Press, Los Alamitos, CA, 1991.

13. H. Gao, W. Wang, J. Qi, X. Wang, X. Liu, and J. Yan, “The robustness of hollow
captchas,” in Proceedings of ACM SIGSAC Conference on Computer and Commu-
nications Security, 2013, pp. 1075-1086.

14. I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit number
recognition from street view imagery using deep convolutional neural networks,”
arXiv preprint arXiv:1312.6082, 2013.

15. M. Naor, “Verification of a human in the loop or identification via the turing test,”
http://www.wisdom.weizmann.ac.il/˜naor/PAPERS/humanabs.html, 1996.

16. C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga, V. Alarcon-Aquino, and L. Reyes-
Cabrera, “Breaking recaptchas with unpredictable collapse: heuristic character seg-
mentation and recognition,” in Proceedings of Mexican Conference on Pattern Re-
cognition, 2012, pp. 155-165.

17. P. Baecher, N. Büscher, M. Fischlin, and B. Milde, “Breaking recaptcha: A holistic
approach via shape recognition,” in Future Challenges in Security and Privacy for
Academia and Industry, Springer, Berlin, Heidelberg, Vol. 354, 2011, pp. 56-67.

18. O. Starostenko, C. Cruz-Perez, F. Uceda-Ponga, and V. Alarcon-Aquino, “Breaking
text-based captchas with variable word and character orientation,” Pattern Recogni-
tion, Vol. 48, 2015, pp. 1101-1112.

19. C. H. B. L.-P. Karthik and R. A. Recasens, “Breaking microsoft’s captcha,” Seman-
tic Scholar, 2015.

20. H. Gao, M. Tang, Y. Liu, P. Zhang, and X. Liu, “Research on the security of mi-
crosoft’s two-layer captcha,” IEEE Transactions on Information Forensics and Se-
curity, Vol. 12, 2017, pp. 1671-1685.

21. T. A. Le, A. G. Baydin, R. Zinkov, and F. Wood, “Using synthetic data to train neu-
ral networks is model-based reasoning,” in Proceedings of IEEE International Joint
Conference on Neural Networks, 2017, pp. 3514-3521.

22. M. Tang, H. Gao, Y. Zhang, Y. Liu, P. Zhang, and P. Wang, “Research on deep
learning techniques in breaking text-based captchas and designing image-based cap-
tcha,” IEEE Transactions on Information Forensics and Security, Vol. 13, 2018, pp.
2522-2537.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

632

1 2 3 4 5 6 7 8 9 10 11
1 J/0.52 7/0.53 X/0.63 X/0.65 X/0.40 L/0.30 A/0.35 A/0.38
2
3 J/0.41 R/0.31
4 J/0.40 Y/0.43 V/0.36 V/0.37 V/0.35

7 8 9 10 11 12 13 14 15 16 17
5 K/0.57 b/0.73 b/0.75 L/0.38 M/0.49 U/0.48 H/0.49 H/0.49 H/0.49
6
7 5/0.37
8 L/0.42 H/0.51 d/0.39 d/0.38 d/0.38 d/0.38
9 J/0.43 Y/0.47 Y/0.49 Y/0.49 Y/0.49 L/0.31 H/0.38

10 f/0.71 f/0.73 f/0.73 f/0.73 L/0.39 U/0.45
11 t/0.65 t/0.65 t/0.65 L/0.42 U/0.48
12 t/0.44 t/0.44
13 U/0.43
14 J/0.49 8/0.77
15 8/0.77
16 8/0.77
17 8/0.60

23. D. George, W. Lehrach, K. Kansky, M. La´zaro-Gredilla, C. Laan, B. Marthi, X.
Lou, Z. Meng, Y. Liu, H. Wang, et al., “A generative vision model that trains with
high data efficiency and breaks text-based captchas,” Science, Vol. 358, 2017, p.
eaag2612.

APPENDICES

Here, we take the Baidu scheme as another example to show our attack details. Fig.
15 shows how the Baidu challenge images were divided into different blocks by AVP
and all blocks rank ordered. The sample image is divided into 17 blocks. Table 6 shows
the final n n table for the Baidu scheme, and Fig. 16 is its search graph. Table 7 shows
the graph search process for the Baidu scheme using our graph search algorithm, and
“ Xbf8 ” is the final recognition result.

Fig. 15. All blocks rank ordered.

Table 6. The final n n table for Baidu sample.

Fig. 16. The equivalent graph for Baidu sample.

BREAKING TEXT-BASED CAPTCHAS USING AVP 633

Table 7. The search process for Baidu sample.
j step value result j step value result j step value result
2 1 0.52 J 10 3 1.41 XJ5 15 4 2.30 XKLt
3 1 0.53 7 11 2 1.03 XL 16 2 1.14 XH
4 1 0.63 X 11 3 1.64 XKL 16 3 2.13 Xbf
5 1 0.65 X 12 2 1.14 XM 16 4 2.55 XbfU
6 1 0.40 X 12 3 1.82 XbJ 17 2 0.79 AL
7 1 0.30 L 13 2 1.14 XU 17 3 1.79 XbL
7 2 1.04 XJ 13 3 2.12 Xbf 17 4 2.62 XbfJ
8 1 0.35 A 13 4 2.13 XJ5f 18 2 0.86 AU
8 2 1.22 KX 14 2 1.14 XH 18 3 1.91 XH8
9 1 0.38 A 14 3 2.13 Xbf 18 4 2.90 Xbf8
9 2 1.38 Xb 14 4 2.30 XKLt
10 1 0.40 A 15 2 1.14 XH
10 2 1.40 Xb 15 3 2.13 Xbf

Xiyang Liu is a Professor in Xidian University and a member
of the ACM. He has published more than twenty papers. Now he
is in charge of a project of the National Science and Technology
Major Project. Currently, he leads the Software Engineering Insti-
tute at Xidian University. His research interests include computer
security and trustworthy computing.

Yang Zhang is a master degree candidate in Computer Sci-
ence at Xidian University. Her current research interest is CAP-
TCHA.

Jing Hu is a master degree candidate in Computer Science at
Xidian University. Her current research interest is CAPTCHA.

XIYANG LIU, YANG ZHANG, JING HU, MENGYUN TANG AND HAICHANG GAO

634

Mengyun Tang is a master degree candidate in Computer
Science at Xidian University. Her current research interest is CAP-
TCHA.

Haichang Gao is a Professor in Xidian University and a

member of the IEEE. He has published more than thirty papers.
Now he is in charge of a project of the National Natural Science
Foundation of China. His current research interests include CAP-
TCHA, computer security and machine learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

