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The key challenge in big data processing frameworks such as Hadoop distributed file
system (HDFS) is to optimize the throughput for read operations. Toward this goal, several
studies have been conducted to enhance read performance on heterogeneous storages. Re-
cently, although HDFS has supported several storage policies for placing data blocks in het-
erogeneous storages, it fails to fully utilize the potential of fast storages (e.g., SSD). The pri-
mary reason for its suboptimal read performance is that, while distributing read requests, ex-
isting HDFS only considers the network distance between the client and datanodes, thereby
incurring more read requests to slower storages with more data (e.g., HDD). In this paper,
we propose a new data retrieval policy for distributing read requests on heterogeneous stor-
ages in HDFS. Specifically, the proposed policy considers both the unique characteristics of
storages in datanodes and the network environments, to efficiently distribute read requests.
We develop several policies including the proposed policy to balance these two factors such
as random selection, storage type selection, weighted round-robin selection, and dynamic
round-robin selection. Our experimental results show that the throughput of the proposed
method outperforms those of the existing policies by up to six times in extensive benchmark
datasets.

Keywords: Hadoop distributed file system, heterogeneous storage, data retrieval policy,
MapReduce, load balancing

1. INTRODUCTION

Hadoop [1] is one of the representative distributed platforms for processing large-
scale datasets. As a significant component of Hadoop, Hadoop distributed file system
(HDFS) [2] is responsible for storing and managing data in a cluster of nodes. It is
observed that, because the majority of HDFS applications follow write-once and read-
many paradigm [3], their performances are heavily influenced by I/O throughput [4, 5].
Therefore, the optimization for read operations in the HDFS directly affects the overall
throughput of Hadoop applications.

Toward this goal, a possible solution is to optimize I/O throughput on heterogeneous
storages, which consists of different storage types such as solid state drive (SSD) and
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hard disk drive (HDD). Recently, several studies have been conducted to enhance I/O
performance on heterogeneous storages. Specifically, they can be categorized into two
types: (i) using fast storages as caches and (ii) maximizing overall data access throughput
on heterogeneous storages. First, some caching methods use fast storages (e.g., SSD) as
caching areas for storing data on slow storages (e.g., HDD) to avoid unnecessary I/O [6,
7, 8, 9]. Next, the overall performance is optimized by maximizing the I/O performance
of the fast storages [10, 11, 12]. That is, as the I/O performance highly depends on
the characteristics of the storages, it is essential to design an efficient data selection for
accessing heterogeneous storages.

Although the HDFS has supported several storage policies for placing data blocks
in heterogeneous storages, it fails to fully utilize the potential of fast storages (e.g., SSD)
when retrieving data blocks. For instance, the One SSD policy [13] employs both SSD
and HDD for write requests, while only network distance is used to select datanodes for
read requests. As it simply ignores the I/O performance gaps across different storages,
the read performance in the existing HDFS could be suboptimal.

In this paper, we propose a new data retrieval policy for distributing read requests
on heterogeneous storages in HDFS. The proposed policy particularly considers both the
unique characteristics of storages in datanodes and the network environments between
client and datanodes. We aim to optimize read throughput by (i) maximizing the utiliza-
tion of heterogeneous storages and (ii) balancing the selection of storage types at runtime.
Thus, in addition to the traditional network-distance-based selection, we develop three ad-
ditional policies for balancing two factors: storage type selection, weighted round-robin
selection, and dynamic round-robin selection.

In particular, it is observed that preferentially reading data from fast storages in-
curs the starvation problem of slow storages. Thus, we dynamically balance the number
of read requests according to the storage performance and check whether requests are
skewed to one storage. This dynamic strategy can drastically mitigate different utilization
gaps across heterogeneous storages.

To summarize, the contributions of this paper are as follows:

• We observed that the storage policies for HDFS on heterogeneous storages fail to
leverage the full potential of fast storages. To address this problem, we describe
four data retrieval policies, including HDFS’s existing read policy, and propose
a read-optimized data retrieval policy that not only maximizes the utilization of
heterogeneous storages but also balances the selection of storage types at runtime
(Section 3).

• We evaluate the performance of our method by comparing it against several data re-
trieval policies including that of existing HDFS. From extensive experiments using
representative datasets, we confirm that our method outperforms existing policy by
2.2–6 times in terms of total throughput (Section 4). Moreover, we confirm that the
method shows improved performance compared to other methods which take into
account only the type of storage device.

The rest of the paper is organized as follows. Section 2 describes an overview of
HDFS and its storage policies including a slow reading problem in heterogeneous storage
policies. Section 3 discusses the impact of the network environment and storage types on
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performance and presents the design details of four data retrieval policies. In Section 4,
we evaluate the performance of four data retrieval policies including the proposed policy
using DFSIO and I/O-intensive HiBench workloads. Section 5 reviews the recent work
enhancing the performance of Hadoop systems by increasing storage systems’ perfor-
mance. Finally, Section 6 summarizes the contributions of this paper.

2. BACKGROUND

2.1 Hadoop Distributed File System (HDFS)

HDFS is a distributed file system designed to store and access files on a cluster of
commodity servers [2]. HDFS cluster is organized as master/slave architecture. The
master, called namenode, stores the HDFS metadata and is responsible for controlling file
access. The slave, called datanode, stores files managed by HDFS and is responsible for
serving read/write operations on files. The nodes in HDFS are managed in units of rack
according to the network distance. The bandwidth between nodes on the same rack is
typically larger than that between the nodes on different racks.

