
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 17-36 (2017)
DOI: 10.6688/JISE.2017.33.1.2

17

Retrieval of Web Service Components
using UML Modeling and Term Expansion*

WEN-TIN LEE1, SHANG-PIN MA2 AND YAO-YU TSAI2

1Department of Software Engineering and Management

National Kaohsiung Normal University

Kaohsiung, 824 Taiwan

2Department of Computer Science and Engineering

National Taiwan Ocean University

Keelung, 202 Taiwan

E-mail: wtlee@nknu.edu.tw; albert@ntou.edu.tw; finalcai1215@gmail.com

Web service discovery plays a crucial role in the development of applications based

on service-oriented architecture, due to the importance of identifying services capable of
fulfilling the requirements of service requesters. In the field of software engineering, web
service discovery can be applied to the problem of software component retrieval in order
to facilitate the reuse of software components and speed up the development of new
software projects. Unfortunately, most existing service discovery schemes are unable to
perform this task effectively due to manual service queries, a lack of support for service
queries using unified modeling language (UML), and the high degree of complexity
associated with integration. This study proposes a novel approach to resolving this
situation referred to as SCRUMTE (Service Component Retrieval with UML Modeling
and Term Expansion). The proposed system provides three functions: 1) the generation
of a lexically expanded term set for each candidate service in the service repository; 2)
transformation of required UML models into WSDL (Web Services Description Lan-
guage) documents for use in service queries; and 3) integration of a web service retrieval
mechanism for the identification of services based on textual similarities and service
integration. This system was designed to assist software developers in the search for
service components according to their specific requirements. Experiment results
demonstrate that the search precision of the SCRUMTE system far exceeds that of
text-based approaches.

Keywords: service-oriented architecture, service discovery, UML, term expansion, term
expasion

1. INTRODUCTION

Service-oriented computing (SOC) is an important trend in the field of software
engineering [1]. In SOC, web services and service-oriented architectures (SOAs) act as
fundamental elements in the provision of on-demand applications. Web services are
self-described, self-contained, and platform-independent computational elements, which
can be composed, published, and located using standard protocols for the construction of
applications operating on a range of platforms. Among these technologies, web service
discovery is particularly important in the development of SOA-based applications. An
effective service discovery mechanism can help users to locate services capable of
satisfying specific requirements [2], playing an important role in situations where service

Received December 8, 2015; revised March 6 & March 24, 2016; accepted April 5, 2016.
Communicated by Chang-Shing Lee.
* This research was sponsored by Ministry of Science and Technology in Taiwan under grants MOST 104-

2221-E-017-014 and MOST 104-2221-E-019-001.

mailto:finalcai1215@gmail.com

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

18

composition technology is needed to assist in the locating and binding of component
services [3, 4]. Over the past decade, numerous researchers have addressed the issue of
service discovery using information retrieval mechanisms [5], applying techniques of the
semantic web [6, 7], or utilizing hybrid solutions [8]. Within the current paradigm,
service requesters must issue queries that include all criteria used in the search of web
services, such as service capability or quality of service (QoS). It should be noted that the
methods used in service discovery are similar to those applied by software engineers to
deal with the problem of software component retrieval [9]. Documents in WSDL [10]
(Web Services Description Language) can be generated automatically or semi-auto-
matically to describe the functional specifications of software components in the asset
library of an organization or in a public API (application programming interface) re-
pository. Thus, we posit that the mechanisms used in service discovery could also be
applied to the retrieval of software components. Effective mechanisms for the retrieval of
service components could facilitate and expand the re-use of software components and
thereby speed up the development of new software projects.

Unfortunately, most existing service discovery schemes are unable to perform these
tasks effectively due to the following problems:

 Manual service query process The service components currently available are able

to deal with only a portion of the enormous number of functions designed into a sys-
tem. Unfortunately, software developers are unaware of the number of service queries
that should or could be made. Issuing a large number of service queries manually
increases the likelihood of errors and consumes a great deal of time.

 Lack of support for service queries using Unified Modeling Language (UML)1
Software developers today are expected to have a working knowledge of UML for the
analysis and design of software systems. In fact, most of the content of service queries
is embedded in developed UML models. However, as mentioned, software developers
must perform searches manually to find reusable service components, even for systems
that have undergone thorough analysis and design. Automatic or semi-automatic ways
to generate service queries from UML models is required to avoid unnecessary manual
efforts.

 High integration complexity Conventional service discovery mechanisms tend to
spread service operations throughout multiple service components, and using a large
number of service components in a software project greatly increases the complexity
of integration.

In this study, we addressed these issues by identifying three core requirements in the

construction of an effective method for the discovery of service components: (1) We
eliminated the need for manual interventions in the discovery of service components; (2)
We employed existing UML models in the discovery of service components; (3) We sought
to minimize the number of service components retrieved. The resulting system is referred
to as the Service Component Retrieval with UML-based Modeling and Term Expansion
(SCRUMTE), which prov ides two key features: (1) transformation of UML models into
WSDL documents for service queries; and (2) a novel mechanism to facilitate the
discovery of web service components by minimizing the number of components while
satisfying the requirements of users through the application of lexical similarity. Our
1 http://www.uml.org/

RETRIEVAL OF WEB SERVICE COMPONENTS

19

objective was to decrease the cost of software development by enabling the retrieval of
reusable service components. Fig. 1 presents an overview of the SCRUMTE system, which
performs two fundamental types of activity: system activities implemented by the
SCRUMTE engine, and user activities conducted by the developers of software systems.
System activities include the parsing of WSDL documents, WordNet-based term expansion,
the transformation from UML to WSDL, and service ranking based on the Vector Space
Model (VSM). User activities include the development of UML models and the selection
of services from a list of services generated for the user.

