DOI:10.1688/JISE.2013.29.6.11

## **Power Domination in Honeycomb Meshes**\*

KUO-HUA KAO<sup>1</sup>, JOU-MING CHANG<sup>2</sup>, YUE-LI WANG<sup>3,†</sup>, SHUO-HONG XU<sup>4</sup> AND JUSTIE SU-TZU JUAN<sup>1</sup> <sup>1</sup>Department of Computer Science and Information Engineering National Chi Nan University Nantou, 545 Taiwan <sup>2</sup>Institute of Information and Decision Sciences National Taipei College of Business Taipei, 100 Taiwan <sup>3</sup>Department of Information Management National Taiwan University of Science and Technology Taipei, 106 Taiwan <sup>4</sup>Data Processing Unit Directorate General of Highway Ministry of Transportation and Communication Taipei, 100 Taiwan

The power domination problem is to find a minimum placement of phase measurement units (PMUs) for observing the whole electric power system represented by a graph *G*. The number of such a minimum placement of PMUs is called the power domination number of *G* and is denoted by  $\gamma_p(G)$ . Finding  $\gamma_p(G)$  of an arbitrary graph is known to be NP-complete. In this paper, we deal with the power domination problem on honeycomb meshes. For a *t*-dimensional honeycomb mesh *HM<sub>t</sub>*, we show that  $\gamma_p(HM_t) = \lceil 2t/3 \rceil$ . In particular, we present an O(t)-time algorithm as the placement scheme.

*Keywords:* algorithms, power domination, phase measurement units, honeycomb meshes, spread domination

#### **1. INTRODUCTION**

As an important application in energy management, electric power companies gather available data by devices called *phase measurement units* (abbreviated as PMUs) to continually monitor and estimate their system's state defined by a set of state variables (such as bus voltage magnitudes at loads and machine phase angles at generators [1]). To achieve the high accuracy in this estimation, a solution requires the system network to be observable. A system is said to be *observed* if all of its state variables are inspected by a set of PMUs. Because of the high cost of PMUs, a well-designed placement can possibly make the whole system observable using fewer PMUs, and thus reduce the overall cost. Therefore, designing a satisfactory placement scheme of PMUs has become an important issue and is widely studied in [2-7].

An electric power system is usually represented by an undirected graph G = (V, E), where V is a set of vertices consisting of all electric nodes of the system, and E is a set of

Received July 19, 2011; revised February 6, 2012; accepted March 2, 2012.

Communicated by Chi-Jen Lu.

<sup>\*</sup> This research was partially supported by National Science Council of Taiwan under the Grants NSC100-2221-E-141-002 and NSC97-2221-E-011-158-MY3.

<sup>&</sup>lt;sup>†</sup>Corresponding author: ylwang@cs.ntust.edu.tw

edges consisting of all transmission lines joining electric nodes. As a variation of the well-known graph domination problem (see monographs [8, 9] and other related works [10, 11]), Haynes *et al.* [1] considered a graph theoretical representation of the power system monitoring problem by using three observation rules. According to the rules, a PMU measures the state variable of the vertex at which it is placed and observes its incident edges and their end-vertices. Brueni [12], Kneis *et al.* [13] and Zhao *et al.* [14] independently pointed out that all vertices and edges of a graph *G* are observed if and only if all vertices of *G* are observed. Thus, there is a way to simplify the problem description by using two rules instead of the original rules as follows:

**Observation Rule 1** (abbreviated as OR1): A PMU on a vertex v observes v and all its neighbors.

**Observation Rule 2** (abbreviated as OR2): If an observed vertex u has only one unobserved neighbor v, then v becomes observed as well.

For a graph G = (V, E), a set  $P \subseteq V$  is said to be a *power dominating set* (abbreviated as PDS) of G if every vertex of G is observed by P (*i.e.*, all vertices of V are observed either by OR1 initially or by OR2 recursively). A PDS is minimum if it has the minimum size among all power dominating sets of G. The power domination number of G, denoted by  $\gamma_n(G)$ , is the cardinality of a minimum PDS of G, and the power domination problem is a problem for finding  $\gamma_p(G)$ . Haynes et al. [1] showed that the power domination problem is closely related to the classical graph domination problem and is NP-complete even when restricted to some special classes of graphs such as bipartite graphs or chordal graphs. For more recent results related to the power domination on graphs, we refer the reader to [1, 3, 13-22]. In particular, Dorbec et al. [17] have devoted themselves to the research of power domination on product graphs which include grids as a special case. To the best of our knowledge, there is no further investigation of the power domination problem related to any variation of grids except [17, 18]. In this paper, we study the power domination problem on honeycomb meshes and provide an algorithm to obtain a minimum PDS, where the time complexity of our algorithm is proportional to the size of such a PDS.

Honeycomb meshes are defined as follows: One hexagon is a honeycomb mesh of size one, denoted  $HM_1$ . The honeycomb mesh  $HM_2$  of size two is obtained by adding six hexagons to the boundary edges of  $HM_1$ . Inductively, a honeycomb mesh  $HM_t$  of size t is obtained from  $HM_{t-1}$  by adding a layer of hexagons around the boundary of  $HM_{t-1}$ . Here we use the coordinate system introduced by Stojmenovic [23]. Let x-, y- and z-axes start at the center of a honeycomb mesh and be parallel to the three edge directions, respectively (see Fig. 1). A honeycomb mesh is a bipartite graph and its vertices can be labeled by using integer triples (x, y, z) such that  $1 - t \le x$ ,  $y, z \le t$  and  $1 \le x + y + z \le 2$ . Two vertices (x, y, z) and (x', y', z') are adjacent if and only if |x - x'| + |y - y'| + |z - z'| = 1. For  $HM_t = (V_1 \cup V_2, E)$ , let  $V_i = \{(x, y, z) \mid x + y + z = i\}$ , i = 1, 2 (*i.e.*,  $V_1$  and  $V_2$  denote the sets of white vertices and black vertices in honeycomb mesh, respectively). Thus, if  $(x, y, z) \in V_1$ , then its adjacent neighbors are (x + 1, y, z), (x, y + 1, z), and (x, y, z + 1). On the other hand, if  $(x, y, z) \in V_2$ , then its adjacent neighbors are (x - 1, y, z), (x, y - 1, z), and (x, y, z - 1).



