
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 635-652 (2017)
DOI: 10.6688/JISE.2017.33.3.3

635

Efficient Privacy-Preserving Building Blocks
in Cloud Environments under Multiple Keys

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

State Key Lab of Complex Electromagnetic Environment Effects on Electronics and Information System
National University of Defense Technology

Changsha, 410073 P.R. China
E-mail: r.hong_nudt@hotmail.com; freshcdwhm@163.com;

 ljabc730@gmail.com; qwertmingx@tom.com

With the rapid growth of big data, clients lack in storage and computational re-

sources tend to outsource their data and computation tasks to cloud service providers.
Due to concerns of privacy leakage in cloud, data owners encrypt the data via their own
keys before outsourcing. However, it’s rather difficult for cloud servers to perform com-
putations over those encrypted data, since most of existing solutions are restricted to sin-
gle key setting and may reveal the final output to adversary. In this paper, we propose
two sets of privacy-preserving building blocks to support outsourced computation. Spe-
cifically, these schemes allow the cloud servers to evaluate basic arithmetic functions in-
cluding addition, multiplication, and exponentiation over ciphertexts under different keys
by utilizing the property of proxy re-encryption technique to transform ciphertexts. They
are proven to be secure in the semi-honest model and secure against eavesdropping at-
tacks. Experimental results on local testbed and real cloud environment demonstrate that
the proposed solutions achieve great performance improvements with low overhead on
data owners.

Keywords: big data, cloud computing, privacy-preserving data mining, building blocks,
multiple keys

1. INTRODUCTION

Nowadays, the volume and details of data captured by organizations or companies
are growing at tremendous speed, making it impossible for data owners with limited re-
sources to store and process them locally. Since cloud computing technology offers
highly scalable computational power in a cost-efficient way, outsourcing both data and
computation tasks to cloud service providers becomes a natural solution. Despite enor-
mous advantages the cloud offers, security issues are impeding clients from utilizing
those advantages [1]. In order to protect data privacy, the data require to be encrypted
before outsourcing. Therefore, to perform arbitrary computation tasks over the encrypted
data regardless of the underlying encryption scheme has become a hot research topic.

Another important evolution of outsourced computation is that the datasets stored in
the cloud may come from multiple data owners. Computing over the joint datasets can
significantly enhance the value of big data, which may be applied to create new services
and derive information that cannot be acquired from individual datasets [2]. For instance,
combining medical records from a large number of patients can improve the accuracy of
disease diagnosis. Naturally, different data owners use different keys for encryption to
preserve their sensitive data, yet, making computation outsourcing more formidable, as

Received June 29, 2016; revised September 28, 2016, accepted October 22, 2016.
Communicated by Ram Chakka.

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

636

most of existing approaches only work in the situation where the uploaded data are en-
crypted under the same key [3-5]. A straightforward solution is to transform the cipher-
texts under multiple keys into encryptions under a unified key. Then, privacy-preserving
protocols are easily to be designed as the single-key setting. BCP cryptosystem with
double decryption property can be used to unify encryption keys [6], since the master
secret key is able to decrypt any ciphertexts under any user’s key. Whereas the major
drawback is that the leakage of the master key poses great threat to the entire system.
Secure multi-party computation [7, 8] also allows cooperative computation on data con-
tributed by multiple owners without disclosing their own inputs, but this kind of scheme
relies on interactions between users instead of a powerful third party, and leaks the final
output to all participants. In short, current solutions for outsourcing computation under
multiple keys are not secure and efficient enough in practical applications.

In this paper, to solve the aforementioned problems, we propose two sets of
schemes for Outsourced Privacy-preserving Building Blocks (OPBB), namely, OPBB+
and OPBB*. These schemes are constructed based on Proxy Re-Encryption (PRE) tech-
nique, which allows a user to obtain the result of arbitrary outsourced function over the
encrypted data under multiple keys without compromising privacy of its input, output,
and the federate datasets. Specifically, the main contributions of the paper are three-fold:

 Firstly, our proposed building blocks allow to evaluate basic arithmetic functions, in-

cluding addition, multiplication, as well as exponentiation. Not only the inputs and
function parameters are encrypted under different keys, but also the output is protected
in encrypted form. With OPBB, cloud users are able to compute most of secure compu-
tations, like scalar product, high-degree polynomial, etc. Apart from this, the schemes
can be adopted in privacy-preserving data mining algorithms.

