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Severity prediction on software bug reports is an important research issue. Recently,
many studies have been conducted. Although previous studies have explored different fea-
tures to facilitate bug severity assessment, the effectiveness of jointly considering these
features is not investigated. In the work, multiple features of three facets are collected are
studied. Moreover, this study employs a weight adjustment approach using particle swarm
optimization (PSO) to find the most appropriate weights of these features. In the prediction
framework, three classification models are used to study the influences of these features.
The experimental results show that PSO-optimized multi-facet features with the Random
Forests model can achieve the best average prediction performance.

Keywords: software bug reports, severity prediction, multi-facet features, weight optimiza-
tion, particle swarm optimization

1. INTRODUCTION

In software maintenance, severity assessment of bug reports plays an important role
because it is influential in the bug fixing process [1,2]. Reporters of bug tracking systems
(BTSs), such as Bugzilla [3] and MantisBT [4], can assign the severity levels to the bug
reports according to the severity declarations of the BTSs. However, the observations
in [5, 6] show that there is a considerable number of bug reports which have been man-
ually assigned with inappropriate severity levels. Therefore, a tool is in high demand to
facilitate the verification of the severity assignments of bug reports. Automatic assess-
ment mechanisms are the key issue to predict the severity of a bug report for the severity
assessment problem.

In the past decade, various information retrieval approaches and machine learning
approaches have been developed for the severity assessment problem, e.g., [1, 5–14].
These approaches are applied to not only mission critical systems [1] but also the open
source software projects [5,6]. In these studies, the textual features have been extensively
analyzed and exploited because the unstructured textual information provides abundant
semantic information related to the severity. To improve the prediction performance, other
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features of different facets in bug reports have been also explored. In [10], reporter infor-
mation is considered in various mining tasks for bug repositories because a reporter with
a great community influence may be more intensively involved in processing the severe
bugs. In [12], four features related to the quality of bug reports as the quality indicators
are explored to improve the prediction performance because past studies [15–18] show
that several report features, such as steps to reproduce and stack traces, are important to
provide necessary information to developers in fixing bugs. However, these features of
different facets have not been jointly studied. In this work, we consider seven features
of three facets to investigate their effectiveness: the textual information (T), the quality
information (Q), and the reporter information (R). Moreover, the weights of these features
are adjusted using the particle swarm optimization (PSO) approach [19] because PSO has
shown excellent performance in various optimization problems.

Empirical experiments have been conducted with the Lamkanfi datasets [11] and
the collected data from Gentoo Linux. In this work, three classification models, namely
Multinomial Naive Bayes (MNB), Support Vector Machines (SVM) [20], and Random
Forests (RF) [21], are investigated to study the influences of these features. Four perfor-
mance measures are used to evaluate the classification models: the area under the curve
(AUC) for the Receiver Operating Characteristic curve, precision, recall, and F1 mea-
sure. The experimental results show that the performance of these classification models
can be benefited from considering these multi-facet features. Moreover, the PSO-based
weight adjustment for RF (RF-TQR-PSO) can achieve the best AUC, precision, recall,
and F1 measure in all three projects. Compared with the prediction scheme using only
textual information, RF-TQR-PSO achieves an improvement of 3.75% in AUC, 3.17% in
precision, 0.87% in recall, and 1.45% in F1 measure on average.

The rest of the paper is organized as follows. In Section 2, previous related studies
on severity prediction are briefly reviewed. Section 3 explains the proposed prediction
scheme with multi-facet features and PSO-based weight adjustment. The studied features
are first elaborated. We then describe the prediction scheme with weight adjustment using
PSO. Section 4 describes the results of the empirical experiments. Finally, Section 5
concludes the paper.