### 2. A LOWER BOUND OF THE POWER DOMINATION NUMBER ON HONEYCOMB MESHES

For a vertex u in a graph G = (V, E), let  $N(u) = \{v \in V \mid (u, v) \in E\}$  and N[u] = N(u) $\cup \{u\}$ . This naturally generalizes to  $N(U) = \bigcup_{u \in U} N(u)$  and  $N[U] = N(U) \cup U$  for  $U \subset V$ . Let  $\Delta_G = \max_{u \in U} |N(u)|$  denote the maximum degree of G and  $d_G(u, v)$  denote the length of a shortest path from u to v in G, where we omit the subscript G if it is clear from context. From the observation rules defined in the previous section, for  $S \subseteq V$ , we write  $R_1(S)$ and  $R_2(S)$  as the sets of observed vertices by S, respectively, applying OR1, and OR2 recursively. Clearly,  $R_1(S) = N[S]$  and  $S \subseteq R_2(S)$ . A set  $S \subseteq V$  is said to be a spread *dominating set* (abbreviated as SDS) of G if every vertex of G is observed by S using only OR2 recursively (*i.e.*,  $R_2(S) = V$ ). The spread domination number of G, denoted by  $\gamma_s(G)$ , is the minimum cardinality of an SDS of G. Note that if  $S \subseteq S' \subseteq V$  and S is an SDS of G, then so is S'. For a bipartite graph G with partite sets  $V_1$  and  $V_2$ , an SDS of G is said to be *bias* (abbreviated as bias-SDS) if it contains either  $V_1$  or  $V_2$  as a subset. In the rest of this paper, due to the symmetry of  $V_1$  and  $V_2$  in  $HM_t$ , we consider a bias-SDS containing all vertices of  $V_2$  to establish some relevant properties. Also, for notational convenience, we define  $R(S) = R_2(V_2 \cup S) \cap V_1$  for a set  $S \subseteq V_1$ . Hence, a set  $S \subseteq V_1$  together with  $V_2$  is a bias-SDS if and only if  $R(S) = V_1$ . The following lemma shows that we can easily obtain a lower bound of  $\gamma_p(G)$  by means of a lower bound of  $\gamma_s(G)$ .

**Lemma 1** For any graph  $G = (V, E), \gamma_s(G) \leq \Delta \cdot \gamma_p(G)$ .

**Proof:** Let *P* be a PDS of *G* with  $|P| = \gamma_p(G)$ . Suppose that *U* is a set consisting of all vertices of N[P] but excluding one neighbor of every vertex  $u \in P$ . Since  $U \subset N[P]$ , we have  $|U| \le \Delta \cdot |P|$ . Clearly,  $R_2(U) = R_2(N[P]) = V$ . Thus, *U* is an SDS of *G*. This shows that  $\gamma_s(G) \le |U| \le \Delta \cdot \gamma_p(G)$ .

**Lemma 2** Let  $S^*$  be a minimum *bias-SDS* in  $HM_t$  that contains  $V_2$ . Then, for any *SDS* S in  $HM_t$ ,  $|S \cap V_1| \ge |S^* \cap V_1|$ .

**Proof:** Suppose to the contrary that there exists an SDS S in  $HM_t$  such that  $|S \cap V_1| < |S^* \cap V_1|$ . Let  $S' = (S \cap V_1) \cup V_2$ . Clearly,  $S \subseteq S'$  and  $|S' \cap V_1| = |S \cap V_1|$ . Since S is an SDS in  $HM_t$ , this implies that S' is also an SDS in  $HM_t$ . Moreover, since S' contains  $V_2$  as a subset, S' is a bias-SDS in  $HM_t$ . Thus,  $|S' \cap V_1| < |S^* \cap V_1|$  contradicts the assumption that  $S^*$  is a minimum bias-SDS in  $HM_t$ .

For  $HM_t$ , two disjoint sets S,  $S' \subset V_1$  are said to be *extendable* if there exist two vertices  $u \in R(S)$  and  $v \in R(S')$  with d(u, v) = 2 such that  $R(\{u, v\}) \neq \{u, v\}$ . A set  $S \subset V_1$  is called a *fit set* if either |S| = 1 or any partition of S, say  $S = S' \cup S''$  with  $S' \neq \emptyset$  and  $S'' \neq \emptyset$  $\emptyset$ , is extendable. Moreover, for a fit set S, a proper subset  $S' \subset S$  is said to be a maximal fit set within S provided S' is a fit set and there is no other proper fit set  $S'' \subset S$  such that  $S'' \subseteq S'$ . For a set  $S \subseteq V_1$ , we say that S covers k x-values if  $|a \in \{1-t, 2-t, ..., t\} \mid (a, b, a)$  $c \in S = k$ . By a similar way, we can define the terms that S covers k y-values and S covers k z-values, respectively. For example, consider  $S = \{(2, -1, 0), (3, -1, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1), (4, -1$  $(0, -3) \in V_1$  in HM<sub>4</sub> (see Fig. 2 (a)), where each vertex of S is marked by a circle and each vertex of  $R(S) \setminus S$  is marked by a shape of drip. If we partition S into two sets  $S_1 =$  $\{(2, -1, 0), (3, -1, -1)\}$  and  $S_2 = \{(4, 0, -3)\}$ , an easy observation shows that d(u, v) > 2for any pair of vertices  $u \in R(S_1)$  and  $v \in R(S_2)$ . Thus,  $S_1$  and  $S_2$  are not extendable. Note that  $R(S_1)$  covers 2 x-values and  $R(S_2)$  covers 5 x-values in this case. On the other hand, if we partition S into two sets  $S_1 = \{(2, -1, 0)\}$  and  $S_2 = \{(3, -1, -1), (4, 0, -3)\}$  and consider u = (2, -1, 0) and v = (3, -1, -1), then d(u, v) = 2 and  $R(\{u, v\}) = \{(2, -1, 0), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1$  $(3, -1, -1), (3, -2, 0) \neq \{u, v\}$ . Thus,  $S_1$  and  $S_2$  are extendable in this case. As a result, S is not a fit set. Figs. 2 (b) and (c) show that  $S = \{(2, 0, -1), (3, -1, -1), (4, -2, -1)\}$  and  $S' = \{(2, 0, -1), (3, -1, -1), (4, -2, -1)\}$  $\{(1, 1, -1), (2, 0, -1), (2, -1, 0)\}$  are fit sets, respectively. In particular,  $\{(2, 0, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -1), (2, -$ (3, -1, -1) and  $\{(3, -1, -1), (4, -2, -1)\}$  are maximal fit sets within S, but  $\{(2, 0, -1), (4, -2, -1)\}$ (4, -2, -1)} is not.



