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The power domination problem is to find a minimum placement of phase measure-

ment units (PMUs) for observing the whole electric power system represented by a graph 
G. The number of such a minimum placement of PMUs is called the power domination 
number of G and is denoted by p(G). Finding p(G) of an arbitrary graph is known to be 
NP-complete. In this paper, we deal with the power domination problem on honeycomb 
meshes. For a t-dimensional honeycomb mesh HMt, we show that p(HMt) = 2t/3. In 
particular, we present an O(t)-time algorithm as the placement scheme.     
 
Keywords: algorithms, power domination, phase measurement units, honeycomb meshes, 
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1. INTRODUCTION 
 

As an important application in energy management, electric power companies 
gather available data by devices called phase measurement units (abbreviated as PMUs) 
to continually monitor and estimate their system’s state defined by a set of state variables 
(such as bus voltage magnitudes at loads and machine phase angles at generators [1]). To 
achieve the high accuracy in this estimation, a solution requires the system network to be 
observable. A system is said to be observed if all of its state variables are inspected by a 
set of PMUs. Because of the high cost of PMUs, a well-designed placement can possibly 
make the whole system observable using fewer PMUs, and thus reduce the overall cost. 
Therefore, designing a satisfactory placement scheme of PMUs has become an important 
issue and is widely studied in [2-7]. 

An electric power system is usually represented by an undirected graph G = (V, E), 
where V is a set of vertices consisting of all electric nodes of the system, and E is a set of 
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edges consisting of all transmission lines joining electric nodes. As a variation of the 
well-known graph domination problem (see monographs [8, 9] and other related works 
[10, 11]), Haynes et al. [1] considered a graph theoretical representation of the power 
system monitoring problem by using three observation rules. According to the rules, a 
PMU measures the state variable of the vertex at which it is placed and observes its in- 
cident edges and their end-vertices. Brueni [12], Kneis et al. [13] and Zhao et al. [14] in- 
dependently pointed out that all vertices and edges of a graph G are observed if and only 
if all vertices of G are observed. Thus, there is a way to simplify the problem description 
by using two rules instead of the original rules as follows: 

 
Observation Rule 1 (abbreviated as OR1): A PMU on a vertex v observes v and all its 
neighbors.  
 
Observation Rule 2 (abbreviated as OR2): If an observed vertex u has only one un- 
observed neighbor v, then v becomes observed as well. 

 
For a graph G = (V, E), a set P  V is said to be a power dominating set (abbreviated 

as PDS) of G if every vertex of G is observed by P (i.e., all vertices of V are observed 
either by OR1 initially or by OR2 recursively). A PDS is minimum if it has the minimum 
size among all power dominating sets of G. The power domination number of G, denoted 
by p(G), is the cardinality of a minimum PDS of G, and the power domination problem 
is a problem for finding p(G). Haynes et al. [1] showed that the power domination 
problem is closely related to the classical graph domination problem and is NP-complete 
even when restricted to some special classes of graphs such as bipartite graphs or chordal 
graphs. For more recent results related to the power domination on graphs, we refer the 
reader to [1, 3, 13-22]. In particular, Dorbec et al. [17] have devoted themselves to the 
research of power domination on product graphs which include grids as a special case. 
To the best of our knowledge, there is no further investigation of the power domination 
problem related to any variation of grids except [17, 18]. In this paper, we study the 
power domination problem on honeycomb meshes and provide an algorithm to obtain a 
minimum PDS, where the time complexity of our algorithm is proportional to the size of 
such a PDS. 

Honeycomb meshes are defined as follows: One hexagon is a honeycomb mesh of 
size one, denoted HM1. The honeycomb mesh HM2 of size two is obtained by adding six 
hexagons to the boundary edges of HM1. Inductively, a honeycomb mesh HMt of size t is 
obtained from HMt–1 by adding a layer of hexagons around the boundary of HMt-1. Here 
we use the coordinate system introduced by Stojmenovic [23]. Let x-, y- and z-axes start 
at the center of a honeycomb mesh and be parallel to the three edge directions, res- 
pectively (see Fig. 1). A honeycomb mesh is a bipartite graph and its vertices can be 
labeled by using integer triples (x, y, z) such that 1 – t ≤ x, y, z ≤ t and 1 ≤ x + y + z ≤ 2. 
Two vertices (x, y, z) and (x, y, z) are adjacent if and only if |x – x| + |y – y| + |z – z| = 
1. For HMt = (V1  ∪ V2, E), let Vi = {(x, y, z) | x + y + z = i}, i = 1, 2 (i.e., V1 and V2 denote 
the sets of white vertices and black vertices in honeycomb mesh, respectively). Thus, if 
(x, y, z)  V1, then its adjacent neighbors are (x + 1, y, z), (x, y + 1, z), and (x, y, z + 1). 
On the other hand, if (x, y, z)  V2, then its adjacent neighbors are (x – 1, y, z), (x, y – 1, 
z), and (x, y, z – 1). 
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Fig. 1. A honeycomb mesh HM4. 