2. RELATED WORK

For the severity assessment problem, various schemes have been proposed to predict
the severity of bug reports [1, 5–14]. Textual information is most commonly used in the
previous schemes. In 2008, Menzies and Marcus proposed an automatic severity predic-
tion scheme using text mining and machine learning techniques [1]. Their experimental
results show that the proposed scheme performs well for the NASA datasets when the
datasets have more than 30 bug reports of high severity levels. However, their scheme
cannot have stable performance for different severity levels. Lamkanfi et al. discussed
four research questions using the Naive Bayes (NB) model [5]. Their study investigated
three open source projects, Mozilla, Eclipse, and GNOME. Their experimental results
show that the severity semantics can be effectively learned from short summaries rather
than long descriptions and some words are the potential severity indicators. Thereafter,
Lamkanfi et al. extended their study to investigate different classification schemes: NB
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classifiers, MNB classifiers, 1-Nearest Neighbor (1-NN) classifiers, and SVM [6]. This
work shows that the MNB classifiers have the best performance in the AUC measures.
In addition, they presented the Eclipse and Mozilla datasets for severity prediction [11].
Considering the importance of severity indicators, Yang et al. discussed three feature se-
lection mechanisms to extract the most influential indicators which are given different
weights in the MNB model [22]. The experimental results show that properly weighting
these indicators can improve the prediction performance.

In 2012, Tian et al. proposed an approach calculating the similarity of bug reports to
assign the fine-grained severity levels to bug reports [9]. The experimental results show
that the approach can get better performance than the previous work of [1]. Recently, Yang
et al. constructed an emotion dictionary and computed emotion scores between historical
and new bug reports [13]. They proposed an MNB-based model called EWD-Multinomial
with enhancements of emotion words. Their results show that EWD-Multinomial outper-
forms the original MNB model. In 2019, Ramay et al. used deep learning classification
schemes for the severity prediction problem [14]. They proposed a convolutional neural
network (CNN) model considering emotion features and textual features. Their experi-
mental results demonstrate the effectiveness of the CNN model.

From the aspect of reporters, Xuan et al. studied the severity prediction problem by
considering the priorities of developers [10]. The prioritization process is based on the
social network technology to find the importance of each reporter for a software product
or a component. For severity prediction, the results show that the NB model has improve-
ments only for the Mozilla datasets. In their experiments, the reporter information does
not significantly benefit the prediction performance in Eclipse.

From the aspect of the quality of bug reports, Yang et al. studied four quality indica-
tors of bug reports to improve the prediction performance [12]. Their experimental results
show that using these quality indicators can get performance improvements. However, the
influence of feature weighting is not discussed in their study.

3. SEVERITY PREDICTION

In this section, we first describe the problem definitions. Then the studied features
of various facets are elaborated. Finally, the PSO-based prediction scheme is described.

3.1 Problem Definition

In this work, we use Bugzilla-based bug reports to study the severity prediction prob-
lem. Bugzilla [3] is a well-known BTS used for many open-source projects like Eclipse
and Mozilla. It has seven severity levels, namely blocker, critical, major, normal, minor,
trivial, and enhancement, to manage the bug reports. The severity levels of bug reports
are used to show the impact levels of the observed bugs, and they are assigned by re-
porters. As [6], the severity assessment problem studied in this paper is modeled as a
prediction problem to decide the severity level si of an incoming report rx based on the
learned experiences.

As indicated in [23], the precise severity assignment in Bugzilla-based bug reports
can be an issue because the reporters might lack enough background to assign appropriate
severity levels. Despite that this issue is a major concern for precise severity decisions,
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Herraiz et al. show that correlations exist according to the severity levels of the bug re-
ports [23]. In their work, the bug reports can be generally divided into three groups based
on the analysis on the processing time intervals: Important, Non-important, and Request
for enhancement. The Important group contains bug reports of one of the following lev-
els: blocker, critical, and major. The Non-important group is for normal, minor, and
trivial. The third group is for enhancement, which is not related to any software defect.
Similarly, this work considers two severity levels as previous research on severity pre-
diction [5, 6, 12–14]: Severe and Non-Severe. In this work, the Severe class includes the
reports assigned to major, critical, and blocker, and the Non-Severe class includes the
bug reports of the minor and trivial severity levels. Reports of the normal severity are
ignored because many of them may be incorrectly assigned [5]. Reports of the enhance-
ment severity are also ignored because they are related to functionality strengthening, not
software bugs.