Fig. 2. Examples of fit sets and unfit sets: (a) an unfit set; (b) and (c) two fit sets.

**Lemma 3** Let  $S, S' \subset V_1$  be two disjoint sets that are not extendable. Then,  $R(S) \cup R(S') = R(S \cup S')$ .

*Proof*: Clearly,  $S \cup S' \subseteq R(S) \cup R(S') \subseteq R(S \cup S')$ . We will show that if  $w \in R(S \cup S') \setminus (S \cup S')$ , then  $w \in R(S) \cup R(S')$ . Suppose to the contrary that there is a vertex  $w \in R(S \cup S') \setminus (S \cup S')$  such that  $w \notin R(S)$  and  $w \notin R(S')$ . In particular, we let w be a vertex observed by  $S \cup S'$  that uses the minimum number of recursions of OR2. Since S and S' are not extendable, there do not exist two vertices  $u \in R(S)$  and  $v \in R(S')$  with d(u, v) = 2 such that  $w \in R(\{u, v\})$ . Since  $w \in R(S \cup S') \setminus (S \cup S')$ , either  $w \in R(\{w_1, w_2\})$  or  $w \in R(\{w_1\})$  for some vertices  $w_1, w_2 \in V_1$ . Here only the former case is considered, and the later case can be proved in a similar way. If  $w \in R(\{w_1, w_2\})$ , then  $w_1, w_2 \notin R(S)$  and  $w_1, w_2 \notin R(S')$ . Thus, at least one of  $w_1$  and  $w_2$  must belong to  $R(S \cup S') \setminus (R(S) \cup R(S'))$  and it can be observed by  $S \cup S'$  using less number of recursions of OR2 than w. This leads to a contradiction. □

**Lemma 4** Let  $S, S' \subset V_1$  be two disjoint sets that are extendable. If S' is partitioned into  $S_1$  and  $S_2$  which are not extendable, then S and  $S_1$  are extendable or S and  $S_2$  are extendable.

**Proof:** Since *S* and  $S' = S_1 \cup S_2$  are extendable, there exist vertices  $u \in R(S)$  and  $v \in R(S_1 \cup S_2)$  with d(u, v) = 2 such that  $R(\{u, v\}) \neq \{u, v\}$ . Since  $S_1$  and  $S_2$  are not extendable, by Lemma 3 we have  $R(S_1 \cup S_2) = R(S_1) \cup R(S_2)$ . Thus,  $v \in R(S_1)$  or  $v \in R(S_2)$ , and the lemma follows.

**Lemma 5** Let  $S, S' \subset V_1$  be two disjoint sets that are extendable. If both S and S' are fit sets, then so is  $S \cup S'$ .

**Proof:** To show that  $S \cup S'$  is a fit set, we need to prove that any partition of  $S \cup S'$  containing two nonempty subsets, say  $S_1$  and  $S_2$ , are extendable. Let  $T_1 = S_1 \cap S$ ,  $T_2 = S_2 \cap S$ ,  $T_1' = S_1 \cap S'$  and  $T_2' = S_2 \cap S'$  (*i.e.*,  $S = T_1 \cup T_2$ ,  $S' = T_1' \cup T_2'$ ,  $S_1 = T_1 \cup T_1'$  and  $S_2 = T_2 \cup T_2'$ ). Since *S* and *S'* are extendable, if  $T_1 = T_2' = \emptyset$  or  $T_2 = T_1' = \emptyset$ , then  $S_1$  and  $S_2$  are extendable. Thus, we consider  $T_1 \neq \emptyset$  or  $T_2' \neq \emptyset$  (respectively,  $T_2 \neq \emptyset$  or  $T_1' \neq \emptyset$ ). In addition, since both  $S_1$  and  $S_2$  are nonempty, we have  $T_1 \neq \emptyset$  or  $T_1' \neq \emptyset$  and  $T_2' \neq \emptyset$ . Without loss of generality we consider the former case. Since  $S = T_1 \cup T_2$  is a fit set, by definition, there exist vertices  $u \in R(T_1)$  and  $v \in R(T_2)$  with d(u, v) = 2 such that  $R(\{u, v\}) \neq \{u, v\}$ . Since  $T_1 \subseteq S_1$  and  $T_2 \subseteq S_2$ , this further implies that  $S_1$  and  $S_2$  are extendable.

**Lemma 6** Let  $S \subset V_1$  be a fit set and  $U \subset S$  be a maximal fit set within S. Then,  $S \setminus U$  is also a fit set.

**Proof:** Suppose to the contrary that  $S \setminus U$  is not a fit set. Then,  $S \setminus U$  can be partitioned into two nonempty subsets  $U_1$  and  $U_2$  that are not extendable. Since S is a fit set, U and S  $\setminus U$  are extendable. By Lemma 4, U and  $U_1$  are extendable or U and  $U_2$  are extendable. Without loss of generality, suppose U and  $U_1$  are extendable. If  $U_1$  is fit, then so is  $U \cup$ 

 $U_1$  by Lemma 5. This contradicts that U is a maximal fit set within S. Thus,  $U_1$  is not a fit set and there exists a partition of  $U_1$  containing two nonempty sets  $U_1'$  and  $U_2'$  that are not extendable. Again, by Lemma 4, U and  $U_1'$  or U and  $U_2'$  are extendable. Without loss of generality, suppose U and  $U_1'$  are extendable. By the same argument, if we proceed the partition of  $U_1'$  repeatedly, there must exist a fit set containing at least one vertex that is extendable with U. Thus, this contradicts that U is a maximal fit set within S.

Let  $\ell_1, \ell_2, \ell_3 \in \{1 - t, 2 - t, ..., t\}$  be three integers. In the coordinate system suggested by Stojmenovic [23], a *positive triangle* with white vertices (*i.e.*,  $V_1$ ) in  $HM_t$  is described by  $\Delta(\ell_1, \ell_2, \ell_3) = \{(x, y, z) \in V_1 \mid x \le \ell_1, y \le \ell_2, z \le \ell_3 \text{ and } t \ge \max\{\ell_1 + \ell_2, \ell_2 + \ell_3, \ell_1 + \ell_3\}\}$ .