2. A LOWER BOUND OF THE POWER DOMINATION NUMBER 
ON HONEYCOMB MESHES 

For a vertex u in a graph G = (V, E), let N(u) = {v  V | (u, v)  E} and N[u] = N(u) 
 {∪ u}. This naturally generalizes to N(U) = ∪uU N(u) and N[U] = N(U)  ∪ U for U  V. 

Let ΔG = maxuU |N(u)| denote the maximum degree of G and dG(u, v) denote the length 
of a shortest path from u to v in G, where we omit the subscript G if it is clear from con-
text. From the observation rules defined in the previous section, for S  V, we write R1(S) 
and R2(S) as the sets of observed vertices by S, respectively, applying OR1, and OR2 
recursively. Clearly, R1(S) = N[S] and S  R2(S). A set S  V is said to be a spread 
dominating set (abbreviated as SDS) of G if every vertex of G is observed by S using 
only OR2 recursively (i.e., R2(S) = V). The spread domination number of G, denoted by 
s(G), is the minimum cardinality of an SDS of G. Note that if S  S  V and S is an 
SDS of G, then so is S. For a bipartite graph G with partite sets V1 and V2, an SDS of G 
is said to be bias (abbreviated as bias-SDS) if it contains either V1 or V2 as a subset. In 
the rest of this paper, due to the symmetry of V1 and V2 in HMt, we consider a bias-SDS 
containing all vertices of V2 to establish some relevant properties. Also, for notational 
convenience, we define R(S) = R2(V2 ∪ S) ∩ V1 for a set S  V1. Hence, a set S  V1 to-
gether with V2 is a bias-SDS if and only if R(S) = V1. The following lemma shows that 
we can easily obtain a lower bound of p(G) by means of a lower bound of s(G). 
 
Lemma 1  For any graph G = (V, E), s(G) ≤ Δ  p(G). 

 
Proof: Let P be a PDS of G with |P| = p(G). Suppose that U is a set consisting of all ver-
tices of N[P] but excluding one neighbor of every vertex u  P. Since U  N[P], we have 
|U| ≤ Δ  |P|. Clearly, R2(U) = R2(N[P]) = V. Thus, U is an SDS of G. This shows that s(G) 
≤ |U| ≤ Δ  p(G).                                                         
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(b)                    (c) 
Fig. 2. Examples of fit sets and unfit sets: (a) an unfit set; (b) and (c) two fit sets. 

Lemma 2  Let S* be a minimum bias-SDS in HMt that contains V2. Then, for any SDS S 
in HMt, |S ∩ V1|  |S* ∩ V1|. 
 
Proof: Suppose to the contrary that there exists an SDS S in HMt such that |S ∩ V1| < |S* 
∩ V1|. Let S = (S ∩ V1)  ∪ V2. Clearly, S  S and |S ∩ V1| = |S ∩ V1|. Since S is an SDS 
in HMt, this implies that S is also an SDS in HMt. Moreover, since S contains V2 as a 
subset, S is a bias-SDS in HMt. Thus, |S ∩ V1| < |S* ∩ V1| contradicts the assumption that 
S* is a minimum bias-SDS in HMt.                                          

 
For HMt, two disjoint sets S, S  V1 are said to be extendable if there exist two ver-