3.2 Feature Processing

In this paper, features of three facets in bug reports are jointly considered in this
work: the textual information, the quality information, and the reporter information.
These features are processed separately according to their properties.

3.2.1 Textual information

In this study, the text of the summary field is extracted as the textual information.
The textual summary data are processed with the following steps:

• Tokenization: In this step, each token is identified and converted to lower case.

• Stopword removal: In this step, the stopword tokens are ignored because they do
not provide distinctive semantic meanings.

• Stemming: The remaining tokens are converted in their stem form. In this work, a
Porter stemmer [24] is used for the conversion.

3.2.2 Quality information

As discussed in [15–17], the contents of bug reports contain many important features
for developers. In this work, the following four features as the quality indicators related
to quality of the bug reports are considered.

• The number of the steps to reproduce: Bug reports may contain the steps de-
scribing how to generate the bugs encountered by the reporters. These steps are
usually represented in an enumeration form. Therefore, a parser is designed to
find the occurrences of these steps, and the number of the steps is calculated as an
indicator.

• Stack traces: Stack traces in bug reports generally describe the active stack frames
upon some exceptions during the program execution. These traces can help de-
velopers find out the origins of the bugs. Since the traces are generated due to
exceptions, they tend to appear in severe bug reports. The line number of the traces
is calculated as an indicator.



BUG SEVERITY ASSESSMENT BASED ON WEIGHTED MULTI-FACET FEATURES 669

Input: reporter pi (1 ≤ i ≤ n) and links among pi
Output: the importance score RIi for pi

1: add a pseudo-root reporter p0 and the bi-directional links with p0;
2: initialize S0(t = 0) = 0 and Si(t = 0) = 1, 1 ≤ i ≤ n;
3: for t = 1 to Tc do //Tc is the time for convergence
4: compute Si(t) = ∑

n
j=0

W ji
O j

S j(t −1)
5: end for
6: compute RIi =

Si(Tc)+
S0(Tc)

n
M

Fig. 1. Algorithm for calculating the reporter importance scores.

• The number of attachments: In a bug report, the reporter may attach additional
files to help developers in debugging. These attachments are generally some code
segments, documents, or screenshots. A severe bug report usually tends to have
some attachments to describe the problem. Therefore, the number of the attach-
ments is considered as an indicator in this work.

• The report length: The length of a bug report show how much information it
contains. A severe bug report usually tends to have more lines to describe the bug.
Our approach considers the line number of each bug report.

These quality indicators are extracted from the long description field of bug reports.
In this work, all these indicators are normalized between 0 to 1.

3.2.3 Reporter information

As shown in [10], developers have different importance degrees for various collec-
tions of bug reports (i.e., bug repositories). For a bug repository, the reporters also form
a social network in bug discussions. In this work, the social network model proposed
by [10] is used to calculate the reporter importance scores for a dedicated bug repository.
The calculation algorithm is shown in Fig. 1, where n is the number of reporters for the
bug repository, RIi is the reporter importance score of the reporter pi, p0 is the pseudo-
root reporter to connect to all real reporters, Si(t) is the scoring function as indicated in
the algorithm, Wji is the number of comments from reporter p j to reporter pi, and Oi is
the out-degree of pi.

Si(t) is calculated iteratively, and t is used to control the iteration number. Tc is
the convergence constant. M is used to normalize the final importance score RIi and is
calculated as follows:

M =
S0(Tc)

n
+ max

1≤i≤n
Si(Tc). (1)

Thus, the importance score RIi reflects the impact of reporter pi on the bug repository.
A reporter with a high importance score is usually the person deeply involved in bug
reporting. Generally, this person is also involved in the discussions of severe bug reports.