Note that the condition  $\ell_i + \ell_j \le t$  for each pair  $i, j \in \{1, 2, 3\}$  with  $i \ne j$  guarantees that the shape of  $\Delta(\ell_1, \ell_2, \ell_3)$  forms a triangle in  $HM_t$ . For instance, the set of observed vertices in Fig. 2 (c) forms a positive triangle  $\Delta_{(2,1,0)}$  in  $HM_4$ .

By contrast, a *negative triangle* with white vertices in  $HM_t$  is described by  $\nabla(\ell_1, \ell_2, \ell_3) = \{(x, y, z) \in V_1 \mid x \ge \ell_1, y \ge \ell_2, z \ge \ell_3 \text{ and } 1 - t \le \min\{\ell_1 + \ell_2, \ell_2 + \ell_3, \ell_1 + \ell_3\}\}$ . In particular, if  $\ell_1 + \ell_2 + \ell_3 = 1$ , we let  $\Delta(\ell_1, \ell_2, \ell_3) = \{(\ell_1, \ell_2, \ell_3)\}$  and  $\nabla(\ell_1, \ell_2, \ell_3)$  undefined.

Similarly, a *positive x-trapezoid* with white vertices in  $HM_t$  is described by

$$\mathcal{T}_{x \le \ell_1} = \{ (x, y, z) \in V_1 \mid x \le \ell_1 \le 0, y \le \ell_2 = t \text{ and } z \le \ell_3 = t \}$$

By contrast, a *negative x-trapezoid* with white vertices in  $HM_t$  is described by

$$\mathcal{T}_{x \ge \ell_1} = \{ (x, y, z) \in V_1 \mid x \ge \ell_1 \ge 1, y \ge \ell_2 = 1 - t \text{ and } z \ge \ell_3 = 1 - t \}.$$

We can define positive (respectively, negative) y-trapezoid and z-trapezoid in a similar way. For instance, the set of observed vertices in Fig. 2 (b) forms a positive z-trapezoid  $\mathscr{T}_{z\leq-1}$  in  $HM_4$ .

From the above definitions, it is easy to check the following propositions.

**Proposition 7** Let  $(x, y, z) \in V_1$  be a vertex in  $HM_t$ . Then,

$$R(\{(x, y, z)\}) = \begin{cases} \mathcal{T}_{x \le 1-t} & \text{if } x = 1-t, \\ \mathcal{T}_{y \le 1-t} & \text{if } y = 1-t, \\ \mathcal{T}_{z \le 1-t} & \text{if } z = 1-t. \end{cases}$$

Proposition 7 means that if a vertex (x, y, z) with x = 1 - t (respectively, y = 1 - t or z = 1 - t) has been observed, then so is every vertex with the same *x*-coordinate (respectively, *y*-coordinate or *z*-coordinate).

**Proposition 8** Let  $S \subset V_1$  be a set in  $HM_t$  and  $X_k = \{(x, y, z) \in V_1 \mid x = k \text{ and } y + z = 1 - k\}$ .

(1) For  $1 - t \le k \le t - 1$ , if  $X_{k+1} \subseteq R(S)$ , then  $X_k \subseteq R(S)$ .

(2) For  $0 \le k \le t - 1$ , if  $X_k \subseteq R(S)$ , then  $X_{k+1} \subseteq R(S)$ .

Proposition 8 means that if every vertex of  $X_{k+1}$  is observed, then so is every vertex of  $X_k$ ; while the converse holds only for  $0 \le k \le t - 1$ . By symmetry, we have similar propositions for  $Y_k = \{(x, y, z) \in V_1 | y = k \text{ and } x + z = 1 - k\}$  and  $Z_k = \{(x, y, z) \in V_1 | z = k \text{ and } x + y = 1 - k\}$ . The following two lemmas show that if a nonempty set  $S \subset V_1$  together with  $V_2$  is not a bias-SDS in  $HM_t$ , then R(S) can determine certain shapes for those observed vertices.

**Lemma 9** Let  $S \subset V_1$  be a nonempty set in  $HM_t$  for  $t \ge 2$ . Then,

(1) R(S) cannot form a negative *x*-, *y*- or *z*-trapezoid. (2) If  $R(S) = \mathcal{T}_{x \le \ell}$  (respectively,  $R(S) = \mathcal{T}_{y \le \ell}$  or  $R(S) = \mathcal{T}_{z \le \ell}$ ), then  $\ell \le -1$ .

**Proof:** By symmetry, we only consider the proof for *x*-trapezoid. For statement (1), we suppose to the contrary that  $R(S) = \mathcal{T}_{x \ge \ell}$  is a negative *x*-trapezoid for some  $\ell \ge 1$ . Clearly,  $(t, 1 - t, 0) \in R(S)$ . By Proposition 7,  $R(\{(t, 1 - t, 0)\}) = \mathcal{T}_{y \le 1 - t}$ . Thus,  $\mathcal{T}_{y \le 1 - t} \subseteq R(S \cup \{(t, 1 - t, 0)\}) = R(S) = \mathcal{T}_{x \ge \ell}$ . Since  $(0, 1 - t, t) \in \mathcal{T}_{y \le 1 - t}$ , this implies  $(0, 1 - t, t) \in \mathcal{T}_{x \ge \ell}$ . Thus,  $\mathcal{T}_{x \ge \ell}$  contains a vertex with *x*-coordinate less than  $\ell$ , a contradiction.

For statement (2), we suppose to the contrary that  $R(S) = \mathcal{T}_{x \le \ell}$  where  $\ell \ge 0$ . Clearly,  $(0, 1 - t, t) \in R(S)$ . By Proposition 7, an argument similar above shows that  $(1, 1 - t, t - 1) \in \mathcal{T}_{y \le 1-t} = R(\{(0, 1 - t, t)\}) \subseteq R(S \cup \{(0, 1 - t, t)\}) = R(S) = \mathcal{T}_{x \le 0}$ , a contradiction.

**Lemma 10** Let  $S \subset V_1$  be a nonempty set in  $HM_t$  for  $t \ge 2$ . Then,

(1) R(S) cannot form a negative triangle.

(2) If R(S) is a positive triangle, then it cannot contain a vertex (x, y, z) with x = 1 - t, y = 1 - t or z = 1 - t.