tices u  R(S) and v  R(S) with d(u, v) = 2 such that R({u, v})  {u, v}. A set S  V1 is 
called a fit set if either |S| = 1 or any partition of S, say S = S ∪ S with S   and S  
, is extendable. Moreover, for a fit set S, a proper subset S  S is said to be a maximal 
fit set within S provided S is a fit set and there is no other proper fit set S  S such that 
S  S. For a set S  V1, we say that S covers k x-values if |a  {1 – t, 2 – t, …, t} | (a, b, 
c)  S}| = k. By a similar way, we can define the terms that S covers k y-values and S 
covers k z-values, respectively. For example, consider S = {(2, –1, 0), (3, –1, –1), (4, 
0, –3)}  V1 in HM4 (see Fig. 2 (a)), where each vertex of S is marked by a circle and 
each vertex of R(S) \ S is marked by a shape of drip. If we partition S into two sets S1 = 
{(2, –1, 0), (3, –1, –1)} and S2 = {(4, 0, –3)}, an easy observation shows that d(u, v) > 2 
for any pair of vertices u  R(S1) and v  R(S2). Thus, S1 and S2 are not extendable. Note 
that R(S1) covers 2 x-values and R(S2) covers 5 x-values in this case. On the other hand, if 
we partition S into two sets S1 = {(2, –1, 0)} and S2 = {(3, –1, –1), (4, 0, –3)} and con-
sider u = (2, –1, 0) and v = (3, –1, –1), then d(u, v) = 2 and R({u, v}) = {(2, –1, 0), 
(3, –1, –1), (3, –2, 0)}  {u, v}. Thus, S1 and S2 are extendable in this case. As a result, S 
is not a fit set. Figs. 2 (b) and (c) show that S = {(2, 0, –1), (3, –1, –1), (4, –2, –1)} and S = 
{(1, 1, –1), (2, 0, –1), (2, –1, 0)} are fit sets, respectively. In particular, {(2, 0, –1), 
(3, –1, –1)} and {(3, –1, –1), (4, –2, –1)} are maximal fit sets within S, but {(2, 0, –1), 
(4, –2, –1)} is not. 

 

(a)
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Lemma 3  Let S, S  V1 be two disjoint sets that are not extendable. Then, R(S)  ∪ R(S) 
= R(S  ∪ S).  
 
Proof: Clearly, S  ∪ S  R(S)  ∪ R(S)  R(S  ∪ S). We will show that if w  R(S  ∪ S) 
\ (S  ∪ S), then w  R(S)  ∪ R(S). Suppose to the contrary that there is a vertex w  R(S 

 ∪ S) \ (S  ∪ S) such that w  R(S) and w  R(S). In particular, we let w be a vertex 
observed by S  ∪ S that uses the minimum number of recursions of OR2. Since S and S 
are not extendable, there do not exist two vertices u  R(S) and v  R(S) with d(u, v) = 2 
such that w  R({u, v}). Since w  R(S  ∪ S) \ (S  ∪ S), either w  R({w1, w2}) or w  
R({w1}) for some vertices w1, w2  V1. Here only the former case is considered, and the 
later case can be proved in a similar way. If w  R({w1, w2}), then w1, w2 and w have a 
common neighbor in V2. Since w  R(S) and w  R(S), this implies w1, w2  R(S) and w1, 
w2  R(S). Thus, at least one of w1 and w2 must belong to R(S  ∪ S) \ (R(S)  ∪ R(S)) and 
it can be observed by S  ∪ S using less number of recursions of OR2 than w. This leads 
to a contradiction.                                                   
 
Lemma 4  Let S, S  V1 be two disjoint sets that are extendable. If S is partitioned into 
S1 and S2 which are not extendable, then S and S1 are extendable or S and S2 are extend-
able. 
 
Proof: Since S and S = S1  ∪ S2 are extendable, there exist vertices u  R(S) and v  
R(S1  ∪ S2) with d(u, v) = 2 such that R({u, v})  {u, v}. Since S1 and S2 are not extend-
able, by Lemma 3 we have R(S1  ∪ S2) = R(S1)  ∪ R(S2). Thus, v  R(S1) or v  R(S2), 
and the lemma follows.                                                    
 
Lemma 5  Let S, S  V1 be two disjoint sets that are extendable. If both S and S are fit 
sets, then so is S  ∪ S. 
 
Proof: To show that S  ∪ S is a fit set, we need to prove that any partition of S  ∪ S con-
taining two nonempty subsets, say S1 and S2, are extendable. Let T1 = S1 ∩ S, T2 = S2 ∩ S, 
T1 = S1 ∩ S and T2 = S2 ∩ S (i.e., S = T1  ∪ T2, S = T1  ∪ T2, S1 = T1  ∪ T1 and S2 = T2 

 ∪ T2). Since S and S are extendable, if T1 = T2 =  or T2 = T1 = , then S1 and S2 are 
extendable. Thus, we consider T1   or T2   (respectively, T2   or T1  ). In 
addition, since both S1 and S2 are nonempty, we have T1   or T1   (respectively, T2 
  or T2  ). This implies that T1 ≠  and T2   or T1   and T2  . Without 
loss of generality we consider the former case. Since S = T1  ∪ T2 is a fit set, by defini-
tion, there exist vertices u  R(T1) and v  R(T2) with d(u, v) = 2 such that R({u, v})  {u, 
v}. Since T1  S1 and T2  S2, this further implies that S1 and S2 are extendable.       
 