In HDFS, a file is split into one or more blocks with each block stored in one or more
datanodes. The same block is replicated and stored in multiple nodes. (By default, the
block size is 128MB and the replication factor is 3.) It thus allows fault tolerance and
parallel read through data replication.

Next, we explain how read/write operations are performed in HDFS. Read /write
operations essentially consist of the interactions across a client node, a namenode, and
datanodes [14]. A client node, which can be a namenode, a datanode, or another node
outside the cluster, requests a read/write operation. At the client node, HDFS Client object
requests operations from/to the file system, InputStream/OutputStream object retrieves the
metadata from the namenode, and read/write blocks from/to the datanode are operated.

The read operation is divided into two steps: open and read. Fig. 1 details the overall
process by which a client reads ‘Data1.txt’ that is stored in HDFS. First, the open step
consists of acquiring the file’s metadata, opening the file, and preparing to read it. In
this step, the HDFS Client object creates an InputStream object that helps us to search
and opens the file. The InputStream object, when opening the file, receives metadata
about the file Data1.txt’ through the namenode. The metadata includes block information
on which block the file is composed of (Data1.txt consists of B1, B2, B3.). As each
HDFS block is replicated on several datanodes, the information of the datanode with the
replication location is included in one block information in the form of an array (B1 is
stored in datanode 1, datanode 3, and datanode n.).

Next, the read step consists of InputStream connecting to the datanode where the
block is stored and reading the block. Among multiple replications, reads are performed
on the datanode that is positioned at the front of the location array of replications. In
existing HDFS, as the array is sorted according to the network distance between the client
and the datanode, it reads the block on nearest datanode based on the client’s logical
network distances from the client. If there are several replications at the same network
distance, HDFS randomly selects and reads the block.

The write operation is divided into two steps: create and write. In create step, HDFS
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Fig. 1. Architecture of HDFS on heterogeneous storages.

Client requests to create or open a file for writing. To write a file, the namenode performs
various checks, such as checking permission for the write operation. Further, the namen-
ode provides the location of the datanodes where the replications are to be stored. If the
replication factor is 3, the first replication is stored on the local machine if the client is on
a datanode or on a random datanode. The second replication is stored on a datanode on a
different rack. Finally, the third replication is stored in another node in the same rack as
the first replication. After obtaining the information from the namenode, in the write step,
the client writes the block to the first datanode. Then, the first datanode writes the block
replications to other datanodes. Finally, the write is completed when the first datanode
receives acknowledgments from other datanodes.

2.2 Storage Policies on HDFS

Currently, HDFS supports four storage types including DISK, SSD, ARCHIVE, and
RAM DISK. DISK represents the hard disk drive, and SSD represents the solid-state drive.
ARCHIVE represents an archive storage device with large capacity and small computing
power. Finally, RAM DISK represents an in-memory storage device. HDFS also supports
six rules, called storage policies, that determine the storage type in which each replica-
tion is stored. Table 1 depicts the storage policies for block replications in HDFS [13].
According to the storage types used to store the replications, it can be classified into ho-
mogeneous and heterogeneous cases.

The storage policies for homogeneous storages store data in clusters with the same
storage types, whereas those for heterogeneous storages store data in clusters with two
different storages. In heterogeneous storage policies, the policies store one replication
in the fast storage and the remaining replications in the slow storage. As they store one
of the replications in the fast storage, it is possible to improve overall throughput on
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Table 1. Descriptions of storage policies in HDFS.
Policy type Policy name Description

Hot(default) All replicas are stored in DISK
Homogeneous Cold All replicas are stored in ARCHIVE

All SSD All replicas are stored in SSD

Warm One of the replicas is stored in DISK
The others are stored in ARCHIVE

Heterogeneous One SSD One of the replicas is stored in SSD
The others are stored in DISK

Lazy Pesist One of the replicas is stored in RAM DISK
The others are stored in DISK

heterogeneous storages.

However, HDFS clusters using the storage policies for heterogeneous storages have
been observed to not fully achieve performance improvement. Fig. 4(a) shows the storage
utilization obtained while running the DFSIO benchmark. (In Section 4, we will explain
the description for benchmark datasets in detail). In this experiment, we observed the
performance of the HDFS cluster using One SSD policy. In an experimental setting, all
datanodes are at the same network distance from the client, and each datanode uses one
SSD and one DISK. The experimental result shows that the utilization of DISK is high,
while that of SSD is too low. This problem also occurs when using the other heteroge-
neous storage policies (i.e., Warm and Lazy Pesist).

This is because HDFS uses the network-distance-based data retrieval policy that
reads a replication from the nearest datanode among multiple block replications. In
a single rack setting with the same network distance between datanodes, the network-
distance-based policy randomly selects any of the replications in the cluster. When a
cluster of hardware in HDFS consists of homogeneous storages, this approach is effective
for optimizing overall throughput. (In this study, the throughput is measured in bytes per
second for read/write operations.)

However, when HDFS consists of heterogeneous storages, network-distance-based
selection could not make full use of the fast storage devices. In a heterogeneous storage
environment, as the throughput of storages is different, the time required to complete a
read request differs depending on the storage type. If the same number of reads is as-
signed to both storage types, the fast storages complete the read requests and wait for the
slow storages to finish reading. The heterogeneous storage policies aggravate the prob-
lem. As existing HDFS assumes that storages are homogeneous, it distributes the read
requests across datanodes according to the amount of the data stored without considering
the storage characteristics. As the heterogeneous storage policies store fewer blocks in
the fast storages, fewer reads are allocated to the fast storages. Although fast storages can
handle more reads than slow storages at the same time, they become idle after completing
a small number of allocated reads. As a result, the throughput of fast storages cannot be
fully exploited, and the overall performance degrades.
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Fig. 2. HDFS Performance by network distance.