In this work, two kinds of importance scores are calculated according to the scopes
of bug repositories: product-based (RIp

i ) and component-based (RIc
i ). These two features
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Fig. 2. The PSO-based prediction framework.

represent the different importance degrees of a reporter pi for a software product and a
component.

3.3 Prediction Framework

Fig. 2 illustrates the prediction framework employed in this research. The histor-
ical bug reports are first preprocessed using the standard text mining techniques. The
aforementioned seven features of three facets are extracted. Based on these features, the
classification model is trained using PSO optimization. To investigate the influences of
the multi-facet features in severity prediction of bug reports, three classification models
are studied in this work: the Multinomial Naive Bayes (MNB) model, Support Vector Ma-
chines (SVM) [20], and Random Forests (RF) [21]. In the following, each classification
model is briefly presented.

3.3.1 Multinomial naive bayes classification

As shown in [6], the MNB model outperforms other classification models, such as
1-NN and SVM. In this work, MNB is investigated to see its performance changes. In
MNB, the probability for a new bug report rx to be classified into the severity class si is
defined as P(si|rx), which can be calculated as follows:

P(si|rx) =
P(si)P(rx|si)

P(rx)
. (2)

Since P(rx) is the same for all si, P(si|rx) is thus proportional to P(si)P(rx|si), which can
be expressed as follows:
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P(si|rx) ∝ P(si)P(rx|si)

= P(si)P(t1, . . . , tn,q1, . . . ,q4,rip,ric|si)

= P(si)P(t1|si)×·· ·×P(tn|si)×P(q1|si)×·· ·×P(q4|si)×·· ·×P(ric|si)

= P(si)× ∏
1≤l≤n

P(tl |si)× ∏
1≤m≤4

P(qm|si)× ∏
o∈{c,p}

P(rio|si). (3)

The priori probability P(si) is calculated as the number of training bug reports in si
divided by the number of total bug reports in the training set. The probability P(tl |si) of
token tl for the severity class si is calculated as follows:

P(tl |si) =
t fl

∑∀tv∈V t fv
, (4)

where t fl is the term frequency of token tl and V represents the set of all tokens. To avoid
the zero-numerator problem of the MNB model, Laplace smoothing is used for P(tl |si).
Thus, P(tl |si) is calculated as follows:

P(tl |si) =
1+ t fl

|V |+∑∀tv∈V t fv
. (5)

3.3.2 Support vector machines

In many classification studies, the Support Vector Machines (SVM) model has shown
its impressive performance improvements. For a binary classification problem, SVM tries
to find a hyperplane that has the maximum margin between two classes of data [xi,yi] such
that the optimization problem can be expressed as follows:

min
w,b,ξ

1
2
||w||2 +C

N

∑
i=1

ξi subject to yi(wϕ(xi +b))+ξi −1, ξ ≥ 0, (6)

where ||w|| is the norm of the weight vector w in primal space, N is the number of the
training data, C is the regulation parameter, ξ = (ξ1,ξ2, . . . ,ξN) are the slack variables,
and b is the bias.

In this work, xi is a vector that consists of all multi-facet features and yi ∈
{severe, non-severe}. In this study, the L2-loss SVM model in LibLinear [25] is em-
ployed for severity prediction.

3.3.3 Random forests

In Random Forests (RF), a group of decision trees are constructed using bootstrap
aggregating with random feature selection for each split [21]. Through the ensemble
process with majority voting, the generalization performance is enhanced.