**Proof:** For statement (1), we suppose to the contrary that  $R(S) = \nabla(\ell_1, \ell_2, \ell_3)$  for some  $\ell_1$ ,  $\ell_2, \ell_3 \in \{1 - t, 2 - t, ..., t\}$  with min  $\{\ell_1 + \ell_2, \ell_2 + \ell_3, \ell_1 + \ell_3\} \ge 1 - t$ . Since  $t \ge 2$  and by the definition of a triangle, at most one of  $\ell_1, \ell_2$  and  $\ell_3$  is equal to 1 - t. Without loss of generality, we assume that  $\ell_1 \ne 1 - t$  and  $\ell_2 \ne 1 - t$ . Clearly,  $(\ell_1, \ell_2, 1 - (\ell_1 + \ell_2)), (\ell_1, \ell_2 + 1, -(\ell_1 + \ell_2)) \in \nabla(\ell_1, \ell_2, \ell_3)$  (see Fig. 3). Since  $(\ell_1 - 1, \ell_2 + 1, 1 - (\ell_1 + \ell_2))$  is the only unob-



served neighbor of the vertex  $(\ell_1, \ell_2 + 1, 1 - (\ell_1 + \ell_2)) \in V_2$ , it becomes observed. Thus,  $(\ell_1 - 1, \ell_2 + 1, 1 - (\ell_1 + \ell_2)) \in R(S)$ . This contradicts that every vertex in  $\nabla(\ell_1, \ell_2, \ell_3)$  has an *x*-coordinate at least  $\ell_1$ .

For statement (2), without loss of generality, we suppose to the contrary that  $R(S) = \Delta(\ell_1, \ell_2, \ell_3)$  for some  $\ell_1, \ell_2, \ell_3 \in \{1 - t, 2 - t, ..., t\}$  with max  $\{\ell_1 + \ell_2, \ell_2 + \ell_3, \ell_1 + \ell_3\} \le t$ and there is a vertex  $(x = 1 - t, y, z) \in R(S)$ . By Proposition 7, R(S) contains all vertices (x, y, z) with x = 1 - t (*i.e.*,  $\mathcal{T}_{x \le 1 - t} \subseteq R(S)$ ). This contradicts that R(S) is a positive triangle.  $\Box$ 

The following proposition follows directly from the definitions of positive triangle and trapezoid.

**Proposition 11** The following statements are true:

- (1) Let  $\ell \leq 0$  be an integer. The positive x-trapezoid  $\mathcal{T}_{x\leq \ell}$  (respectively, y-trapezoid  $\mathcal{T}_{y\leq \ell}$  and z-trapezoid  $\mathcal{T}_{z\leq \ell}$ ) in  $HM_t$  covers  $t + \ell$  x-values (respectively, y-values and z-values).
- (2) Let  $\ell_1, \ell_2, \ell_3 \in \{1 t, 2 t, ..., t\}$  be three integers with  $\max \{\ell_1 + \ell_2, \ell_2 + \ell_3, \ell_1 + \ell_3\} \le t$ . The positive triangle  $\Delta(\ell_1, \ell_2, \ell_3)$  in  $HM_t$  covers  $\ell_1 + \ell_2 + \ell_3 x$ -, *y* and *z*-values.

**Lemma 12** Let  $S \subset V_1$  be a fit set in  $HM_t$  with  $|S| \le t$ . Then,  $R(S) \ne V_1$ .

**Proof:** If t = 1, the lemma is clearly true. Let  $t \ge 2$  be an integer. By Lemmas 9 and 10, we will show a stronger result that R(S) is formed by either a positive x-trapezoid (respectively, y-trapezoid or z-trapezoid) covering at most |S| x-values (respectively, y-values or z-values), or a positive triangle covering at most |S| x-values. The proof is by induction on |S|. For |S| = 1, it is easy to prove that R(S) is either a singleton (*i.e.*, a positive triangle) or a path in the boundary of  $HM_t$  (*i.e.*, a positive x-, y- or z-trapezoid).

For  $|S| \ge 2$ , we assume that the assertion holds for any proper subset of S, and let U  $\subset S$  be a maximal fit set within S. By Lemma 6,  $S \setminus U$  is also a fit set. Suppose  $|U| = s_1$ and  $|S \setminus U| = s_2$ . From induction hypothesis, R(U) and  $R(S \setminus U)$  are positive x-, y- or z-trapezoids or positive triangles. Clearly, if  $R(U) \subseteq R(S \setminus U)$  or  $R(S \setminus U) \subseteq R(U)$ , then R(S) is still a positive x-, y- or z-trapezoid or positive triangle. For the case  $R(U) \notin R(S)$ U) and  $R(S \setminus U) \notin R(U)$ , we claim that both R(U) and  $R(S \setminus U)$  cannot be positive trapezoids simultaneously. Without loss of generality, suppose to the contrary that R(U) is a positive z-trapezoid and  $R(S \setminus U)$  is a positive y-trapezoid (see Fig. 4 (a)). Clearly, R(U)covers at most  $s_1$  z-values and  $R(S \setminus U)$  covers at most  $s_2$  y-values. By Proposition 11 we know that  $R(U) = \mathcal{T}_{\leq t_1-t}$  for some  $t_1 \leq s_1$  and  $R(S \setminus U) = \mathcal{T}_{\leq t_2-t}$  for some  $t_2 \leq s_2$ . Since  $t_1 + t_2$  $\leq s_1 + s_2 = |S| < t, R(U) \cap R(S \setminus U) = \emptyset$ . In particular, R(U) contains a vertex  $v = (t, 1 - t_1, t_2)$  $t_1 - t \in V_1$  and  $R(S \setminus U)$  contains a vertex  $w = (t, t_2 - t, 1 - t_2) \in V_1$ . Since S is fit, U and S  $\setminus U$  are extendable. The only possible case for U and  $S \setminus U$  being extendable must occur at v and w, *i.e.*, d(v, w) = 2 and  $R(\{v, w\}) \neq \{v, w\}$ . Thus, v and w have a common neighbor in  $V_2$  (see the dark vertex in Fig. 4 (a)), and so  $t_2 - t + 1 = 1 - t_1$ . This contradicts that  $t_1 + t_2 < t$ .

In the following, without loss of generality, we only need to consider two cases.