3. PROPOSED METHOD

In this section, we describe four data retrieval policies, including HDFS’s network-
distance-based selection, and present the proposed policy that dynamically considers not
only the network environment but also the storage characteristics to improve the HDFS
read performance with heterogeneous storages. To describe the design of policies in de-
tail, we discuss the impact of network environment between client and datanode, one of
the factors affecting the read performance, present how to consider the network environ-
ment when reading for each storage type, and provide the detailed description of four data
retrieval policies.

The key idea of the proposed method is as follows:

• Maximizing the utilization of heterogeneous storages: When selecting a datan-
ode on heterogeneous storages, we consider the network environment as well as the
storage characteristics to maximize the utilization of heterogeneous storages.

• Balancing the selection of storage types: We prevent the starvation of slow stor-
age by statically and dynamically controlling the selection of storage types to alle-
viate heavy accesses of fast storage devices.

3.1 Network Environment Between Nodes

The network environment between the client and the datanode is an important factor
for optimizing read performance. HDFS is composed of a two-level network topology
consisting of multiple racks of nodes. The client and the datanode may be the same
node, different nodes in the same rack, or nodes in different racks. In the existing HDFS,
the client is designed to read from the datanode closest to the network because of the
slow performance caused by network traffic between racks by saturating the rack-to-rack
switch [15].

In addition to the logical distance between the client and data nodes, network band-
width also affects HDFS’ read performance. When a client reads a block from a datanode,
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the amount of data transferred from the datanode to the client is limited to the network
bandwidth between the client and the datanode. If the network bandwidth between two
nodes is smaller than the storage’s maximum throughput, the read operation cannot fully
utilize the storage. In a typical HDFS cluster configuration, the network bandwidth inside
the rack is larger than the bandwidth between the other racks; therefore, slow storages in
the same rack may provide better performance than fast storages in other racks.

For example, Fig. 2 illustrates the read throughput of each storage according to the
network distance between the client and the datanode. In this experiment, all nodes are
connected in the LAN. The nodes in the same rack are connected through 10Gbps Eth-
ernet. In the case of rack-to-rack connection, we assume that they are connected in the
WAN. To simulate a WAN environment, we limited the rack-to-rack network bandwidth
by connecting them through 1Gbps Ethernet (In this simulation, we do not address the
other network issues except bandwidth.). The result shows that the closer the network
distance is, the higher the throughput is measured. Furthermore, it is slower to access
SSD on the out of rack than to access DISK nearer to SSD despite SSD being consider-
ably faster than DISK. Thus, when reading from fast storage, considering both the net-
work bandwidth and distance provides higher performance while reducing unnecessary
network traffic.

To accurately consider the network environment, we pre-configure the network band-
width between the nodes, the network bandwidth between racks and storage’s maximum
throughput information in addition to the logical network distance. The four data re-
trieval policies described in Section 3.2 select either fast storage or slow storage to read
a block according to each rule. Whether to read a block from the selected storage de-
vice is determined by considering the pre-configured network environment, and how the
network environment is considered depends on the storage type. First, when trying to
read from slow storage, the policies read a block from the closest datanode to obtain high
performance without saturating the rack-to-rack switch. Next, when trying to read from
fast storage, the policies determine whether to read a block according to the network en-
vironment between the client and the datanode. In particular, the following factors are
considered.

1) If the client and the datanode are the same, read a block stored in the fast storage.

2) If the datanode is another node in the same rack as the client, the policies compare
the network bandwidth inside the rack with the slow storage’s maximum through-
put.

2.1) If the network bandwidth inside the rack is larger than the slow storage’s
throughput, read a block stored in the fast storage.

2.2) Otherwise, read a block from the closest datanode.

3) If the client and data nodes are in different racks, read a block from the closest
datanode.

3.2 Storage Selection Policies

We present several data retrieval policies, including network-distance-based selec-
tion, storage type selection, weighted round-robin selection, and dynamic round-robin
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Table 2. Notations to describe the performance of each storage selection policies.
Notation Description

N Number of blocks to read
BlockSize Block size in HDFS
Rep Number of replications
T hroughput f ast The maximum throughput of fast storages
T hroughputslow The maximum throughput of slow storages

selection, to consider the storage characteristics. Table 2 shows the notations used to de-
scribe the performance of HDFS cluster for each data retrieval policy. Because HDFS
reads from the datanode located at the first of the replication array from the namenode,
each policy uses different methods for sorting the replication array. The policies imple-
mented on the sortLocatedBlocks function of the DatanodeManager class that is respon-
sible for sorting the replication array.

Network-distance-based selection: This method, which is the existing HDFS’s
read policy, selects any data replication regardless of the storage type. This policy ran-
domly selects storage by sorting the replications in an arbitrary order. Therefore, more
read requests are processed on the storage where more blocks are stored. For example, in
Fig. 1, the replications of block B1 are stored in datanode 1, datanode 3, and datanode N.
Thus, this policy selects any of the three datanodes.

In the homogeneous storages, if the blocks are evenly distributed, the network-
distance-based selection evenly distributes read operations across storages. Therefore, the
expected time to read N blocks from the HDFS cluster is (N ×BlockSize)/T hroughput.

However, in the heterogeneous storages, the number of blocks to be stored and the
performance is uneven depending on the storages. In this case, slower storages store more
blocks and process more requests, which degrades overall performance. Specifically,
the network-distance-based selection stochastically requests slow storages to read (N ×
(Rep− 1)/Rep) blocks while requesting fast storages to read the (N × 1/Rep) blocks.
While reading more blocks from the slow storages, the fast storages become idle after
completing the allocated read. Therefore, the total execution time is equal to the time of
reading (N × (Rep−1)/Rep) blocks from the slower storages.