The remainder of this paper is organized as follows: Section 2 presents a review of
existing research in this field. In Section 3 we detail the proposed approach. Empirical
evaluations as to the feasibility of the proposed system are presented in Section 4.
Conclusions are drawn in Section 5.

Fig. 1. Overview of proposed SCRUMTE system.

2. RELATED WORKS

Semantic Similarity Retrieval Models (SSRM) [11] is a mechanism of query expan-
sion based on WordNet [12], comprising three phases: term re-weighting, term expansion,
and determining the degree of similarity among documents. The re-weighting phase
involves the adjustment of weights for each query term, in accordance with its lexical
similarity to other terms in the same query. For instance, in a query containing the terms
“news”, “theater”, and “cinema”, the last two terms have a lexical relationship. As a
result, these terms are assigned higher weights, whereas the weight of term “news”
remains unchanged. In the term expansion phase, queries are expanded using sy-
nonymous terms, and terms are augmented using hyponyms and hypernyms with weights
assigned according to the distance between the original term and the augmented term.
Only the terms (hypernyms/hyponyms) that possess a degree of similarity higher than a
given threshold T are added to the query. In the assessment of document similarity phase,

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

20

SSRM is used to quantify the degree of similarity between expanded queries and the
document in question. The weight assigned to each term in the document is then
calculated using term frequency-inverse document frequency (TF-IDF). In this research,
we enhance SSRM to do term expansion for service descriptions.

Levi and Arsanjani [13] proposed an approach based in a goal-model that included
criteria for the decomposition of systems into modules. High-level business goals are
decomposed into sub-goals with explicit dependencies, and a set of services is required to
achieve each of the sub-goals. This method makes it possible to map the architecture of a
business into the architecture of component-based software (CBSA). In this approach,
the emphasis is on identifying high-level enterprise components rather than retrieving
existing software components.

Service-Oriented Modeling and Architecture (SOMA) [14] involves the establish-
ment of a software development life cycle aimed at the analysis, design, implementation,
and deployment of projects based on a service-oriented architecture (SOA). SOMA is a
fractal method based on two principles: (1) process execution in self-similar scope and (2)
iterative and incremental processes. The first principle makes it possible to adapt the
application of SOMA to projects of any size, without the need to alter the means of
implementation. The second principle stipulates that software development be conducted
in an iterative and incremental manner similar to unified process. SOMA is a high-level
life cycle model rather than an operational methodology.

Bauer and Müller [15] employed the Model-Driven Architecture (MDA) approach
for web service choreography and demonstrate a mapping of platform independent
models based on UML sequence diagrams to a platform-dependent model based on the
Business Process Execution Language for Web Services (BPEL4WS). Although this
approach also utilizes UML sequence diagrams, SCRUMTE further adapts the sequence
diagram to discover service components.

Skogan et al. [16] utilized standard UML constructs with a minimal set of ex-
tensions for web services. This approach involves the use of a standard class diagram and
an activity diagram to model the composition of services, whereupon web service
discovery is performed by searching through the WSDL of web services. The user is able
to specify preferences for the language used in composition and for the execution engine
used for composite web services. This approach supports two executable composition
languages, BPEL4WS and WorkSCo (Workflow with Separation of Concerns). The
proposed SCRUMTE system is similar to this approach; however, the developer is not
required to provide a model of the services. SCRUMTE makes it possible for developers
to retrieve candidate reusable service components, as long as they are able to conduct the
analysis and design of software systems using UML.

Wu and Ibrahim [17] used a UML sequence diagram to model the workflow of web
service composition by describing the interactions between various web services and
stipulating the sequence of service execution. Sequence diagrams are parsed to enable the
extraction of information needed for composition, including the name of the web service,
the name of the operation, inputs, outputs, preconditions and post-conditions. A tree-
based optimization algorithm is used to formulate an optimal solution for the composi-
tion based on multiple QoS attributes and the sequence of tasks in the UML sequence
dia-gram. This approach focuses on QoS-driven service discovery whereas the aim of
SCRUMTE is to find service components with interfaces that are not perfectly compati-

RETRIEVAL OF WEB SERVICE COMPONENTS

21

ble with the service queries extracted from UML models.
Spanoudakis and Zisman [18] proposed a UML-based framework to assist with the

development of service-based systems. The framework makes uses of a query language
to specify the structural, behavioral, and quality properties that services should satisfy,
and provide a query processor to match the queries against service registries. The
framework assumes services are specified by WSDL to describe their interfaces,
BPEL4WS to represent their behaviors, and an XML document to assert their quality.
The query processor simultaneously considers signature distances, behavioral distances,
and soft constraint distances. This method needs the user to annotate a lot of information
in UML models and to provide additional query documents. Compared to this approach,
SCRUMTE provides a simpler way to let users develop UML models directly and
generate possible service queries automatically.