Lemma 6  Let S  V1 be a fit set and U  S be a maximal fit set within S. Then, S \ U is 
also a fit set. 
 
Proof: Suppose to the contrary that S \ U is not a fit set. Then, S \ U can be partitioned 
into two nonempty subsets U1 and U2 that are not extendable. Since S is a fit set, U and S 
\ U are extendable. By Lemma 4, U and U1 are extendable or U and U2 are extendable. 
Without loss of generality, suppose U and U1 are extendable. If U1 is fit, then so is U  ∪
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U1 by Lemma 5. This contradicts that U is a maximal fit set within S. Thus, U1 is not a fit 
set and there exists a partition of U1 containing two nonempty sets U1 and U2 that are 
not extendable. Again, by Lemma 4, U and U1 or U and U2 are extendable. Without loss 
of generality, suppose U and U1 are extendable. By the same argument, if we proceed 
the partition of U1 repeatedly, there must exist a fit set containing at least one vertex that 
is extendable with U. Thus, this contradicts that U is a maximal fit set within S.       
 

Let ℓ1, ℓ2, ℓ3  {1 – t, 2 – t, …, t} be three integers. In the coordinate system sug-
gested by Stojmenovic [23], a positive triangle with white vertices (i.e., V1) in HMt is 
described by (ℓ1, ℓ2, ℓ3) = {(x, y, z)  V1 | x ≤ ℓ1, y ≤ ℓ2, z ≤ ℓ3 and t  max{ℓ1 + ℓ2, ℓ2 + ℓ3, 
ℓ1 + ℓ3}}. 

Note that the condition ℓi + ℓj ≤ t for each pair i, j  {1, 2, 3} with i  j guarantees 
that the shape of (ℓ1, ℓ2, ℓ3) forms a triangle in HMt. For instance, the set of observed 
vertices in Fig. 2 (c) forms a positive triangle (2,1,0) in HM4. 

By contrast, a negative triangle with white vertices in HMt is described by (ℓ1, ℓ2, 
ℓ3) = {(x, y, z)  V1 | x  ℓ1, y  ℓ2, z  ℓ3 and 1 – t ≤ min{ℓ1 + ℓ2, ℓ2 + ℓ3, ℓ1 + ℓ3}}. In par-
ticular, if ℓ1 + ℓ2 + ℓ3 = 1, we let (ℓ1, ℓ2, ℓ3) = {(ℓ1, ℓ2, ℓ3)} and (ℓ1, ℓ2, ℓ3) undefined. 

Similarly, a positive x-trapezoid with white vertices in HMt is described by 
 
Tx≤ℓ1 = {(x, y, z)  V1 | x ≤ ℓ1 ≤ 0, y ≤ ℓ2 = t and z ≤ ℓ3 = t}. 

 
By contrast, a negative x-trapezoid with white vertices in HMt is described by 
 

Txℓ1 = {(x, y, z)  V1 | x  ℓ1  1, y  ℓ2 = 1 – t and z  ℓ3 = 1 – t}. 
 

We can define positive (respectively, negative) y-trapezoid and z-trapezoid in a similar 
way. For instance, the set of observed vertices in Fig. 2 (b) forms a positive z-trapezoid 
Tz≤1 in HM4. 
 
From the above definitions, it is easy to check the following propositions. 
 
Proposition 7  Let (x, y, z)  V1 be a vertex in HMt. Then,  

1

1

1

          if 1 ,

({( , , )})           if 1 ,

          if 1 .

x t

y t

z t

x t

R x y z y t

z t
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 

  


  
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T

T

T

 

 
Proposition 7 means that if a vertex (x, y, z) with x = 1 – t (respectively, y = 1 – t or 

z = 1 – t) has been observed, then so is every vertex with the same x-coordinate (respec-
tively, y-coordinate or z-coordinate). 

 
Proposition 8  Let S  V1 be a set in HMt and Xk = {(x, y, z)  V1 | x = k and y + z = 1 – 
k}. 

 
(1) For 1 – t ≤ k ≤ t – 1, if Xk+1  R(S), then Xk  R(S). 



POWER DOMINATION IN HONEYCOMB MESHES 

 

1255 

 

(2) For 0 ≤ k ≤ t – 1, if Xk  R(S), then Xk+1  R(S). 
 