Storage type selection: This method preferentially selects a replication stored in a
fast storage type. This policy aligns the block stored in fast storage on the front of the
replication array. In block B1 shown in Fig. 1, the block replication on datanode 1 is
stored in the SSD, and the remaining replications are stored in DISKs. In that case, the
replication of datanode 1 is sorted first, and the block on the datanode is read. Thus,
storage type selection can increase the utilization of fast storages, and the expected read
throughput is T hroughput f ast . The result of the DFSIO benchmark in Section 4 shows
that the utilization of SSD, compared to the existing HDFS, is increased by an order of
magnitude. However, this policy only reads from fast storages, thereby incurring the
starvation problem of slow storages.

Weighted round-robin selection (WRR): This method selects fast storage and slow
storage in an interleaved manner. For example, as shown in Fig. 1, if blocks B1 and B2
are read, then it reads B1 from DISK and reads B2 from SSD, allowing us to distribute
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the read operation regardless of the amount of stored data. To further optimize this, we
first obtain the weight used to adjust the number of interleaving of storage selection. The
weight indicates how fast storage can handle more reads than the slower storage. The
higher the performance gap between the storage devices, the higher the value assigned.
The weight is calculated according to the following equation.

weight =
T hroughput f ast

T hroughputslow
(1)

Next, we obtain the ratio of the amount of data read from fast storage to that from slow 
storage. We record the number of blocks read from each storage type during execution 
and calculate the ratio of the number of blocks read from fast storage to that from slow 
storage for every read. As HDFS reads files in fixed-size blocks, the ratio of the number 
of blocks read has the same meaning as the ratio of the amount of data read. The ratio of 
the amount of data read is calculated according to the following equation.

ratio =
the number o f blocks read f rom f ast storages
the number o f blocks read f rom slow storages

(2)

Through the weight and the ratio, WRR selection distributes the reads according to each

storage’s performance. While reading a file, if the ratio is less than or equal to the weight,
it reads from the fast storage because it suggests that the fast storage is not fully utilized.
On the other hand, if the ratio is larger than the weight, it reads from the slow storage as
it indicates that the fast storage is fully utilized while slow storage is less utilized. Thus,
WRR selection reads from the slow storage once while reading the weight times from the
fast storages.

For example, if we assume that the read throughput of fast storage is W times faster 
than that of slow storage, it suggests that the fast storage can read W times more blocks 
than slow storage at the same time, and the weight is set to W . The value of W may vary 
depending on the environment of the cluster. Therefore, when reading a file composed of 
W + 1 consecutive blocks, W blocks are read from the fast storage while one block is read 
from the slow storage for balanced reading.

In this case, WRR selection requests slow storages to read (N × 1/(W + 1)) blocks
while requesting fast storages to read the (N ×W/(W + 1)) blocks. Theoretically, the
time to read (N ×1/(W +1)) blocks from slow storages is same as the time to read (N ×
W/(W +1)) blocks from fast storages. Therefore, both storages do not become idle and
finish reading within (N×1/(W +1))/T hroughputslow(this value is equal to (N×W/(W +
1))/T hroughput f ast ).

Dynamic round-robin selection (DRR): This method operates similar to WRR se-
lection except that it dynamically adjusts the weight. As WRR selection statically dis-
tributes read requests to storages, it results in an imbalance in distribution when the weight
is incorrect. DRR selection mitigates the problem by monitoring the storage utilization at
runtime to ensure that the read distribution is balanced and adjusting the weight if it is not
balanced.

Before running HDFS, DRR selection statically configures threshold value for each
storage type to determine whether to adjust the weight. In addition, it initially creates a
background process that measures the system statistics and records the storage utilization
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Fig. 3. Benchmarks execution time for each data retrieval policy.

of each datanode. Then, it periodically checks whether the average utilization of each
storage type is updated during read. If the average utilization of fast or slow storages is
measured to be lower than the threshold, it increases the weight to allow more access to
fast or slow storages, respectively.

Depending on the threshold, this can control the aggressiveness of changing the
weight. If the threshold is set low, the initial weight changes less aggressively. In con-
trast, if the threshold is set high, the weight increases aggressively if the value is for fast
storages, while the weight decreases aggressively if that is for slow storages. Thus, it not
only exploits the advantages of WRR selection but also flexibly handles the imbalance of
read distribution that occurs during operation.

4. EXPERIMENT

4.1 Experimental Setup

Except for several experiments, our HDFS cluster consists of one namenode and
three datanodes, with each node containing two 24-core CPUs (Intel Xeon CPU E5-2670
2.30GHz) and 64GB DRAM. All machines are connected through 10Gbps Ethernet in
the LAN. The version of Hadoop is 2.6.0. The HDFS block size is 128 MB, and the
replication factor is 3.

We used the One SSD policy as the baseline method. We used one Samsung 850
Pro SSD 256GB and one Western Digital 7200RPM HDD SATA 1TB on each datanode.
In our experimental environment, the throughput of an HDFS cluster with a single SSD
is 300MB/s and that of a single HDD is about 60MB/s.

4.2 Results

We evaluate the performance of four data retrieval policies with three MapRe-
duce [16] workloads as follows.

• DFSIO: This tests the method by which HDFS handles a large number of operations
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that simultaneously perform read or write. DFSIO measures the throughput of the
cluster as a test result.