**Case 1:**  $R(U) = \Delta(\ell_1, \ell_2, \ell_3)$  is a positive triangle with  $\ell_1 + \ell_2 + \ell_3 = t_1 \leq s_1$  and  $R(S \setminus U) =$ 

 $\mathcal{T}_{y \leq t_2 - t}$  is a positive *y*-trapezoid with  $t_2 \leq s_2$  (see Fig. 4 (b)). Note that R(U) and  $R(S \setminus U)$  may have nonempty intersection. Clearly, R(U) covers  $t_1$  *y*-values and  $R(S \setminus U)$  covers  $t_2$  *y*-values, where  $t_1 + t_2 < t$ . Moreover, if  $R(U) \notin R(S \setminus U)$ , then  $\ell_2 > t_2 - t$ . Since *U* and  $S \setminus U$  are extendable and both R(U) and  $R(S \setminus U)$  contain no vertex (x, y, z) with  $y \geq 0$ , by Proposition 8 every vertex of R(S) must have a negative *y*-coordinate. In particular,  $R(S) = \mathcal{T}_{y \leq \ell}$  where  $\ell = \max{\ell_2, t_2 - t} \leq t_1 + t_2 - t$  (see the trapezoid bounded by dashed lines in Fig. 4 (b)).



**Case 2:**  $R(U) = \Delta(\ell_1, \ell_2, \ell_3)$  with  $\ell_1 + \ell_2 + \ell_3 = t_1 \le s_1$  and  $R(S \setminus U) = \Delta(\ell'_1, \ell'_2, \ell'_3)$  with  $\ell'_1 + \ell'_2 + \ell'_3 = t_2 \le s_2$  are two positive triangles (see Fig. 4 (c)). Note that R(U) and  $R(S \setminus U)$  may have nonempty intersection. For  $R(U) \notin R(S \setminus U)$  and  $R(S \setminus U) \notin R(U)$ , without loss of generality we let  $k_1 = \ell'_1 - \ell'_2 \ge 0$  and  $k_2 = t_2 - k_1$ . Since U and  $S \setminus U$  are extendable, R(S) must contain both R(U) and  $R(S \setminus U)$ . Furthermore, it is not hard to see that R(S) is formed by either a positive triangle or a positive trapezoid covering at most  $t_1 + t_2$  *y*-values (see Fig. 4 (c) for the case that R(S) is a triangle bounded by dashed lines that covers exactly  $t_1 + (k_1 + k_2) = t_1 + t_2$  *y*-values).

**Lemma 13** Let S be a bias-SDS in  $HM_t$  that contains  $V_2$  for  $t \ge 2$ . Then,  $S \cap V_1$  is a fit set.

**Proof:** Let  $U = S \cap V_1$ . Since S is a bias-SDS in  $HM_t$ ,  $R(U) = V_1$ . Suppose to the contrary that U is not a fit set. Then, U can be partitioned into two nonempty subsets  $U_1$  and  $U_2$ that are not extendable. By Lemma 3, we have  $R(U_1) \cup R(U_2) = R(U) = V_1$ . We first claim that if  $u \in V_2$  is a vertex of degree three, then either  $N(u) \subseteq R(U_1)$  or  $N(u) \subseteq R(U_2)$ . The assertion is clearly true since if  $N(u) \cap R(U_1) \neq \emptyset$  and  $N(u) \cap R(U_2) \neq \emptyset$ , then  $U_1$ and  $U_2$  are extendable. Let u = (0, 2 - t, t) and without loss of generality we suppose N(u) $\subseteq R(U_1)$  (see Fig. 5 for HM<sub>4</sub>). Since  $(0, 2 - t, t - 1) \in R(U_1)$ , this implies that all neighbors of (1, 2-t, t-1) are contained in  $R(U_1)$  (*i.e.*,  $\{(0, 2-t, t-1), (1, 1-t, t-1), (1, 2-t, t-1), (1,$ t, t-2  $\} \subset R(U_1)$ . Furthermore, since  $(1, 2 - t, t-2) \in R(U_1)$ , this implies that all neighbors of (2, 2-t, t-2) are contained in  $R(U_1)$ . By the same argument, we obtain  $Y_{1-t}$  $\subset R(U_1)$  and  $Y_{2-t} \subset R(U_1)$ . Since every vertex (x, y, z) with y = 3 - t and x + y + z = 2 has a neighbor in  $Y_{2-t}$  and two neighbors in  $Y_{3-t}$ , we have  $Y_{3-t} \subseteq R(U_1)$ . Consequently,  $R(U_1) =$  $V_1$  by induction. Note that every vertex  $v \in V_1$  must be adjacent to a vertex of degree three in  $V_2$ . Since  $U_2 \neq \emptyset$  and  $R(U_1) \cup R(U_2) = V_1$ , we consider a vertex  $v \in R(U_2) \subseteq V_1$ that is adjacent to a vertex  $w \in V_2$  with  $N(w) = \{v, v_1, v_2\} \subset V_1$ . Clearly,  $v_1 \in R(U_1)$ . Since  $d(v, v_1) = 2$  and  $\{v, v_1, v_2\} \subseteq R(\{v, v_1\})$ , this implies that  $U_1$  and  $U_2$  are extendable, a contradiction. 



**Lemma 14**  $\gamma_p(HM_t) \ge \left\lceil \frac{2t}{3} \right\rceil$  for  $t \ge 1$ .

**Proof:** Let S<sup>\*</sup> be a minimum SDS in  $HM_t$  and S be a bias-SDS in  $HM_t$  that contains  $V_2$ (*i.e.*,  $R(S \cap V_1) = V_1$ ). By Lemma 13,  $S \cap V_1$  is fit. Since we have already shown in Lemma 12 that  $R(S \cap V_1) = V_1$  implies  $|S \cap V_1| \ge t$  or  $S \cap V_1$  is not a fit set, we conclude  $|S \cap V_1| \ge t$  and every minimum bias-SDS in HM<sub>t</sub> contining  $V_2$  has at least t vertices of  $V_1$ . Lemma 2 further implies that every SDS in  $HM_t$  must contain at least t vertices of  $V_1$ . Thus,  $|S^* \cap V_1| \ge t$ . By symmetry, we have  $|S^* \cap V_2| \ge t$ . Hence,  $\gamma_s(HM_t) = |S^*| \ge 2t$ . By Lemma 1,  $\gamma_s(HM_t) \leq 3 \cdot \gamma_p(HM_t)$ . This completes the proof of the lemma. 