In RF, there are two parameters controlling the training process: the number of trees
and the number of the randomly investigated features. For more trees in RF, the better
performance can be obtained as the generalization error converges. However, the training
time is increased accordingly. The number of investigated features influences the correla-
tion among trees in RF. As pointed in [21], the performance is promising as the number
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Input: number of iterations L and the stopping threshold ε;
Output: the particle xg with the best weights;

1: initialize each xi and vi;
2: initialize the best known position of each particle: xb

i = xi;
3: while iteration < L and the stopping difference > ε do
4: for i = 1 to P do // P is the number of particles
5: update vi = ω × vi + c1 × rand()× (xb

i − xi)+ c2 × rand()× (xg − xi);
6: update xi = xi + vi;
7: for particle xi, train the classifier and calculate the fitness function ρ;
8: update the best known position xb

i for each particle if xi has a better ρ;
9: update the global best particle xg if xb

i has a better ρ;
10: end for
11: calculate the stopping difference of ρ values of xg and the previous xg;
12: iteration = iteration +1;
13: end while

Fig. 3. Framework of the PSO-based weight optimization.

of investigated features is int(log2 M + 1), where M is the number of inputs. Although
these two parameters can be further tuned with PSO to optimize the performance of RF,
they are fixed in this study that aims to investigate the influences of multi-facet features.

3.4 PSO-Based Weight Adjustment

Since there are three facets of information used for severity prediction, this study
discusses the performance influences of their weights for the corresponding features. To
find the best weights for performance enhancement, Particle Swarm Optimization (PSO)
[19] is employed in the training process. In PSO, each particle represents a combination
of the seven weights that are characterized its current position xi and its current velocity
vi. To find the particle xg of the global best weight combination, PSO iteratively evaluates
the particles according to a predefined fitness function. In each iteration, the velocity of
each particle are updated as follows:

vi = ω × vi + c1 × rand()× (xb
i − xi)+ c2 × rand()× (xg − xi), (7)

and its position is updated as follows:

xi = xi + vi, (8)

where ω is the inertia weight, c1 and c2 are two constants for the learning factors, rand()
represents the random number function, and xb

i is the best known position for xi.
The PSO optimization algorithm is shown in Fig. 3. In this study, we consider the

area under the curve (AUC) values of the Receiver Operating Characteristic (ROC) curves
for the fitness function. An ROC curve is defined by the True Positives Rate (TPR) and
the False Positives Rate (FPR) as described in the next section.

First, PSO randomly generates an initial group of particles for evolution. In the
iteration loop, each particle moves to a new position and the fitness function of each
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particle is evaluated to find the global best particle. For the fitness function evaluation,
the training dataset is further divided into 10 folds, and we use 10-fold cross-validation to
calculate the average AUC result of each particle. Next, the xi with the best fitness value
is selected to update xb

i . The global best particle xg is also updated accordingly. This
process is iterated until the generation number reaches the termination condition.

4. EXPERIMENTS

4.1 Experiment Setup

In this work, two research questions are discussed to study the influences of these
multi-facet features:

1. Can the joint consideration of features of various facets benefit the severity predic-
tion performance?

2. Can the proposed PSO-based weight adjustment approach effectively improve the
severity prediction performance?

To answer the research questions and evaluate the effectiveness of the proposed PSO-
based approach, we have conducted empirical experiments with the datasets of Eclipse
and Mozilla collected by Lamkanfi et al. [11] and the datasets of Gentoo Linux. Table 1
shows the details of these datasets in which SBR represents the severe bug reports and
NSBR represents the non-severe bug reports. Table 1 also shows the abbreviations of the
datasets. For example, EPU represents the dataset extracted from the component UI of
the product Platform in the Eclipse project.

Table 1. The details of the experimental datasets.
Project Product:Component # SBR # NSBR Period
Eclipse Platform:UI (EPU) 1,004 428 2006/1-2011/3
Eclipse JDT:UI (EJU) 336 482 2006/1-2011/3
Mozilla Core:Layout (MCL) 949 184 2006/1-2013/12
Mozilla Firefox:General (MFG) 10,227 2,430 2006/1-2013/12
Gentoo Linux:Core System (GLC) 1,302 608 2006/1-2013/12
Gentoo Security:Vulnerabilities (GSV) 686 2,001 2006/1-2013/12

Table 2 shows the confusion matrix for binary severity prediction evaluation. T P
represents the number of correctly predicted severe reports. FN represents the number
of wrongly predicted non-severe reports. FP represents the number of wrongly predicted
severe reports. T N represents the number of correctly predicted non-severe reports.