Proposition 8 means that if every vertex of Xk+1 is observed, then so is every vertex 

of Xk; while the converse holds only for 0 ≤ k ≤ t – 1. By symmetry, we have similar 
propositions for Yk = {(x, y, z)  V1 | y = k and x + z = 1 – k} and Zk = {(x, y, z)  V1 | z = 
k and x + y = 1 – k}. The following two lemmas show that if a nonempty set S  V1 to-
gether with V2 is not a bias-SDS in HMt, then R(S) can determine certain shapes for those 
observed vertices. 

 
Lemma 9  Let S  V1 be a nonempty set in HMt for t  2. Then, 
 
(1) R(S) cannot form a negative x-, y- or z-trapezoid. 
(2) If R(S) = Tx≤ℓ (respectively, R(S) = Ty≤ℓ or R(S) = Tz≤ℓ), then ℓ ≤ –1. 
 
Proof: By symmetry, we only consider the proof for x-trapezoid. For statement (1), we 
suppose to the contrary that R(S) = Txℓ is a negative x-trapezoid for some ℓ  1. Clearly, 
(t, 1 – t, 0)  R(S). By Proposition 7, R({(t, 1 – t, 0)}) = Ty≤1-t. Thus, Ty≤1-t  R(S  {(∪ t, 
1 – t, 0)}) = R(S) = Txℓ. Since (0, 1 – t, t)  Ty≤1-t, this implies (0, 1 – t, t)  Txℓ. Thus, 
Txℓ contains a vertex with x-coordinate less than ℓ, a contradiction. 

For statement (2), we suppose to the contrary that R(S) = Tx≤ℓ where ℓ  0. Clearly, 
(0, 1 – t, t)  R(S). By Proposition 7, an argument similar above shows that (1, 1 – t, t – 1) 
 Ty≤1-t = R({(0, 1 – t, t)})  R(S  {(0, 1 ∪ – t, t)}) = R(S) = Tx≤0, a contradiction.     
 
Lemma 10  Let S  V1 be a nonempty set in HMt for t  2. Then, 
 
(1) R(S) cannot form a negative triangle. 
(2) If R(S) is a positive triangle, then it cannot contain a vertex (x, y, z) with x = 1 – t, y = 

1 – t or z = 1 – t. 
 
Proof: For statement (1), we suppose to the contrary that R(S) = (ℓ1, ℓ2, ℓ3) for some ℓ1, 
ℓ2, ℓ3  {1 – t, 2 – t,…, t} with min{ℓ1 + ℓ2, ℓ2 + ℓ3, ℓ1 + ℓ3}  1 – t. Since t  2 and by the 
definition of a triangle, at most one of ℓ1, ℓ2 and ℓ3 is equal to 1 – t. Without loss of gen-
erality, we assume that ℓ1  1 – t and ℓ2  1 – t. Clearly, (ℓ1, ℓ2, 1 – (ℓ1 + ℓ2)), (ℓ1, ℓ2 + 1, – 
(ℓ1 + ℓ2))  (ℓ1, ℓ2, ℓ3) (see Fig. 3). Since (ℓ1 – 1, ℓ2 + 1, 1 – (ℓ1 + ℓ2)) is the only unob- 

 
Fig. 3. Illustration of Lemma 10. 
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served neighbor of the vertex (ℓ1, ℓ2 + 1, 1 – (ℓ1 + ℓ2))  V2, it becomes observed. Thus, 
(ℓ1 – 1, ℓ2 + 1, 1 – (ℓ1 + ℓ2))  R(S). This contradicts that every vertex in (ℓ1, ℓ2, ℓ3) has 
an x-coordinate at least ℓ1. 

For statement (2), without loss of generality, we suppose to the contrary that R(S) = 
(ℓ1, ℓ2, ℓ3) for some ℓ1, ℓ2, ℓ3  {1 – t, 2 – t, …, t} with max{ℓ1 + ℓ2, ℓ2 + ℓ3, ℓ1 + ℓ3} ≤ t 
and there is a vertex (x = 1 – t, y, z)  R(S). By Proposition 7, R(S) contains all vertices (x, 
y, z) with x = 1 – t (i.e., Tx≤1-t  R(S)). This contradicts that R(S) is a positive triangle.    

 
The following proposition follows directly from the definitions of positive triangle 

and trapezoid. 
 

Proposition 11  The following statements are true: 
 
(1) Let ℓ ≤ 0 be an integer. The positive x-trapezoid Tx≤ℓ (respectively, y-trapezoid Ty≤ℓ 

and z-trapezoid Tz≤ℓ) in HMt covers t + ℓ x-values (respectively, y-values and z-val- 
ues). 