• Scan: This tests a Hive [17] query that creates two tables, reads one of the tables
and copies it to the other table.

• Sort: This tests a MapReduce workload that reads textual input data from HDFS,
sorts and merges the results and stores them in HDFS.

DFSIO is a file system benchmark of Hadoop, and Scan and Sort are I/O-intensive
workloads provided by HiBench [18]. For the performance evaluation, the amount of data
used to measure the performance is 128GB, 34GB and 30GB for DFSIO, Scan and Sort,
respectively.

4.2.1 Execution time of benchmarks for the datasets

Fig. 3 illustrates the execution time of benchmarks for each data retrieval policy. It
is evident that network-distance-based selection provides the worst performance while
storage type selection, WRR selection and DRR selection provide significantly higher
performance than network-distance-based selection on all benchmarks.

This is because, when using the One SSD storage policy, network-distance-based
selection is more likely to read blocks stored in DISK despite SSD being able to handle
more reads because only one replication is stored in the SSD. On the other hand, storage
type selection, WRR selection, and DRR selection improve the overall performance by
utilizing the SSD through a larger number of blocks read from SSD than from DISK (In
this experiment, we established the weight of WRR selection to five because the perfor-
mance of SSD and DISK used in this experiment is five times different.). In particular,
because DRR selection utilizes both storages, it is expected to improve the throughput by
4 times the network-distance-based selection and 1.2 times the storage selection. The ex-
perimental results show that it performs best on all benchmarks and improves DFSIO by
6.4 times, Scan by 3.2 times, and Sort by 2.3 times compared to network-distance-based
selection.

4.2.2 Evaluation details for benchmarks and data retrieval policies

For further analysis, we measured the device utilization of SSD and DISK with the
linux iostat command which reports the device’s input and output statistics for each bench-
mark dataset and data retrieval policy. We also calculated the average device utilization
by dividing the accumulated utilization values by a specific time period. (In DFSIO, the
value is divided by the total execution time. In Scan and Sort, the value is divided by the
time the read operations are performed because the writes are still in progress after the
read operations are complete.)

DFSIO: Fig. 4 compares the storage utilization for each data retrieval policy during
DFSIO. As seen in Fig. 4(a), in network-distance-based selection, the overall utilization
of DISK is high while that of SSD is low. The average utilization of SSD is measured
as 5% and that of DISK is measured as 97%. Next, Fig. 4(b) shows that, in the storage
type selection, only the SSD is used and the average utilization of SSD is measured as
90%, whereas DISK is not used. For WRR selection, as shown in Fig. 4(c), the average
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(a) Network-distance-based selection.
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(b) Storage type selection.
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(c) Weighted round-robin selection.
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(d) Dynamic round-robin selection.

Fig. 4. Storage utilization of each policy measured by DFSIO.

utilization of the SSD is measured as 67% and that of DISK is measured as 69%. Finally,
for DRR selection, as seen in Fig. 4(d), the average utilization of SSD is measured as
90% and that of DISK is measured as 51%. From the results, we can made two key
observations.

• The utilization of fast storage significantly affects overall throughput. The
network-distance-based selection with the lowest SSD utilization shows the worst
performance. WRR selection is better than network-distance-based selection be-
cause of its higher SSD utilization than, but it is slower than storage type selection
and DRR selection because of its lower SSD utilization.

• The policy that utilizes both storages shows better performance. Storage type
selection and DRR selection achieved high performance through high SSD uti-
lization. However, as DRR selection monitors storage utilization and changes the
weight dynamically, both storages show high utilization. This allows it to achieve
higher performance than the storage type.

Additionally, we evaluated the data retrieval policies in various configures by using
DFSIO. First, to observe the WRR selection’s behavior according to weights, we mea-
sured the utilization of SSD and DISK and the overall throughput by changing the weight
from 1 to 20, as seen in Fig. 5. As the weight increases, the utilization of SSD increases
while that of DISK gradually decreases. As SSD performs considerably faster than DISK,
the throughput of clusters increases with the increased utilization of SSD. Further, higher
throughput is measured if the utilization of DISK is higher when SSD utilization is the
same.
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Fig. 5. Storage utilization and throughput of WRR selection by weight.
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Fig. 6. DFSIO Performance by network distance.

Specifically, the result shows the best performance when the weight is 7 (SSD uti-
lization is 80%, DISK utilization is 50%.). When the weight is 20, the overall throughput
decreased by about 2.5% because DISK utilization is reduced by about 30% while SSD
utilization is similar. Because DISK is much slower than SSD, DISK utilization does
not significantly affect the overall performance. However, as the weight increases, it is
clear that the performance will be saturated with storage type selection, resulting in 10%
performance degradation. The experiment shows that because WRR selection operates
on static weights, it cannot cope with low utilization of a particular storage, making it
difficult to obtain high storage utilization on both storages. In addition, it also shows that
setting a higher threshold for slow storage has a greater adverse effect on performance by
aggressively lowering the weight than setting a higher threshold for fast storage in DRR
selection.

Second, we measured the performance of each data retrieval policy by increasing the
number of map tasks that concurrently perform DFSIO reads, from 15 to 240. DFSIO
benchmark adjusts the number of map tasks by changing the number of files. Fig. 6
shows the execution time for reading 120 GB of data, depending on the number of files.
The experiment result shows that when the number of map tasks is greater than or equal
to 60, there is no performance difference according to the number of map tasks in all
data retrieval policies. However, when the number of map tasks is less than or equal to
30, the performance of network-distance-based selection is degraded because not only the
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Fig. 7. DFSIO performance by the number of datanodes.

number of tasks processing reads is small, but also the tasks spend time waiting for IO.
On the other hand, storage type selection, WRR selection, and DRR selection maintained
their performance because they take advantage of fast IO performance and spend less time
waiting for IO even with small map tasks.