Zille et al. [19] developed a matching mechanism using UML-based rich service
description language (RSDL) to enable the automatic discovery of services. RSDL
comprises a description of operation signatures in WSDL, a semantic description of each
operation using UML-based visual contracts (VC), and specific service protocols in
which UML sequence diagrams are used for service requests and UML state charts are
used for service offers. SCRUMTE is similar to this approach; however, SCRUMTE
eliminates the need to patch semantic annotations on WSDLs while retaining the ability
to locate required services using the proposed term expansion mechanism.

3. PROPOSED APPROACH: SERVICE COMPONENT RETRIEVAL WITH
UML-BASED MODELING AND TERM EXPANSION

In this section, we begin by outlining the proposed methods of parsing WSDL and
performing term expansion. Next, we introduce the use of two UML models, use case
diagrams, and sequence diagrams in the analysis and design of a software system. The
UML model is then converted into a WSDL document in the form of a service query
based on the proposed mapping rules. Finally, the mechanisms proposed for the
discovery of web services based on lexical similarity and the minimization of compo-
nents are applied in the retrieval of service components.

We also provide an example implementation involving the development of a movie
information system (MIS). The aim is to illustrate how the SCRUMTE system could help
developers to identify service components in an organizational asset library or a public
component repository that may be applicable in the development of the software system.

3.1 Parsing of WSDL Documents

Before any other steps can be taken, the WSDL terms used for web services must be
preprocessed in two steps, as follows:

 Splitting combined terms: The names of operations and input/output parameters are

usually specified by naming rules, such as those in Pascal, Hungary, and Camel. The
splitting of combined terms enables the retrieval of separate terms in accordance with
naming conventions and removes useless words (such as “a”, “this”, and “type”).

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

22

 Word normalization and stemming: Normalization is used to transform a morpho-
logical word into its original form to ensure the inclusion of words that are suitable to
the process of WordNet-based expansion. Stemming is the process of reducing
inflected (or sometimes derived) words to their root form. In this study, we employed
Porter stemming [20] to eliminate differences among inflectional morphemes.

Following the completion of these two steps, the extracted terms are categorized in

an XML-encoded document as <operation>, <input>, and <output>. For instance, the
input parameter “movieType” is transformed into lower case and divided into the two
terms “movie” and “type”. “Type” is a designated stop word; therefore, SCRUMTE adds
only the term “movie” to the <input>.

3.2 SSRM-Enhanced Term Expansion

To mitigate linguistic imprecision between a service description and a user query,

we planned to do term expansion for service descriptions. We sought to leverage the
hierarchical structure of the general thesaurus WordNet in the identification and
organization of as many matching terms as possible. WordNet is a large lexical and
domain-independent database of English and was applied in a lot of service discovery
methodologies [21, 22]. Currently, we make use of WordNet solely to do domain-
independent term expansion. Ontologies in various domains [23] could be integrated into
SCRUMTE easily using the same method described below.

The proposed term expansion method is based on SSRM and WordNet to find out
expanded terms according to the degrees of similarity among terms [24]. Many methods
have been proposed for the measurement of similarity between two terms. In this study,
we adopted the edge counting method proposed by Li et al. [25], which is strongly
correlated to human judgements related to similarity and has been widely applied in the
past decade. Eq. (1) is used to compute the degree of similarity according to the length
and depth of the path, as follows:

1

1 2(,) ()* () * [0..1],
h h

h h

e e
sim w w f l f h e

e e

 (1)

where l is the shortest path length between w1 and w2, and h is the depth of the similar
word, which is derived by counting the number of levels between the similar word and
the top of the hierarchical structure. In this research, we followed the suggestions
provided in [7] in setting the values of α and β at 0.2 and 0.6 respectively. For example,
the l and h between price and value are 2 and 5. The sim(price,value) is 0.8175.

The proposed lexical expansion mechanism was inspired by SSRM, which uses only
nouns and noun phrases from WordNet in the expansion of query terms. However, nouns
are insufficient to provide a complete description of service capability. Service opera-
tions are usually labelled using verbs as well as nouns, such as “cancelOrder” and
“deleteOrder”. When applying SSRM, it may appear that these two services possess
similar capabilities, because the verbs “cancel” and “delete” cannot be included in the
expanded query. Thus, the proposed method also extracts verbs from the name of
operations to facilitate the calculation of similarity. Only nouns are extracted from the

RETRIEVAL OF WEB SERVICE COMPONENTS

23

input and output elements because the elements used in the description of web services
are usually pure data. The proposed lexical expansion method also differs from SSRM by
not imposing a limit on the number of senses taken into account during expansion.

When a WSDL for a published service is registered in the service repository, term
expansion is used to extract term tokens in WSDL. Each term token is then processed
using WordNet to obtain the following expanded terms: synonyms, hypernyms (words
that are more generic or more abstract than a given word), and hyponyms (a word that is
more specific or less abstract than a given word). The resulting lexical relationship with
query terms and similarity scores must exceed the threshold specified in Eq. (1). In this
study, the threshold for the extraction of highly relevant terms was set at 0.8. The
principle of lexical expansion is presented in Fig. 2.