Table 2. Confusion matrix for the severity prediction problem.
Actual class Predicted Severe Predicted Non-severe

Actually Severe (Positive) T P FN
Actually Non-severe (Negative) FP T N
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As previous studies [5,6], this work uses the area under the curve (AUC) values of the
Receiver Operating Characteristic (ROC) curves as the main model evaluation measure.
Therefore, the AUC measure is also used for the evaluation of the fitness function in PSO.
Moreover, traditional precision, recall, and F1 measure are also discussed for analysis.
They are calculated as follows:

T PR = T P/(T P+FN), (9)

FPR = FP/(FP+T N), (10)

Precesion = T P/(T P+FP), (11)

Recall = T P/(T P+FN), (12)

F1 = 2×Precision×Recall/(Precision+Recall). (13)

In the experiments, the performance is measured using a 10-fold cross-validation
approach. Each dataset is first equally divided into 10 parts and each part does not contain
any bug report of other parts. Then 9 parts are used to train the classifier. The remaining
part is used for testing. The testing process is repeated 10 times and 10 parts are all tested
in a rotational manner. For PSO settings, 40 particles are used, the iteration control is
500, the stopping threshold ε is 0.0001, the inertia weight ω is 0.9, and two acceleration
constants c1 and c2 are 2. In this study, the classification models are trained in WEKA
[26]. For SVM, we use the L2-loss SVM model in LibLinear [25], and the tolerance of
the termination criterion is 0.001. For Random Forests, the number of trees is 50 with
other default settings.

The significance of the quality information to the severity is further statistically an-
alyzed using Pearson Chi-square univariate tests for steps to reproduce, stack traces, and
attachments. For the report length, we calculate the average line number per bug report
for six datasets. In Chi-square univariate tests, each independent variable is considered
as a binary value for each bug report. The null hypothesis (H0) is that there is no signifi-
cant difference between the investigated variable and the observed outcomes, namely the
Severe decisions. If p ≤ 0.05, the null hypothesis is rejected. Table 3 presents the statis-
tical results, which show that the occurrences of steps to reproduce and attachments are
significant to the Severe decision in most datasets. For stack traces, the null hypothesis is
rejected only in the Eclipse datasets EPU and EJU. The p-values are all 1.000 in MCL,
GLC, and GSV because the bug reports of these datasets do not have any stack trace.

Table 3. The p-values of Chi-square analysis.
EPU EJU MCL MFG GLC GSV

Steps to reproduce 0.004 0.006 0.086 0.000 0.003 0.005
Stack traces 0.000 0.000 1.000 0.911 1.000 1.000
Attachments 0.001 0.000 0.746 0.000 0.000 0.000

Table 4 shows the average line numbers in the Severe and Non-Severe classes of six
datasets. The results show that a severe bug report is longer than a non-severe bug report
on average.
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Table 4. The average line numbers of the datasets.
EPU EJU MCL MFG GLC GSV

Severe 26.06 34.57 26.88 24.36 45.91 18.34
Non-Severe 10.72 13.33 15.45 21.29 30.15 14.76

4.2 Experimental Results

In the experiments, four feature configurations are discussed according to their
facets. The configuration T represents that only the textual information (T) is consid-
ered in the severity prediction. In the configuration TQ, the textual information and the
quality indicators (Q) of bug reports are used for classifier training and testing. The con-
figuration TR represent that the textual information and reporter importance scores (R)
are used. In the configuration TQR, the textual information, the quality indicators, and
the reporter importance scores are all considered. For example, MNB-TQR represents
that the MNB model is used, and features of three facets T, Q, and R are all considered.

4.2.1 RQ1: Influences of features

Since RQ1 concerns the effectiveness of different joint considerations of features,
all features are equally considered for classification model training, i.e., all weights of
features are set to 1. Table 5 shows the average performance of all classification models
on six datasets. The best results for the performance measures are highlighted in bold
face. As shown in Table 5, considering more features can improve the performance in
most cases. Among all classification configurations, RF-TQR outperforms other config-
urations in AUC, precision, and F1 measure on average. The experimental results show
that the joint consideration of multi-facet features can generally improve the prediction
performance. The results also show that RF generally has the best performance among
three classification models.