(2) Let ℓ1, ℓ2, ℓ3  {1 – t, 2 – t, …, t} be three integers with max{ℓ1 + ℓ2, ℓ2 + ℓ3, ℓ1 + ℓ3} 
≤ t. The positive triangle (ℓ1, ℓ2, ℓ3) in HMt covers ℓ1 + ℓ2 + ℓ3 x-, y- and z-values. 

 
Lemma 12  Let S  V1 be a fit set in HMt with |S| < t. Then, R(S)  V1. 
 
Proof: If t = 1, the lemma is clearly true. Let t  2 be an integer. By Lemmas 9 and 10, 
we will show a stronger result that R(S) is formed by either a positive x-trapezoid (re-
spectively, y-trapezoid or z-trapezoid) covering at most |S| x-values (respectively, y-val- 
ues or z-values), or a positive triangle covering at most |S| x-values. The proof is by in-
duction on |S|. For |S| = 1, it is easy to prove that R(S) is either a singleton (i.e., a positive 
triangle) or a path in the boundary of HMt (i.e., a positive x-, y- or z-trapezoid). 

For |S|  2, we assume that the assertion holds for any proper subset of S, and let U 
 S be a maximal fit set within S. By Lemma 6, S \ U is also a fit set. Suppose |U| = s1 
and |S \ U| = s2. From induction hypothesis, R(U) and R(S \ U) are positive x-, y- or 
z-trapezoids or positive triangles. Clearly, if R(U)  R(S \ U) or R(S \ U)  R(U), then 
R(S) is still a positive x-, y- or z-trapezoid or positive triangle. For the case R(U) ⊈ R(S \ 
U) and R(S \ U) ⊈ R(U), we claim that both R(U) and R(S \ U) cannot be positive trape-
zoids simultaneously. Without loss of generality, suppose to the contrary that R(U) is a 
positive z-trapezoid and R(S \ U) is a positive y-trapezoid (see Fig. 4 (a)). Clearly, R(U) 
covers at most s1 z-values and R(S \ U) covers at most s2 y-values. By Proposition 11 we 
know that R(U) = Tz≤t1-t for some t1 ≤ s1 and R(S \ U) = Ty≤t2-t for some t2 ≤ s2. Since t1 + t2 
≤ s1 + s2 = |S| < t, R(U) ∩ R(S \ U) = . In particular, R(U) contains a vertex v = (t, 1 – t1, 
t1 – t)  V1 and R(S \ U) contains a vertex w = (t, t2 – t, 1 – t2)  V1. Since S is fit, U and S 
\ U are extendable. The only possible case for U and S \ U being extendable must occur 
at v and w, i.e., d(v, w) = 2 and R({v, w})  {v, w}. Thus, v and w have a common 
neighbor in V2 (see the dark vertex in Fig. 4 (a)), and so t2 – t + 1 = 1 – t1. This contra-
dicts that t1 + t2 < t. 

In the following, without loss of generality, we only need to consider two cases. 
 
Case 1: R(U) = (ℓ1, ℓ2, ℓ3) is a positive triangle with ℓ1 + ℓ2 + ℓ3 = t1 ≤ s1 and R(S \ U) = 
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Ty≤t2-t is a positive y-trapezoid with t2 ≤ s2 (see Fig. 4 (b)). Note that R(U) and R(S \ U) 
may have nonempty intersection. Clearly, R(U) covers t1 y-values and R(S \ U) covers t2 
y-values, where t1 + t2 < t. Moreover, if R(U) ⊈ R(S \ U), then ℓ2 > t2 – t. Since U and S \ 
U are extendable and both R(U) and R(S \ U) contain no vertex (x, y, z) with y  0, by 
Proposition 8 every vertex of R(S) must have a negative y-coordinate. In particular, R(S) 
= Ty≤ℓ where ℓ = max{ℓ2, t2 – t} ≤ t1 + t2 – t (see the trapezoid bounded by dashed lines in 
Fig. 4 (b)). 

 
(c) Two positive triangles. 

Fig. 4. Illustrations of Lemma 12. 