Fig. 2. Synonyms, Hypernyms, and Hyponyms.

During lexical expansion, every term is assigned a weight calculated as follows:

(,)lex

j iq q sim i j (2)

where simlex (i, j) is the same as in Eq. (1) and qi refers to the weight initially applied to
the term in the TF-IDF calculation. Note that i represents the term belonging to the
original query and j stands for a synonym, a hypernym, or a hyponym, which is expanded
by i in accordance with the proposed query expansion process. For example, the word
“price” is expanded to include the word “value”. If qprice were 1, then the qvalue would be
0.8175, indicating the similarity between “price” and “value”.

To illustrate the differences between the original SSRM and our expansion approach,
another example, airline reservation, was prepared. In the airline reservation example, we
have two service queries and one service (considering the service operation name only
for simplification):

Service 1: bookAirlineTicket

Query 1: reserve airway ticket

Query 2: cancel airway ticket

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

24

By conducting the term expansion mechanism of SCRUMTE and the original
SSRM, the expanded tokens for the service name are as follows. It is noted that
SCRUMTE expanded both nouns/noun phrases and verbs whereas SSRM expanded only
nouns/noun phrases.

 SCRUMTE: {(book, 1), (reserve, 0.946), (request, 0.833), (bespeak, 0.815), (airline, 1),

(airway, 0.901), (ticket, 1)}
 SSRM: {(book, 1), (airline, 1), (airway, 0.901), (ticket, 1)}

The tokens for Query 1 and Query 2 are shown as follows:

 Query 1: {reserve, airway, ticket}

 Query 2: {cancel, airway, ticket}

Next, we used these two expanded token sets to calculate the similarity between
Service 1 and Query 1 as well as Service 1 and Query 2 based on Eq. (3), which is de-
scribed in Section 3.5. Note that we did not consider TF-IDF here for the sake of
simplicity. The similarity calculation results are shown in Table 1:

Table 1. Similarity calculation results.
The similarity between
Service 1 and Query 1

SCRUMTE 0.999
SSRM 0.815

The similarity between
Service 1 and Query 2

SCRUMTE 0.815
SSRM 0.815

It is obvious that these two queries sought for opposite services and Service 1 could

only satisfy Query 1. SCRUMTE-based similarities were able to provide more appro-
priate information whereas SSRM-based could cause incorrect service retrieval.

3.3 System Design Using UML Tools

In this stage, developers can use UML design tools, such as StarUML2, ArgoUML3,

MagicDraw4, or Visual Paradigm5, to develop use case diagrams and sequence diagrams
for the modeling of the software system. In this study, we opted for StarUML to provide
examples. Developers tend to draw use case diagrams to analyze the main business
functions of the system and sequence diagrams to model the interactions among the user
interface, system controller, and core modules. Use case diagrams and sequence
diagrams can serve as service queries in the search for appropriate service components. It
should be noted that XMI (XML Metadata Interchange)6 is commonly used as an
interchange format for UML models and XMI documents can be exported automatically
using UML design tools. We therefore assumed that most developers would follow the
above process in the design of the system, using UML to generate a corresponding XMI
document. The document would be a record of all UML models, including use case
2 http://staruml.io/
3 http://argouml.tigris.org/
4 http://www.nomagic.com/products/magicdraw.html
5 http://www.visual-paradigm.com/
6 http://www.omg.org/spec/XMI/

RETRIEVAL OF WEB SERVICE COMPONENTS

25

diagrams and sequence diagrams. In the next sub-sections, we describe the guidelines
used in the application of the proposed system approach.

3.3.1 Development of use case diagrams

Use case diagrams are generally employed to capture the usage requirements of a
system. In these diagrams, each use case represents a business function, such as
searching for a movie, reserving a hotel room, or planning a route. Fig. 3 presents an
example of a typical use case. In this study, we assumed that the user would create a
sequence diagram corresponding to each use case. For instance, a developer designing a
movie information system may decide that the system requires a search function for
movies. Thus, a use case referred to as “Search Movie Info” would be added to the use
case diagram and a corresponding sequence diagram would be created to describe
interactions between key participants in realizing the functionality of movie search.

Fig. 3. Example of use case diagram.

3.3.2 Development of sequence diagrams

The most important element modelled in a sequence diagram is the role of the
classifier, i.e., the participants in any collaborative actions. In this study, we assumed that
the developer would use three proposed stereotypes to facilitate service discovery:
systemView, systemController, and systemModel. These stereotypes are based on the
MVC (Model-View-Controller) pattern, a software architecture in which the represent-
tation of information is distinct from the way it interacts with users. Fig. 4 presents an
example of a typical sequence diagram. The semantics used in the three stereotypes are
described as follows:

 systemView: a user interface, such as the HTML pages or GUIs found in conventional

stand-alone applications, web applications, or mobile appli- cations on the client side.
 systemController: a system flow controller, such as PHP script, Servlet components, or

node.js pages, which is used to coordinate the user interface at the front-end with
functionalities and data at the back-end.

 systemModel: a core business logic or important source of data in the system, such as a
back-end data provider or API.

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

26

Fig. 4. Example of typical sequence diagram.