Since RF can achieve the best performance, its prediction performance is further
discussed for each dataset. Table 6 lists the performance results of RF in six datasets. For
AUC performance, considering only textual information, namely RF-T, has the lowest
performance in all datasets. Generally RF-TQR can achieve the best AUC performance

Table 5. Average performance of six datasets for all classification models.
Config. AUC Precision Recall F1
MNB-T 0.8065 0.7727 0.8022 0.7870
MNB-TQ 0.8112 0.7745 0.8127 0.7930
MNB-TR 0.8080 0.7745 0.7990 0.7863
MNB-TQR 0.8128 0.7775 0.8072 0.7918
SVM-T 0.6838 0.7663 0.7948 0.7800
SVM-TQ 0.6917 0.7755 0.7973 0.7857
SVM-TR 0.6872 0.7680 0.7997 0.7832
SVM-TQR 0.6938 0.7772 0.8007 0.7883
RF-T 0.8085 0.7612 0.8410 0.7947
RF-TQ 0.8240 0.7703 0.8390 0.7958
RF-TR 0.8190 0.7643 0.8442 0.7968
RF-TQR 0.8328 0.7822 0.8428 0.8025
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for Table 6. Performance results of different RF configurations in each dataset.
Dataset Config. AUC Precision Recall F1

EPU RF-T 0.766 0.764 0.953 0.848
RF-TQ 0.791 0.764 0.953 0.848
RF-TR 0.780 0.753 0.958 0.843
RF-TQR 0.811 0.757 0.964 0.848

EJU RF-T 0.777 0.658 0.595 0.625
RF-TQ 0.814 0.708 0.577 0.636
RF-TR 0.779 0.670 0.580 0.622
RF-TQR 0.824 0.736 0.589 0.655

MCL RF-T 0.910 0.872 0.982 0.924
RF-TQ 0.919 0.872 0.997 0.930
RF-TR 0.917 0.871 0.989 0.926
RF-TQR 0.922 0.874 0.991 0.929

MFG RF-T 0.776 0.828 0.973 0.895
RF-TQ 0.784 0.825 0.985 0.898
RF-TR 0.786 0.829 0.981 0.899
RF-TQR 0.788 0.824 0.989 0.899

GLC RF-T 0.763 0.736 0.944 0.827
RF-TQ 0.764 0.736 0.958 0.832
RF-TR 0.777 0.742 0.955 0.835
RF-TQR 0.767 0.740 0.963 0.837

GSV RF-T 0.859 0.709 0.599 0.649
RF-TQ 0.872 0.717 0.564 0.631
RF-TR 0.875 0.721 0.602 0.656
RF-TQR 0.885 0.762 0.561 0.647

for different software projects.
For the precision and recall performance, the influences of the quality information

and the reporter information vary. In most cases, the quality information and the reporter
information can have benefits to improve the prediction performance.

Regarding to the software projects, the results show that the improvements of the
joint consideration of multi-facet features in Mozilla are comparatively minor. In our
manual investigation on the Mozilla datasets, we find that the amount of quality informa-
tion is relatively small in comparison with the textual information. Moreover, the reporter
social networks in Mozilla are more imbalanced because there are numerous reporters but
only a small number of reporters is dominant in the social network. Therefore, the advan-
tage of the quality information and the reporter information cannot be completely utilized.
This situation is more obvious for the MNB and SVM models. The performance measures
of four configurations of MNB are very close in Mozilla, and four SVM configurations
also have close performance measures.