Next, we measured the amount of rack-to-rack data movement across the network.
We used a two-rack cluster consisting of a rack consisting of two nodes and a rack consist-
ing of one node (we configured the other settings as default.). We measured the amount
of data transferred between racks for each data retrieval policy, with and without network
considerations. The result shows that when the network is not considered, about 33GB of
data when using storage type selection, about 27GB of data when using WRR selection,
and about 28GB of data when using DRR selection was transferred between the racks.
On the other hand, when considering the network, there was no data transfer between the
racks. Based on the result, we can see that our methods mitigate the saturation of the
switch between racks.

Lastly, we measured the performance of each data retrieval policy by changing the
number of datanodes consisting of the cluster to 2, 4, 6, and 8. In this experiment, all
datanodes use one SSD and one DISK. In the case of a cluster consisting of nodes with
different computing powers, the performance degradation occurs [19]. Therefore we only
used DFSIO workload in this experiment. The result in Fig. 7 shows that the performance
of all data retrieval policies improves as the number of datanodes increases. Specifically,
as the number of nodes increased from 2 to 8, network-distance-based selection improved
by 41%, storage type selection by 147%, WRR selection by 147% and DRR selection by
136%.

Scan: As Scan reads a table and copies it to another table, both reads and writes
are performed simultaneously. Writes are slower than reads because they create multiple
replications while reads retrieve one of the replications. Moreover, writes lower fast stor-
age utilization because fast storage has to wait for the replications to be written to the slow
storages. In Scan, reads and writes are performed simultaneously in the front part, and
the remaining writes are performed after reads are completed. As a result, SSD utilization
is lowered after a certain time because the reads are almost completed and the remaining
writes are performed.

Fig. 8 depicts the storage utilization of each data retrieval policy over time during
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(a) Network-distance-based selection.
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(b) Storage type selection.
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(c) Weighted round-robin selection.
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(d) Dynamic round-robin selection.
Fig. 8. Storage utilization of each policy measured by scan.

Scan. During the read portion of the Scan, for network-distance-based selection, the aver-
age utilization of SSD is measured as 8.1% and the utilization of DISK is measured as
80%. This policy shows the slowest performance with lowest SSD utilization. For storage
type selection, the average utilization of SSD is measured as 73%, whereas that of DISK
is measured as 82%. Because all blocks are read from the SSD, fast performance and high
SSD utilization is observed. Note that the utilization of DISK is also measured to be high
because the blocks are written to both storages. For WRR selection, the average utilization
of SSD is 64% and that of DISK is 99%. Finally, for DRR selection, the utilization of
SSD is measured as 79% and that of DISK is measured as 84%. Both policies show high
performance because they utilize both storages. DRR selection particularly shows the
best performance by utilizing both storages most efficiently.

Sort: Sort reads blocks from HDFS, sorts them, and stores the final result in HDFS.
As intermediate data is stored in temporary space, unlike Scan, the read and write parts
can be distinguished. Furthermore, performance enhancement according to data retrieval
policy is obtained from improved performance of reading part.

Fig. 9 presents the storage utilization of HDFS cluster during Sort. The red dotted
line in the figures distinguishes the read and write parts of the Sort. The left side of the
line shows reading and the right side of the line shows writing.

As a result of the reading part of the Sort, the average utilization of SSD for network-
distance-based selection is measured as 3% and that of DISK is measured as 52%. Next,
for storage type selection, the average utilization of SSD is measured as 43%, whereas
DISK is not used. For WRR selection, the average utilization of SSD is 37% and that of
DISK is 31%. Finally, for DRR, the average utilization of SSD is measured as 43% and
that of DISK is measured as 10%.

Network-distance-based selection shows the slowest performance as it cannot effi-
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(a) Network-distance-based selection.
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(b) Storage type selection.
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(c) Weighted round-robin selection.
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(d) Dynamic round-robin selection.

Fig. 9. Storage utilization of each policy measured by sort.

ciently utilize fast storage in the reading part. On the other hand, storage type selection,
WRR selection, and DRR selection provide fast readings and reduce the time to read. In
the case of Sort operation, CPU usage is larger than the other benchmarks in our study,
and as temporary data is stored separately, the storage utilization is lower than other tasks.
Nevertheless, it is found that the improved I/O performance greatly influences the overall
performance.

5. RELATED WORK

Recently, several studies have been conducted to enhance the performance of Ha-
doop systems by increasing storage systems’ performance. They can be classified into
researches on homogeneous and on heterogeneous storage environments. Research on
heterogeneous storage can also be categorized as one using fast storage as a cache and the
other maximizing the throughput of heterogeneous storage system.

Researches on homogeneous storage environment: Researches of homogeneous
storage environments improve performance by optimizing I/O of existing storage sys-
tem [20] or by replacing slower storages with faster storages [21, 22, 23]. Themis [20]
improves the performance of MapReduce as it optimizes existing storage systems by min-
imizing the number of I/O operations through elimination of task-level fault tolerance and
dynamic and flexible memory management.

On the other hand, [21, 22, 23] improve the overall performance by replacing HDDs
with SSDs. Specifically, [21] shows that replacing local storage device with HDD to
SSD greatly improves the performance of I/O-intensive MapReduce job. [23] shows that
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the performance of Hadoop cluster composed of SSD is better though the throughput of
SSD and of HDD is same. Lastly, [22] shows that leveraging SSD as temporary storage,
especially for storing intermediate data, is the most cost-efficient.