The message (i.e., stimulus) represents the interaction between the roles of two
classifiers. Because systemView is irrelevant to core functions and core data, we cap-
tured only two types of messages that are relevant to the retrieval of web services:

 From systemController to systemModel: This message is generated when the Con-

troller calls the function of the Model. Note that the input parameters conveyed by the
message should be also modeled. In StarUML, the input parameters can be specified
as an “Argument” for the message.

 From systemModel to systemController: The message indicates that movement of out-
put data when the Model returns results to the Controller.

Taking the movie information system as an example, the developer creates a

sequence diagram for the use case “Search Movie Info” and then specifies three classifier
roles: Movie Search UI, Movie Search Controller, and Movie Information Provider, by
annotating three specific stereotypes. The messages “searchMovie” and “seachResult”
are then inserted between the Controller and the Model, and the input parameter is
specified as “movieType”.

3.4 Conversion of Designed UML Model into WSDL Document

In this phase, the SCRUMTE system maps each sequence diagram into a WSDL
document in accordance with the stipulated mapping rules.

MovieSearchUI
<<systemView>>

MovieSearchController
<<systemController>>

MoiveInformationProvider
<<systemModel>>

1 : type keywords

2 : searchMovie()

3 : searchMovieResult

4 : searchMovieTheater()

5 : searchMovieTheaterResult

6 : searchMovieShowtime()

7 : searchMovieShowtimeResult

8 : integrated info

RETRIEVAL OF WEB SERVICE COMPONENTS

27

Table 2. Structure of WSDL document.

A formal WSDL document contains information pertaining to a web service, as
shown in Table 2. The goal of SCRUMTE is the retrieval of service components based
on the degree of similarity between the request and the functionality of the candidate
service; therefore only information related to <type>, <message>, and <operation> of
<portType> is captured. The <binding> information, which describes the implementation
of information services, is not covered in this study. In addition, each <portType>, which
includes multiple service operations, represents an individual service component.

In this study, we used WSDL as the service query language for two reasons: (1)
WSDL can be used to capture and organize important service-related information as well
as service queries; and (2) WSDL is a de facto specification accepted by the public,
which means that WSDL-based service queries can be submitted to other service match-
making systems, thereby maximizing interoperability.

Table 3. Mapping rules for conversion from XMI to WSDL.

 Table 3 lists the set of mapping rules devised for transforming the UML model (in
the XMI format) into a WSDL document to serve as a service query. In other words,
SCRUMTE automatically generates a WSDL document representing a single service
query according to the mapping rules. In the example in Fig. 5, the input parameter
“movieType” was converted to a “type” element and embedded in an input message in
WSDL, whereas the message “movieSearchResult” was transformed into an output
message. The names of operations in WSDL are extracted from the name of methods
used as input messages in the UML sequence diagram.

7 http://staruml.sourceforge.net/en/

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

28

Fig. 5. Illustration of mapping from UML to WSDL.

3.5 Ranking and Selection of Services

The final step of the SCRUMTE system involves the ranking and selection of
services. Two coring mechanisms were designed: VSM-based similarity computation
(VSM: Vector Space Model) and the scheme for minimization NoSC (Number of Service
Components).

The principal goal of SCRUMTE is the retrieval of services from the organizational
service asset repository based on the WSDL-based service queries. SCRUMTE cal-
culates the degree of similarity between the request and candidate services according to
the cosine of the angle between the vector Qt, which represents the service query SQ, and
the vector OPtk, which represents the kth lexically-expanded web service operation
(SOPLX

k).

(,) [0..1],LX k
k

k

Qt OPt
Sim SQ SOP

Qt OPt

 (3)

where Qt comprises an operation part, an input part, and an output part, including terms
derived from the WSDL-based query. OPtk is similar to Qt.

The proposed similarity calculation method enables the SCRUMTE system to
retrieve a set of services with the Top-K similarity scores for each request extracted from
the UML model. Furthermore, each set of the services is ranked according to the
similarity score before returning results to the users.

In addition to lexical similarity, we also sought to minimize the number of service
components required to satisfy the requests in the UML model in order to reduce the
complexity of integration in system development. Following the service discovery phase,
the system developer obtains a set of the ranked services for each service query.
Meanwhile, SCRUMTE elicits the Top-K services for each query and filters out services

RETRIEVAL OF WEB SERVICE COMPONENTS

29

with similarity below a given threshold. All service combinations of the Top-K retrieved
services are then prepared for each query. Finally, SCRUMTE calculates the score of all
service combinations according to the combination of components, as follows:

 1

(,) 1
[0..1],

2

N LX c
j ij

i

Sim SQ SOP s
CS cos

N N

 (4)

where CSi is the ith service combination. Sim(SQ, SOPLX

j) is the same as Eq. (3) and N is
the number of service queries. Si

c is the number of components in a given combination.
For example, under the assumption that a combination includes three services (S1, S2,

and S3) with similarity scores of “0.866”, “0.692”, and “0.952” for the original queries
generated from the UML model. Including these services in the same service component
would produce a combination score of 0.836 (the average of the similarity scores). If
these services belonged to two service components, then the combination score would be
decreased to 0.724 (0.836× 0.866). If all of the services were provided by different
components, then the combination score would be only 0.418 (0.836× 0.5). Clearly, the
proposed method enables the prioritization of service combinations that include services
from a smaller number of components.