4.2.2 RQ2: PSO-based weight adjustment

For RQ2, the weights of the seven kinds of features are adjusted using PSO. The
training data is further divided into the PSO-training set and the PSO-validation set using
the 10-fold cross-validation approach to find the best weight configurations. The adjusted
weights are applied to the testing data for performance evaluation. The investigations

tfor bbbbfor
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on the distributions of these weights show that the distributions are varied because PSO
dynamically finds the best weights according to the characteristics of the training data.

Table 7 shows the performance results of the PSO-based weight adjustment. The
experimental results show that all PSO-based classification models, namely MNB-TQR-
PSO, SVM-TQR-PSO, and RF-TQR-PSO, can take the advantage of weight adjustment
in the average AUC and precision measures.

Table 7. Performance comparison of weight adjustment.
Config. AUC Precision Recall F1
MNB-T 0.8065 0.7727 0.8022 0.7870
MNB-TQR 0.8128 0.7775 0.8072 0.7918
MNB-TQR-PSO 0.8320 0.8005 0.7712 0.7798
SVM-T 0.6838 0.7663 0.7948 0.7800
SVM-TQR 0.6938 0.7772 0.8007 0.7883
SVM-TQR-PSO 0.6990 0.7818 0.7772 0.7778
RF-T 0.8085 0.7612 0.8410 0.7947
RF-TQR 0.8328 0.7822 0.8428 0.8025
RF-TQR-PSO 0.8388 0.7853 0.8483 0.8062

In AUC, MNB-TQR-PSO achieves an improvement of 3.16% over MNB-T on av-
erage, SVM-TQR-PSO achieves an improvement of 2.22% over SVM-T on average, and
RF-TQR-PSO achieves an improvement of 3.75% over RF-T on average. These results
show that considering the AUC performance in PSO effectively improves the performance
of all studied classification models for AUC.

Similarly, MNB-TQR-PSO on average achieves an improvement of 3.60% in preci-
sion over MNB-T, SVM-TQR-PSO on average achieves an improvement of 2.02% over
SVM-T, and RF-TQR-PSO on average achieves an improvement of 3.17% over RF-T.
These results show that the number of the data predicted false-positive can be effectively
reduced in all three classification models.

In recall, MNB-TQR-PSO and SVM-TQR-PSO have the bottom average recall and
F1 performance in comparison to other MNT-based and SVM-based approaches, respec-
tively. The results show that the PSO optimization process hinders the effectiveness of
identifying severe bug reports for the MNB and SVM models. However, the RF model
can still achieve the best recall (0.8483) and F1 (0.8062) performance on average. Since
the RF model is an ensemble approach that has many decision-tree classification mod-
els trained on a random subset of the features, it can mitigate the over-fitting problem
potentially introduced in the PSO optimization process.

5. CONCLUSIONS

Severity of bug reports is important for bug fixing in software maintenance. In the
past, many studies have been conducted for this issue. In this paper, we propose a PSO-
based prediction scheme based on multi-facet information of bug reports to improve the
prediction performance. In this work, three classification models, namely MNB, SVM,
and RF, are investigated to study the benefits of using these features. Since these fea-
tures have different influences on prediction performance, PSO is employed to adjust their
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weights for performance improvements. We have conducted empirical experiments with
six software components from three open source projects: Eclipse, Mozilla, and Gen-
too Linux. The experiments investigate the effectiveness of multi-facet information in
severity prediction. The results show that exploiting the multi-facet information can im-
prove the performance of severity prediction. We also investigate the impacts of weight
adjustment with PSO. The results show that the optimized weights can further improve
the average performance of AUC and precision of all three classification models for all
datasets. In this study, the RF-TQR-PSO can achieve the best average performance on
AUC, precision, recall, and F1 measure.

In our future study, some issues will be investigated. First, we plan to explore other
information of bug reports, such as the historical fixing file locations. The file locations
may provide a different insight of the bug severity. Second, the classification model can
be further improved to obtain more accurate prediction performance. Since the RF model
achieves the outstanding performance in the current study, the ensemble approach shows
its research potential in the future. The emerging deep learning technology will be also
explored for its superior performance in other related tasks of software repository mining.
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