# **3.** A SIMPLE ALGORITHM FOR FINDING A MINIMUM PDS IN HONEYCOMB MESHES

In what follows, we present an algorithm to find a minimum PDS in  $HM_t$ . Our algorithm is based on a simple rule and thus the time complexity is proportional to the size of such a PDS.

```
Algorithm PDS-ON-HM
Input: A honeycomb mesh HM<sub>t</sub>.
Output: A PDS set P.
1:
        P \leftarrow \emptyset;
                        k \leftarrow t - 1 \mod 3;
2:
        if k = 0 then (x, y, z) \leftarrow (0, 1, 0);
3:
        if k = 1 then (x, y, z) \leftarrow (1, 1, 0);
4:
        if k = 2 then (x, y, z) \leftarrow (0, 1, 1);
        P \leftarrow P \cup \{(x, y, z)\};
5:
        for i = 1 to \left[\frac{2t}{3}\right] - 1
6:
7:
                if x + y + z = 1 then
8:
                        x \leftarrow x - 1;
                                            z \leftarrow z + 2;
9:
                else if x + y + z = 2 then
10:
                        x \leftarrow x - 2;
                                            z \leftarrow z + 1;
                P \leftarrow P \cup \{(x, y, z)\};
11:
12:
        endfor
```

Fig. 6. An algorithm for constructing a PDS in HM<sub>t</sub>.

For example, Fig. 7 shows the power dominating sets generated by the algorithm PDS-ON-HM on  $HM_t$  for t = 1, 2, 3, where each vertex of P is marked by a square (*i.e.*, a PMU) and each vertex of N(P) is marked by a circle. To show the correctness of the algorithm, we need the following terms. For  $HM_t = (V, E)$ , we redefine  $X_k = \{(x, y, z) \in V \mid x = k \text{ and } 1 - k \le y + z \le 2 - k\}$ . Also, define  $Y_k$  and  $Z_k$  by a similar way. In addition, let  $V_x^+ = \bigcup_{k=1}^t X_k$  and  $V_x^- = \bigcup_{k=1-t}^0 X_k$ . Again, by a similar way, we can define  $V_y^+, V_y^-, V_z^+$  and  $V_z^-$ , respectively. Let  $\prod_{xy}^+ = V_x^+ \cap V_y^+$  and  $\prod_{xy}^- = V_x^- \cap V_y^-$ . Also, define  $\prod_{xz, n=1}^+ \prod_{yz}^+$  and  $\prod_{yz}^-$ , similarly.



(a) A PDS  $P = \{(0, 1, 0)\}$  on  $HM_1$ . (b) A PDS  $P = \{(1, 1, 0), (-1, 1, 1)\}$  on  $HM_2$ . Fig. 7. Examples of PDS generated by PDS-on-HM.



Fig. 7. (Cont'd) Examples of PDS generated by PDS-ON-HM.

**Lemma 15** For  $HM_t$  with  $t \ge 1$ , if every vertex of  $V_x^+$  (respectively,  $V_x^-$ ,  $V_y^+$ ,  $V_y^-$ ,  $V_z^+$  or  $V_z^-$ ) is observed, then every vertex of V is observed.

**Proof:** Suppose that all vertices of  $V_x^+$  are observed. Since every vertex  $(x, y, z) \in X_1$  with y + z = 1 has exactly one unobserved neighbor, this implies that every vertex  $(x', y', z') \in X_0$  with y' + z' = 1 is observed. In particular, (0, 1 - t, t) is observed and it has only one unobserved neighbor (0, 2 - t, t). Thus, (0, 2 - t, t) becomes observed. It follows immediately that every vertex  $(x', y', z') \in X_0$  with y' + z' = 2 is observed. Therefore, we can show that all vertices of  $X_0, X_{-1}, \dots, X_{1-t}$  are observed by induction.

**Lemma 16** For  $HM_t$  with  $t \ge 1$ , Algorithm PDS-ON-HM correctly produces a PDS of size  $\lceil \frac{2t}{3} \rceil$ .

**Proof:** Let  $k \equiv (t-1) \mod 3$  and let *P* be the set produced by PDS-ON-HM. Clearly,  $|P| = \lfloor \frac{2t}{3} \rfloor$ . In the following, we will show that  $V_x^- \subseteq R_2(N[P])$  if k = 2, and  $V_y^+ \subseteq R_2(N[P])$  otherwise. Thus, the correctness directly follows from Lemma 15.

**Case 1:** k = 2. Clearly,  $V_x^- = \prod_{xy}^- \cup \prod_{yz}^+ \cup \prod_{xz}^-$ . We note that  $\prod_{yz}^+ \cap Y_1 \subset N[P]$ . In particular,  $(0, 0, 1) \in N(P)$  in  $\prod_{xy}^-$  and  $(0, 1, 0) \in N(P)$  in  $\prod_{xz}^-$  (see Fig. 8 (a) for  $HM_3$ ). Thus, every vertex of  $(\prod_{yz}^+ \cap Y_1) \cup \{(0, 0, 1), (0, 1, 0)\}$  is observed by OR1. It follows directly that every vertex of  $\prod_{yz}^+$  is observed by OR2 recursively. Since (0, 0, 1) and all vertices of  $\prod_{yz}^+ \cap Y_1$  are observed, every vertex of  $\prod_{xy}^- \cap Y_0$  is observed by OR2, and this further implies that all vertices of  $\prod_{xy}^-$  are observed. As a consequence, all vertices of  $V_x^-$  are observed.

**Case 2:**  $k \neq 2$ . Clearly,  $V_y^+ = \prod_{yz}^+ \cup \prod_{xz}^- \cup \prod_{xy}^+$ . We note that  $\prod_{yz}^+ \cap Y_1 \subset N[P]$ . In particular,  $(0, 1, 0) \in N(P)$  in  $\prod_{xz}^-$  and  $(1, 1, 0) \in N(P)$  in  $\prod_{xy}^+$  (see Fig. 8 (b) for k = 1 in  $HM_5$ ). Then, by an argument similar to Case 1, we can easily verify that all vertices of  $\prod_{yz}^+ \prod_{xz}^-$  and  $\prod_{xy}^+$  respectively, are observed by OR2 recursively.