SCRUMTE only recommends combinations with a component combination score
exceeding the given threshold, which makes it possible for the developer to select all of
the services in a recommended combination in order to minimize the number of service
components.

After the selection of service operations using the proposed service discovery
method or service component number minimization mechanism, the reuse rate is cal-
culated for the service query embedded in the UML model. The reuse rate in Eq. (5) is
calculated according to the proportion of selected services to service queries.

,rS

R
N

 (5)

where R is the rate of service reuse, Sr is the number of the service operations selected by
the developer, and N is the total number of service queries.

4. EXPERIMENTAL EVALUATIONS

In this section, we describe a system prototype using SCRUMTE and the experi-
ments used for evaluation.

4.1 System Prototype

To verify the efficacy of the proposed system, we implemented a prototype referred
to as the SCRUMTE engine, which was implemented using Java (for backend func-
tionalities) as well as Java Servlet technology and client-side Web technology (HTML,
CSS, and JavaScript). The SCRUMTE engine also utilizes a variety of external APIs for
the realization of all required features. The adopted APIs include the following:

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

30

 JDOM8: This was used for the efficient parsing of WSDL documents for the extraction
of necessary elements, such as operation name, input name with included elements, and
output name with included elements.

 Terrier IR Platform9: Terrier APIs were used for term tokenization, the removal of stop
words, and stemming (using PorterStemmer API of Terrier).

 JWI10 (the MIT Java Wordnet Interface) and JWNL11 (Java WordNet Library): These
APIs were used to expand term tokens using WordNet. We also used APIs to search
for synonyms, hypernyms, and hyponyms, to find the shortest path between two terms,
and to determine the depth from the root to the target term.

Processing in the SCRUMTE engine includes four steps. The developer first uses a

UML design tool for the modeling of a system and to export XMI documents. The
developer uploads the XMI document to the system, which triggers the service discovery
process. The system then converts the XMI document into WSDL documents. The
application of mapping rules means that the resulting WSDL document contains only
service interface information, such as service operation names, input messages, and
output messages. Finally, the resulting WSDL documents are used as service queries for
the retrieval of relevant services, the results of which can be browsed by the developer
for the selection of services used in the development of the planned software system.

4.2 UML Models for Campus Information System

We used the aforementioned movie information system (MIS) and a campus

information system (CIS) for university students as testbeds on which to verify the
performance of the proposed system. We used the StarUML software to design UML
models, including a use case diagram and multiple sequence diagrams, which were then
exported as XMI documents. CIS includes two categories of functionality: browsing
living information and browsing course information. For the living information, CIS can
let users search for the phone numbers and location information of nearby shops,
restaurants, hospitals, or clinics. For the course information, CIS can provide the course
timetable, course materials and grades, as well as the location of classrooms. The
resulting use case diagram of CIS is presented in Fig. 6, and a representative sequence
diagrams of CIS for the “Browse course information” use case is presented in Fig. 7.

Fig. 6. Diagram of use case for campus information system.

8 http://www.jdom.org/
9 http://terrier.org
10 http://projects.csail.mit.edu/jwi/
11 http://sourceforge.net/projects/jwordnet/

RETRIEVAL OF WEB SERVICE COMPONENTS

31

Fig. 7. Sequence diagram for “Browse course information” use case.

4.3 Experiment Setup and Analysis

To verify the feasibility and effectiveness of the proposed system, we created a
control system comprising a traditional IR-based service retrieval system utilizing
functional requirements as queries and retrieving services according to VSM-based
similarity. We then prepared the functional requirements of two testbed systems as inputs
for the IR-based system. Functional requirements for MIS were as follows:

 Ability to search for available movie tickets.
 Ability to search for movie-related information, such as the location of a movie theater

and the scheduling of movies.
 Ability to search for movie DVDs.

Functional requirements for CIS were as follows:

 Ability to search for nearby shops, restaurants, hospitals, or clinics.
 Ability to search for the phone numbers of selected shops, restaurants, hospitals, or

clinics.

studentCoursesUI
<<systemView>>

studentCoursesHandler
<<systemController>>

courseInformationProvider
<<systemModel>>

1 : login()

2 : loginResult

3 : lookUpCourseDescription() 4 : getCourseDescription()

5 : courseDescriptionResult6 : courseDescription

7 : obtainClassRoomLocation()
8 : locateClassRoom()

9 : classRoomLocation10 : classRoomMap

11 : lookCoursesTimetable() 12 : getCoursesTimetable()

13 : coursesTimetable
14 : coursesTimetable

15 : lookUpCourseNews() 16 : findCourseNews()

17 : courseNews18 : coursesNews

19 : downloadCourseFiles() 20 : getCourseFiles()

21 : courseFiles22 : courseFiles

23 : inquireScore() 24 : inquireScore()

25 : inquiredScoreResult26 : inquiredScoreResult

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

32

 Ability to search for the location information, such as the addresses of restaurants or
hospitals, of selected shops, restaurants, hospitals, or clinics.

 Ability to search for the course schedule of students.
 Ability to search for course information, such as materials and grades.
 Ability to display the location of classrooms.