Case 2: R(U) = (ℓ1, ℓ2, ℓ3) with ℓ1 + ℓ2 + ℓ3 = t1 ≤ s1 and R(S \ U) = (ℓ1, ℓ2, ℓ3) with ℓ1 + 
ℓ2 + ℓ3 = t2 ≤ s2 are two positive triangles (see Fig. 4 (c)). Note that R(U) and R(S \ U) 
may have nonempty intersection. For R(U) ⊈ R(S \ U) and R(S \ U) ⊈ R(U), without loss 
of generality we let k1 = ℓ1 – ℓ2  0 and k2 = t2 – k1. Since U and S \ U are extendable, R(S) 
must contain both R(U) and R(S \ U). Furthermore, it is not hard to see that R(S) is 
formed by either a positive triangle or a positive trapezoid covering at most t1 + t2 y-va- 
lues (see Fig. 4 (c) for the case that R(S) is a triangle bounded by dashed lines that covers 
exactly t1 + (k1 + k2) = t1 + t2 y-values).                                         
 
Lemma 13  Let S be a bias-SDS in HMt that contains V2 for t  2. Then, S ∩ V1 is a fit 
set. 

(a) Two positive trapezoids.        (b) A positive trapezoid and a positive triangle. 
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Proof: Let U = S ∩ V1. Since S is a bias-SDS in HMt, R(U) = V1. Suppose to the contrary 
that U is not a fit set. Then, U can be partitioned into two nonempty subsets U1 and U2 
that are not extendable. By Lemma 3, we have R(U1)  ∪ R(U2) = R(U) = V1. We first 
claim that if u  V2 is a vertex of degree three, then either N(u)  R(U1) or N(u)  R(U2). 
The assertion is clearly true since if N(u) ∩ R(U1)   and N(u) ∩ R(U2)  , then U1 
and U2 are extendable. Let u = (0, 2 – t, t) and without loss of generality we suppose N(u) 
 R(U1) (see Fig. 5 for HM4). Since (0, 2 – t, t – 1)  R(U1), this implies that all neigh-
bors of (1, 2 – t, t – 1) are contained in R(U1) (i.e., {(0, 2 – t, t – 1), (1,1 – t, t – 1), (1, 2 – 
t, t – 2)}  R(U1)). Furthermore, since (1, 2 – t, t – 2)  R(U1), this implies that all 
neighbors of (2, 2 – t, t – 2) are contained in R(U1). By the same argument, we obtain Y1–t 
 R(U1) and Y2–t  R(U1). Since every vertex (x, y, z) with y = 3 – t and x + y + z = 2 has 
a neighbor in Y2–t and two neighbors in Y3–t, we have Y3–t  R(U1). Consequently, R(U1) = 
V1 by induction. Note that every vertex v  V1 must be adjacent to a vertex of degree 
three in V2. Since U2   and R(U1)∪R(U2) = V1, we consider a vertex v  R(U2)  V1 
that is adjacent to a vertex w  V2 with N(w) = {v, v1, v2}  V1. Clearly, v1  R(U1). 
Since d(v, v1) = 2 and {v, v1, v2}  R({v, v1}), this implies that U1 and U2 are extendable, 
a contradiction.                                                          

 
Fig. 5. Illustration of Lemma 13. 

Lemma 14  p(HMt)  2
3
t    for t  1. 

 
Proof: Let S* be a minimum SDS in HMt and S be a bias-SDS in HMt that contains V2 
(i.e., R(S ∩ V1) = V1). By Lemma 13, S ∩ V1 is fit. Since we have already shown in 
Lemma 12 that R(S ∩ V1) = V1 implies |S ∩ V1|  t or S ∩ V1 is not a fit set, we conclude 
|S ∩ V1|  t and every minimum bias-SDS in HMt contining V2 has at least t vertices of V1. 
Lemma 2 further implies that every SDS in HMt must contain at least t vertices of V1. 
Thus, |S* ∩ V1|  t. By symmetry, we have |S* ∩ V2|  t. Hence, γs(HMt) = |S*|  2t. By 
Lemma 1, s(HMt) ≤ 3  p(HMt). This completes the proof of the lemma.            
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3. A SIMPLE ALGORITHM FOR FINDING A MINIMUM PDS IN 
HONEYCOMB MESHES 

In what follows, we present an algorithm to find a minimum PDS in HMt. Our algo-
rithm is based on a simple rule and thus the time complexity is proportional to the size of 
such a PDS. 

 

Algorithm PDS-ON-HM  
Input: A honeycomb mesh HMt. 
Output: A PDS set P. 
1:  P  ;  k  t – 1 mod 3; 
2:  if k = 0 then (x, y, z)  (0, 1, 0); 
3:  if k = 1 then (x, y, z)  (1, 1, 0); 
4:  if k = 2 then (x, y, z)  (0, 1, 1); 
5:  P  P  {(∪ x, y, z)}; 
6:  for i = 1 to 2

3
t    – 1 

7:    if x + y + z = 1 then 
8:      x  x – 1;  z  z + 2; 
9:    else if x + y + z = 2 then 
10:     x  x – 2;  z  z + 1; 
11:   P  P  {(∪ x, y, z)}; 
12: endfor 
 

Fig. 6. An algorithm for constructing a PDS in HMt. 