Optimizing the existing storage system is effective in a homogeneous storage envi-
ronment although there is a limitation in solving the problem occurring in the heteroge-
neous storage environment described in Section 2. Though replacing slow storages with
fast storages improves performance, our method is more cost-effective as it can achieve
high performance while storing small amounts of data in fast storages.

Using fast storages as a cache: The studies of Hadoop with heterogeneous storage
environment include researches using fast storages as a cache. HyCache [24] and mp-
Cache [25] add SSDs to the distributed file system and provide methods for using SSDs
as caching areas for existing storage systems. Triple-H [26] runs in a heterogeneous stor-
age environment using RAM DISK and SSD-based buffer caches.

These studies improve performance by avoiding access to slower storage devices
through caching methods. However, they are less efficient than our method in terms of
space utilization because of the redundant data in the storage tiers as well as to the block
replication of HDFS. Moreover, while caching methods utilize only fast storage, and there
is overhead of managing the caching area, our approach utilizes both fast and slow storage,
resulting in more opportunities for performance improvements.

Optimizing the heterogeneous storage environment: There are several researches
focusing on improving performance by optimizing storages in heterogeneous storage en-
vironments. [23, 27, 28] describes the performance of heterogeneous storage environ-
ments with SSDs added to clusters of HDDs. In [23], using default configuration, the
bandwidth of added SSD is not fully utilized because less data is stored on the SSD than
on the HDDs. In [27] and [28], the performance of a cluster is measured by changing the
ratio of data stored on the HDDs and SSDs. Further, [27] suggests that the system that
stores more data in the SSD is less sensitive to parameters, and [28] indicates decreased
energy consumption.

In the above studies, the performance of cluster is improved when more data is stored
in the SSDs. However, because the price per capacity of an SSD is higher than that of an
HDD, storing more data on the SSD is inefficient in terms of cost. On the other hand, our
method optimizes read through new data retrieval policy for providing high performance
while storing a small amount of data in SSD.

In other studies, fast storage and slow storage are classified into tiers, and tier-based
data access schemes are proposed [29, 30]. [29] improves the performance of SQL query
processing engine called SQL-on-Hadoop running on HDFS using heterogeneous storage
environment and utilizes the SSD in HDFS by allowing the SQL-on-Hadoop system to
read data on SSDs(it is similar to the storage type selection in our study). The method
used in [30] divides similar storage devices into tiers and proposes block placement
and retrieval policies to improve storage utilization. Among the methods proposed in
this study, the hybrid policy stores and reads blocks considering the performance of the
network and the storage(it is similar to the WRR selection of our study).

Both methods improve application performance by utilizing fast storages. However,
while [29] utilizes only fast storages, our proposed method can deliver better performance
because it uses both types of storages. In addition, our method modifies the structure of
the distributed file system, providing the advantage of improving performance regardless
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of the type of application.
In case of [30], it effectively utilizes all devices in a heterogeneous storage environ-

ment. However, performance degradation may occur when the weights are set incorrectly.
Our proposed method dynamically checks and changes the weight, thus working more
flexibly and effectively.

6. CONCLUSION

In this paper, we proposed a new data retrieval method for HDFS with heterogeneous
storages to optimize the read performance. Our method efficiently utilized both storages
by considering not only network distance but also the performance of storage. In addi-
tion, it dynamically rebalances the number of read requests according to the performance
of each storage. We evaluated the performance of our method using three well-known
workloads. All benchmark results demonstrate that our method is able to deliver 2.2-6
times better performance than the existing HDFS. In addition, our method shows im-
proved performance compared to other methods considering the type of storage device.

ACKNOWLEDGMENT

This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2015-
0-00314, NVRam Based High Performance Open Source DBMS Development)

REFERENCES

1. “Apache Hadoop,” http://apache.hadoop.org.
2. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file sys-

tem,” in Proceedings of IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies, 2010, pp. 1-10.

3. D. Borthakur, “The hadoop distributed file system: Architecture and design,” Hadoop
Project Website, Vol. 11, 2007, p. 21.

4. T. W. Wlodarczyk, Y. Han, and C. Rong, “Performance analysis of hadoop for query
processing,” in Proceedings of IEEE Workshops of International Conference on Ad-
vanced Information Networking and Applications, 2011, pp. 507-513.

5. F. Pan, Y. Yue, J. Xiong, and D. Hao, “I/o characterization of big data workloads in
data centers,” in Proceedings of Workshop on Big Data Benchmarks, Performance
Optimization, and Emerging Hardware, 2014, pp. 85-97.

6. T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk caches,” in
Proceedings of IEEE 35th International Symposium on Computer Architecture, 2008,
pp. 327-338.

7. J. Kwak, E. Hwang, T.-K. Yoo, B. Nam, and Y.-R. Choi, “In-memory caching orches-
tration for hadoop,” in Proceedings of the 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, 2016, pp. 94-97.



OPTIMIZING HADOOP DISTRIBUTED SYSTEM ON HETEROGENEOUS STORAGES 727

8. D. Lee, C. Min, and Y. I. Eom, “Effective flash-based ssd caching for high perfor-
mance home cloud server,” IEEE Transactions on Consumer Electronics, Vol. 61,
2015, pp. 215-221.

9. A. Wang and C. McCabe, “In-memory caching in hdfs: Lower latency, same great
taste,” Hadoop Summit, 2014.

10. T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang, “hstorage-db: heterogeneity-
aware data management to exploit the full capability of hybrid storage systems,” in
Proceedings of the VLDB Endowment, Vol. 5, 2012, pp. 1076-1087.

11. Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam, “Hybrid-
store: A cost-efficient, high-performance storage system combining ssds and hdds,”
in Proceedings of IEEE 19th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2011, pp. 227-236.

12. H. Payer, M. Sanvido, Z. Z. Bandic, and C. M. Kirsch, “Combo drive: Optimiz-
ing cost and performance in a heterogeneous storage device,” in Proceedings of the
1st Workshop on Integrating Solid-State Memory into the Storage Hierarchy, Vol. 1,
2009, pp. 1-8.

13. “Hadoop archival storage, SSD & memory,” https://hadoop.apache.org/docs/r2.6.0-
/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html, 2014.

14. T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2012.
15. L.-Y. Ho, J.-J. Wu, and P. Liu, “Optimal algorithms for cross-rack communication

optimization in mapreduce framework,” in Proceedings of IEEE International Con-
ference on Cloud Computing, 2011, pp. 420-427.

16. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, Vol. 51, 2008, pp. 107-113.

17. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
and R. Murthy, “Hive: a warehousing solution over a map-reduce framework,” in
Proceedings of the VLDB Endowment, Vol. 2, 2009, pp. 1626-1629.

18. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark suite:
Characterization of the mapreduce-based data analysis,” in Proceedings of IEEE 26th
International Conference on Data Engineering Workshops, 2010, pp. 41-51.

19. C. B. VishnuVardhan and P. K. Baruah, “Improving the performance of heteroge-
neous hadoop cluster,” in Proceedings of IEEE 4th International Conference on Par-
allel, Distributed and Grid Computing, 2016, pp. 225-230.

20. A. Rasmussen, M. Conley, G. Porter, R. Kapoor, A. Vahdat et al., “Themis: an i/o-
efficient mapreduce,” in Proceedings of the 3rd ACM Symposium on Cloud Comput-
ing, 2012, p. 13.

21. S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee, “A case for flash memory ssd in
hadoop applications,” International Journal of Control and Automation, Vol. 6, 2013,
pp. 201-210.

22. S. Moon, J. Lee, and Y. S. Kee, “Introducing ssds to the hadoop mapreduce frame-
work,” in Proceedings of IEEE 7th International Conference on Cloud Computing,
2014, pp. 272-279.

23. K. Kambatla and Y. Chen, “The truth about mapreduce performance on ssds,” in
Proceedings of the 28th Large Installation System Administration Conference, 2014,
pp. 109-118.



728 JONGBAEG LEE, JONGWUK LEE, SANG-WON LEE

24. D. Zhao and I. Raicu, “Hycache: A user-level caching middleware for distributed
file systems,” in Proceedings of IEEE 27th International on Parallel and Distributed
Processing Symposium Workshops, PhD Forum, 2013, pp. 1997-2006.

25. B. Wang, J. Jiang, and G. Yang, “mpcache: Accelerating mapreduce with hybrid stor-
age system on many-core clusters,” in Proceedings of IFIP International Conference
on Network and Parallel Computing, 2014, pp. 220-233.

26. N. S. Islam, X. Lu, M. Wasi-ur Rahman, D. Shankar, and D. K. Panda, “Triple-
h: A hybrid approach to accelerate hdfs on hpc clusters with heterogeneous storage
architecture,” in Proceedings of the 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2015, pp. 101-110.

27. D. Wu, W. Luo, W. Xie, X. Ji, J. He, and D. Wu, “Understanding the impacts of
solid-state storage on the hadoop performance,” in Proceedings of IEEE International
Conference on Advanced Cloud and Big Data, 2013, pp. 125-130.

28. I. Polato, D. Barbosa, A. Hindle, and F. Kon, “Hybrid HDFS: decreasing energy
consumption and speeding up hadoop using ssds,” PeerJ PrePrints, Vol. 3, 2015, p.
e1320v1.

29. M. Kim, M. Shin, and S. Park, “Take me to ssd: a hybrid block-selection method on
hdfs based on storage type,” in Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 965-971.

30. K. Krish, A. Anwar, and A. R. Butt, “hats: A heterogeneity-aware tiered storage for
hadoop,” in Proceedings of the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2014, pp. 502-511.

Jongbaeg Lee received his bachelor’s degree from the
School of Computer Engineering, Sungkyunkwan University,
Korea, in 2013. He is currently working toward the Ph.D. degree
at Sungkyunkwan University, Korea. His research interests in-
clude distributed database technology and flash-based database
technology.



OPTIMIZING HADOOP DISTRIBUTED SYSTEM ON HETEROGENEOUS STORAGES 729

Jongwuk Lee is an Assistant Professor at the Department
of Software, Sungkyunkwan University, Korea. In September
2014 to August 2016, he was an Assistant Professor at Hankuk
University of Foreign Studies, Korea. In December 2013 to Au-
gust 2014, he was a Postdoctoral Researcher at College of Infor-
mation Sciences and Technology, Pennsylvania State University,
USA. In February 2012, he received his Ph.D. in Department
of Computer Science and Engineering at Pohang University of
Science and Technology, Korea. His research interests include
recommender systems, natural language processing, and query

processing and optimization in DBMS. In addition to these topics, his research interests
broadly lie in the field of data mining, machine learning, and related applications.

Sang-Won Lee received the Ph.D. degree from the Com-
puter Science Department, Seoul National University, Korea, in
1999. He is a Professor with the College of Information and
Communication Engineering, Sungkyunkwan University, Korea.
He was a Research Professor at Ewha Womans University and
a technical staff at Oracle, Korea. His research interest includes
flash-based database technology.