For the experiments, we prepared 180 services (i.e., service operations) as the basis

of the search. Some of these services were extracted from OWLS-TC v412 and some were
extracted from previous projects conducted in our lab. To enable an objective com-
parison between the proposed SCRUMTE system and the IR-based system, we used
Precision (derived as the fraction of retrieved services deemed acceptable by the user),
and Recall (derived as the fraction of acceptable services retrieved by the system), as our
comparative indicators. The definitions of Top-K precision (PK(qi)) and Top-K recall
(RK(qi)) are presented in Eqs. (6) and (7).

() ()

() ,
()

k

i ik

i k

i

Rel q Rank q
P q

Rank q

 (6)

() ()

() ,
()

k

i ik

i

i

Rel q Rank q
R q

Rel q

 (7)

where Rel(qi) is the set of the relevant services pertaining to a given query qi and
RankK(q) represents the set of Top-K web services related to query qi.

All experiments were conducted using a desktop computer with the following
configuration: Intel i7-930 2.8GHz with 8G RAM, 500G hard disk, and Windows 7
(64bit). Before conducting any experiments, we manually identified relevant services for
each functional requirement and each extracted WSDL-based request to form a reference
for evaluation. Service discovery was conducted using the SCRUMTE system and the
IR-based system with the aim of calculating the Top-3, Top-5, Top-10, and Top-20
precision as well as Top-3, Top-5, Top-10, and Top-20 recall, by comparing retrieved
services with services returned in the searches. The experiment results obtained from the
two systems are presented in Figs. 8-11. From the experiment results, we can draw the
following conclusions:

 Precision: SCRUMTE outperformed the IR-based system by 16%~58% with regard to

MIS and CIS. This demonstrates the precision of the SCRUMTE system in the
retrieval of appropriate services. Note that the requirements of CIS are more complex
than those of MIS; therefore, the Top-K precision values for CIS were not as high as
those obtained for MIS, when using either of the two methods. Nonetheless,
SCRUMTE yielded good precision (89% top-3 precision).

 Recall: SCRUMTE outperformed the IR-based system by 32%~110%, particularly for
the top-20 recall. Nearly all of the relevant services with top-20 rankings were
successfully retrieved, thereby demonstrating the effectiveness of the proposed lexical
expansion mechanism and method used in the calculation of similarity.

12 http://projects.semwebcentral.org/projects/owls-tc/

RETRIEVAL OF WEB SERVICE COMPONENTS

33

Fig. 8. Evaluation results of Top-K precision in movie information system.

Fig. 9. Evaluation results of Top-K Recall in campus information system.

5. CONCLUSIONS

This paper reports a novel system using Service Component Retrieval with
UML-based Modeling and Term Expansion (SCRUMTE) to assist in the retrieval of
reusable service components for the development of software systems. Compared to
existing service discovery techniques, this study makes the following contributions: 1)
we provide a method for the translation of UML models into WSDL documents for use
as service queries; and 2) we devised a mechanism to help software developers by
facilitating web service discovery in the search for service components capable of
meeting the requirements of software developers with regard to lexical similarity while
minimizing the number of components. Experiment results demonstrate that the proposed
SCRUMTE system is able to achieve a precision and recall superior to that of text-based
service discovery schemes.

The SCRUMTE approach can be utilized in two ways: 1) when the developer has
built UML models that represent system requirements, he/she can use SCRUMTE to
retrieve appropriate service components that may fulfill parts of identified requirements,

Top3 Top5 Top10 Top20

IR 0.78 0.67 0.53 0.37

SCRUMTE 1.00 1.00 0.84 0.55

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Precision in Movie Information System

Top3 Top5 Top10 Top20

IR 0.23 0.31 0.49 0.53

SCRUMTE 0.30 0.50 0.74 0.88

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Recall in Movie Information System

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

34

from his/her organization’s API library or public service repository. 2) the user can draw
UML models intentionally based on his/her needs for web services and use SCRUMTE
to acquire the information of candidate web services, without issuing numerous service
queries manually. In conclusion, SCRUMTE facilitates the reuse of service components
to speed up the development of new software projects and reduce overall costs.

Fig. 10. Evaluation results of Top-K precision in campus information system.

Fig. 11. Evaluation results of Top-K recall in campus information system.

REFERENCES

1. J. Lee, S.-P. Ma, and A. Liu, eds., Service Life Cycle Tools and Technologies:

Methods, Trends and Advances, 2012, IGI Global: Hershey, PA, USA.
2. S.-P. Ma, C.-W. Lan, and C.-H. Li, “Contextual service discovery using term

expansion and binding coverage analysis,” Future Generation Computer Systems,
Vol. 48, 2015, pp. 73-81.

3. S.-P. Ma, Y.-Y. Fanjiang, and J.-Y. Kuo, “Dynamic service composition using core
service identification,” Journal of Information Science and Engineering, Vol. 30,
2014, pp. 957-972.

Top3 Top5 Top10 Top20

IR 0.29 0.33 0.38 0.55

SCRUMTE 0.51 0.63 0.80 0.96

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Recall for the Campus Information System

Top3 Top5 Top10 Top20

IR 0.67 0.47 0.33 0.23

SCRUMTE 0.89 0.62 0.42 0.26

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Precision for the Campus Information System

RETRIEVAL OF WEB SERVICE COMPONENTS

35

4. J. Lee, et al., “Dynamic service composition: A discovery-based approach,” Inter-

national Journal of Software Engineering and Knowledge Engineering, Vol. 18,
2008, pp. 199-222.