For example, Fig. 7 shows the power dominating sets generated by the algorithm 
PDS-ON-HM on HMt for t = 1, 2, 3, where each vertex of P is marked by a square (i.e., a 
PMU) and each vertex of N(P) is marked by a circle. To show the correctness of the al-
gorithm, we need the following terms. For HMt = (V, E), we redefine Xk = {(x, y, z)  V | 
x = k and 1 – k ≤ y + z ≤ 2 – k}. Also, define Yk and Zk by a similar way. In addition, let 
Vx

+ =  Xk and Vx
– =  Xk. Again, by a similar way, we can define Vy

+, Vy
–, Vz

+ 
and Vz

–, respectively. Let +
xy = Vx

+ ∩ Vy
+ and 

xy = Vx
– ∩ Vy

–. Also, define +
xz, 


xz,  

+
yz and 

yz, similarly.    
 

 
(a) A PDS P = {(0, 1, 0)} on HM1.     (b) A PDS P = {(1, 1, 0), (–1, 1, 1)} on HM2. 

Fig. 7. Examples of PDS generated by PDS-ON-HM. 
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(c) A PDS P = {(0, 1, 1), (2, 1, 2)} on HM3. 

Fig. 7. (Cont’d) Examples of PDS generated by PDS-ON-HM. 
 

Lemma 15  For HMt with t  1, if every vertex of Vx
+ (respectively, Vx

–, Vy
+, Vy

–, Vz
+ or 

Vz
–) is observed, then every vertex of V is observed. 

 
Proof: Suppose that all vertices of Vx

+ are observed. Since every vertex (x, y, z)  X1 
with y + z = 1 has exactly one unobserved neighbor, this implies that every vertex (x, y, 
z)  X0 with y + z = 1 is observed. In particular, (0, 1 – t, t) is observed and it has only 
one unobserved neighbor (0, 2 – t, t). Thus, (0, 2 – t, t) becomes observed. It follows 
immediately that every vertex (x, y, z)  X0 with y + z = 2 is observed. Therefore, we 
can show that all vertices of X0, X–1, …, X1–t are observed by induction.             
 
Lemma 16  For HMt with t  1, Algorithm PDS-ON-HM correctly produces a PDS of 
size 2

3 .t    

 
Proof: Let k ≡ (t – 1) mod 3 and let P be the set produced by PDS-ON-HM. Clearly, |P| = 

2
3 .t    In the following, we will show that Vx

–  R2(N[P]) if k = 2, and Vy
+  R2(N[P]) 

otherwise. Thus, the correctness directly follows from Lemma 15.  
 

Case 1: k = 2. Clearly, Vx
– = 

xy ∪ +
yz ∪ 

xz. We note that +
yz ∩ Y1  N[P]. In par-

ticular, (0, 0, 1)  N(P) in 
xy and (0, 1, 0)  N(P) in 

xz (see Fig. 8 (a) for HM3). Thus, 
every vertex of (+

yz ∩ Y1)  {(0, 0, 1), (0, 1, 0)} is observed by OR1. It fo∪ llows directly 
that every vertex of +

yz is observed by OR2 recursively. Since (0, 0, 1) and all vertices of 
+

yz ∩ Y1 are observed, every vertex of 
xy ∩ Y0 is observed by OR2, and this further 

implies that all vertices of 
xy are observed by OR2 recursively. By the same argument, 

we can prove that all vertices in 
xz are observed. As a consequence, all vertices of Vx

– 
are observed. 
 
Case 2: k  2. Clearly, Vy

+ = +
yz ∪ 

xz ∪ +
xy. We note that +

yz ∩ Y1  N[P]. In par-
ticular, (0, 1, 0)  N(P) in 

xz and (1, 1, 0)  N(P) in +
xy (see Fig. 8 (b) for k = 1 in 

HM5). Then, by an argument similar to Case 1, we can easily verify that all vertices of 
+

yz, 

xz and +

xy, respectively, are observed by OR2 recursively.                
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(a) An example for k = 2 in HM3.              (b) An example for k = 1 in HM5. 

Fig. 8. Illustrations of Lemma 16. 

From Lemmas 14 and 16, we conclude the following. 
 

Theorem 1  p(HMt) = 2
3
t    for t  1. 
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