From Lemmas 14 and 16, we conclude the following.

**Theorem 1**  $\gamma_p(HM_t) = \left\lceil \frac{2t}{3} \right\rceil$  for  $t \ge 1$ .

#### REFERENCES

- T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, "Power domination in graphs applied to electrical power networks," *SIAM Journal on Discrete Mathematics*, Vol. 15, 2002. pp. 519-529.
- T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, "Power system observability with minimal phasor measurement placement," *IEEE Transactions on Power Systems*, Vol. 8, 1993, pp. 707-715.
- 3. D. J. Brueni and L. S. Heath, "The PMU placement problem," SIAM Journal on Discrete Mathematics, Vol. 19, 2005, pp. 744-761.
- 4. L. Mili, T. Baldwin, and A. Phadke, "Phasor measurement placement for voltage and stability monitoring and control," in *Proceedings of the EPRI-NSF Workshop on Application of Advanced Mathematics to Power Systems*, 1991, pp. 1-6.
- B. Milošević and M. Begović, "Nondominated sorting genetic algorithm for optimal phasor measurement placement," *IEEE Transactions on Power Systems*, Vol. 18, 2003, pp. 69-75.
- C. Rakpenthai, S. Premrudeepreechacharn, S. Uatrongjit, and N. R. Watson, "Measurement placement for power system state estimation using decomposition technique," *Electric Power Systems Research*, Vol. 75, 2005, pp. 41-49.
- B. Xu and A. Abur, "Observability analysis and measurement placement for systems with PMUs," in *Proceedings of the IEEE PES Power Systems Conference and Exposition*, Vol. 2, 2004, pp. 943-946.
- 8. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, New York, 1998.
- 9. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, eds., *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- 10. S. Y. Hsieh, "An efficient parallel algorithm for the efficient domination problem on distance-hereditary graphs," *IEEE Transactions on Parallel and Distributed Systems*,

Vol. 13, 2002, pp. 985-993.

- 11. S. Y. Hsieh, "An efficient parallel strategy for the perfect domination problem on distance-hereditary graphs," *Journal of Supercomputing*, Vol. 39, 2007, pp. 39-57.
- D. J. Brueni, "Minimal PMU placement for graph observability: A decomposition approach," M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1993.
- J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, "Parameterized power domination complexity," *Information Processing Letters*, Vol. 98, 2006, pp. 145-149.
- 14. M. Zhao, L. Kang, and G. J. Chang, "Power domination in graphs," *Discrete Mathematics*, Vol. 306, 2006, pp. 1812-1816.
- A. Aazami and M. D. Stilp, "Approximation algorithms and hardness for domination with propagation," *SIAM Journal on Discrete Mathematics*, Vol. 23, 2009, pp. 1382-1399.
- D. Atkins, T. W. Haynes, and M. A. Henning, "Placing monitoring devices in electric power networks modelled by block graphs," *Ars Combinatoria*, Vol. 79, 2006, pp. 129-143.
- P. Dorbec, M. Mollard, S. Klavžar, and S. Špacapan, "Power domination in product graphs," SIAM Journal on Discrete Mathematics, Vol. 22, 2008, pp. 554-567.
- 18. M. Dorfling and M. A. Henning, "A note on power domination in grid graphs," *Discrete Applied Mathematics*, Vol. 154, 2006, pp. 1023-1027.
- 19. J. Guo, R. Niedermeier, and D. Raible, "Improved algorithms and complexity results for power domination in graphs," *Algorithmica*, Vol. 52, 2008, pp. 177-202.
- C.-S. Liao and D.-T. Lee, "Power domination problem in graphs," in *Proceedings of the 11th Annual International Conference on Computing and Combinatorics*, LNCS, Vol. 3595, 2005, pp. 818-828.
- K. J. Pai, J. M. Chang, and Y. L. Wang, "Restricted power domination and faulttolerant power domination on grids," *Discrete Applied Mathematics*, Vol. 158, 2010, pp. 1079-1089.
- 22. G. Xu, L. Kang, E. Shan, and M. Zhao, "Power domination in block graphs," *Theoretical Computer Science*, Vol. 359, 2006, pp. 299-305.
- I. Stojmenovic, "Honeycomb networks: topological properties and communication algorithms," *IEEE Transactions on Parallel and Distributed Systems*, Vol. 8, 1997, pp. 1036-1042.



Kuo-Hua Kao (高國華) received the Ph.D. degree in Computer Science and Information Engineering from National Chi Nan University, Taiwan in 2010. His research interests include graph theory and algorithms.



**Jou-Ming Chang** (張肇明) received the B.S. degree in Applied Mathematics from Chinese Culture University, Taipei, Taiwan, in 1987, the M.S. degree in Information Management from National Chiao Tung University, Hsinchu, Taiwan, in 1992, and Ph.D. degree in Computer Science and Information Engineering from National Central University, Chungli, Taiwan, in 2001. He is working now as a Professor and the Chair at the Institute of Information and Decision Sciences in National Taipei College of Business (NTCB). His current research interests include algorithm design and analysis, graph theory parallel and distributed computing.



Yue-Li Wang (王有禮) received his B.S. and M.S. degrees both in Information Engineering Department of TamKang University in 1975 and 1979, respectively. In 1988, he received his Ph.D. degree in Information Engineering from National Tsing Hua University. Now, he is a Professor in the Department of Information Management of National Taiwan University of Science and Technology. His research interests include graph theory, algorithm analysis and parallel computing.



Shou-Hong Xu (徐碩鴻) received the B.S. degree in Information Management Department from Fu-Jen Catholic University, Taiwan in 2008, the M.S. degree in Computer Science and Information Engineering from National Chi-Nan University, Taiwan in 2010. He is an Engineer in the Data Processing Unit, Directorate General of Highway, Ministry of Transportation and Communication, Taiwan His research interests include algorithm design and analysis.



Justie Su-Tzu Juan (阮凤姿) received her B.S. degree in Applied Mathematics from Department of Mathematics, Fu Jen Catholic University in 1993, her M.S. and Ph.D. degrees in Applied Mathematics from National Chiao Tung University, Taiwan in 1996 and 2000, respectively. She is currently a Professor with the Department of Computer Science and Information Engineering, National Chi Nan University, Taiwan. Her research interests include graph theory, information security, cryptography, algorithms, and combinatorial mathematics.