5. J. Garofalakis, et al., “Contemporary web service discovery mechanisms,” Journal

of Web Engineering, Vol. 5, 2006, pp. 265-290.
6. K. Verma, et al., “METEOR-S WSDI: A scalable P2P infrastructure of registries for

semantic publication and discovery of web services,” Information Technology and

Management, Vol. 6, 2005, pp. 17-39.
7. D. Martin, et al., “Bringing semantics to web services with OWL-S,” World Wide

Web, Vol. 10, 2007, pp. 243-277.
8. M. Klusch and P. Kapahnke, “The iSeM matchmaker: A flexible approach for

adaptive hybrid semantic service selection,” Web Semantics: Science, Services and

Agents on the World Wide Web, Vol. 15, 2012, pp. 1-14.
9. A. M. Zaremski and J. M. Wing, “Specification matching of software components,”

ACM Transactions on Software Engineering and Methodology, Vol. 6, 1997, pp.
333-369.

10. R. Chinnici, et al., Web Services Description Language (WSDL) Version 2.0., 2007,
W3C.

11. G. Varelas, et al., “Semantic similarity methods in wordNet and their application to
information retrieval on the web,” in Proceedings of the 7th Annual ACM In-

ternational Workshop on Web Information and Data Management, 2005, pp. 10-16.
12. G. A. Miller, “WordNet: a lexical database for English,” Communications of the

ACM, Vol. 38, 1995, pp. 39-41.
13. K. Levi and A. Arsanjani, “A goal-driven approach to enterprise component

identification and specification,” Communications of the ACM, Vol. 45, 2002, pp.
45-52.

14. A. Arsanjani et al., “SOMA: A method for developing service-oriented solutions,”
IBM Systems Journal, Vol. 47, 2008, pp. 377-396.

15. B. Bauer and J. Müller, “MDA Applied: From sequence diagrams to web service
choreography,” in Web Engineering, N. Koch, P. Fraternali, and M. Wirsing, ed.,
2004, Springer, Berlin Heidelberg, pp. 132-136.

16. D. Skogan, R. Gronmo, and I. Solheim, “Web service composition in UML,” in
Proceedings of the 8th IEEE International Enterprise Distributed Object Computing

Conference, 2004, pp. 47-57.
17. C. S. Wu and I. Khoury. “Web service composition: from UML to optimization,” in

Proceedings of the 5th International Conference on Service Science and Innovation,
2013, pp. 139-146.

18. G. Spanoudakis and A. Zisman, “Discovering services during service-based system
design using UML,” IEEE Transactions on Software Engineering, Vol. 36, 2010, pp.
371-389.

19. Z. Huma et al., “Towards an automatic service discovery for UML-based rich
service descriptions,” in Model Driven Engineering Languages and Systems, R.
France et al., Ed., 2012, Springer, Berlin, Heidelberg, pp. 709-725.

20. M. Porter, “The porter stemming algorithm,” http://www.tartarus.org/martin/Porter-
Stemmer.

21. L. Baresi, M. Miraz, and P. Plebani, “A distributed architecture for efficient web

http://www.tartarus.org/martin/PorterStemmer
http://www.tartarus.org/martin/PorterStemmer

WEN-TIN LEE, SHANG-PIN MA AND YAO-YU TSAI

36

service discovery,” Service Oriented Computing and Applications, 2015, pp. 1-17.
22. Z. Cong et al., “Service discovery acceleration with hierarchical clustering,”

Information Systems Frontiers, Vol. 17, 2015, pp. 799-808.
23. G. Brusa, M. L. Caliusco, and O. Chiotti, “Towards ontological engineering: a

process for building a domain ontology from scratch in public administration,”
Expert Systems, Vol. 25, 2008, pp. 484-503.

24. G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. Petrakis, and E. E. Milios,
“Semantic similarity methods in wordnet and their application to information
retrieval on the web,” in Proceedings of the 7th Annual ACM International

Workshop on Web Information and Data Management, 2005, pp. 10-16.
25. Y. Li, Z. A. Bandar, and D. McLean, “An approach for measuring semantic

similarity between words using multiple information sources,” IEEE Transactions

on Knowledge and Data Engineering,Vol. 15, 2003, pp. 871-882.

Wen-Tin Lee () received his Ph.D. degree in Com-
puter Science and Information Engineering from National Central
University, Taiwan, in 2008. Lee is currently an Assistant
Professor in the Department of Software Engineering and Ma-
nage-ment at National Kaohsiung Normal University. His re-
search interests include software engineering, service-oriented
computing and software process management.

Shang-Pin Ma () received his Ph.D. degree in Com-

puter Science and Information Engineering from National Central
University, Taiwan, in 2007. Ma is currently an Associate Profe-
ssor in the Department of Computer Science and Engineering at
National Taiwan Ocean University. His research interests include
service-oriented computing, software engineering, mobile compu-
ting, and semantic webs.

Yao-Yu Tsai () received his Bachelor (2011) and
Master’s (2013) degrees from the Computer Science and Engi-
neering Department, National Taiwan Ocean University, Taiwan.
His research interests include software engineering and service-
oriented computing.