 Secondly, OPBB consists of two schemes, i.e., OPBB+ and OPBB*, based on additively
and multiplicatively homomorphic property of the underlying cryptosystems, respec-
tively. In OPBB+, we present a Secure Multiplication (SM+) protocol which supports
multiplication over ciphertexts from different parties, and a Secure Exponentiation
(SE+) protocol which enables the cloud to compute exponent with encrypted power
and base. Likewise, OPBB* is composed of Secure Addition protocol (SA*) and Secure
Exponentiation (SE*) protocol. They allow the cloud servers to conduct corresponding
calculations in a privacy-preserving manner without leaking additional information to
each of them.

 Thirdly, theoretical analysis shows that the proposed building blocks are secure in the
semi-honest model and resistant against eavesdropping. The computational complexity
is much less than similar works with minimum client involvements. Extensive experi-
ments on local testbed and Amazon cloud show that our OPBB solutions work effi-
ciently and scale well in both computation and communications.

The rest of the paper is organized as follows. Our system model and threat model

are presented in Section 2. In Section 3, we briefly introduce proxy re-encryption tech-
niques. We describe the design details of our privacy-preserving building blocks under
multiple keys in Section 4, followed by security analysis in Section 5. Performance
evaluations are given in Section 6. In Section 7, we discuss some related work. Finally,
we summarize the paper and outline future work in Section 8.

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 637

2. PROBLEM STATEMENT

In this section, we formally describe our system model, threat model and design goals.

2.1 System Model

There are n data owners {O1, …, On} in our system model, who hold their own data
denoted by {D1, …, Dn} along with their respective public/private key pairs, denoted by
{pk1/sk1 , …, pkn/skn}. As depicted in Fig. 1, Oi uploads its encrypted data Encpki(Di) un-
der pki to cloud for storage, where i[1, n]. There’s also a cloud user U who submits
query q to the cloud for computing a function f(D1, …, Dn, q) over the federate database.
Let pk/sk denote U’s key pair and Encpk(q) denote the encryption of q. We adopt well-
known two-server model [9, 10], denoted by C1 and C2. C1 provides massive data storage
and interacts with Oi and U directly to process their queries, while C2 holds its key pair
pku/sku and assists C1 to achieve complex computation. Besides, we assume both servers
have tremendous computation power.

1(,..., ,)nf D D q a

Fig. 1. System model.

The process for computation in cloud environment can be illustrated as follows. Ini-
tially, cloud servers and data owners generate their respective public and private key
pairs based on public system parameters. Next, C1 produces the re-encryption key for
each Oi through interactions with Oi and C2. After Encpki(Di) are uploaded to the cloud,
C1 transforms these ciphertexts into encryptions under sku by re-encryption technique.
When U submits Encpk(q) to C1, servers begin to evaluate f with the encrypted dataset
{Encpk1(D1), …, Encpkn(Dn), Encpki(q)} through a set of privacy-preserving protocols
which will be discussed in Section 4. In the end, U is able to retrieve the encrypted result
by using its own secret key.

The function f should stand for most arithmetic computations, for instance, a gen-
eral multivariate polynomial whose inputs are jointly provided by multiple parties like
the following function:

1
1

(,...,) ,i

n
d

n i i
i

f x x c x


 (1)

where the coefficients {ci|i[1, n]}, the degrees {di|i[1, n]}, and data {xi|i[1, n]} are

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

638

belonged to different owners, and they are encrypted under different keys before out-
sourcing. Note that this is a stronger security requirement than work [11, 12], since the
coefficients and degrees are known to public in their work. Based on Eq. (1), our priva-
cy-preserving building blocks must address three basic operations over encrypted data,
including addition, multiplication, as well as exponentiation.

2.2 Threat Model

According to the security definitions by Goldreich [13], there are two common
threat models: semi-honest and malicious. A semi-honest adversary follows the protocol,
but may keep a record of all interactions and use it to infer additional information, while
a malicious adversary may behave arbitrarily to breach data privacy. In this paper, we
assume all parties in our system model, including cloud servers, data owners, and cloud
users, are semi-honest. This assumption is reasonable in real world, since the reputation
of public cloud providers may be severely ruined, once deviations from the protocol are
detected. Security against a semi-honest adversary  can be proven by giving inputs to a
simulator built in the ideal world. If the output of this simulator is computationally dis-
tinguishable from the real protocol execution, then the protocol is secure in the semi-
honest model. We also assume the adversary is capable to perform eavesdropping over
the network and analyze the intercepted traffic so long as  compromises one of partici-
pants. Moreover, collusion attacks are not considered in this paper.

2.3 Design Goals

Given the model above, our proposed schemes should satisfy requirements on cor-
rectness, confidentiality, and efficiency as follows:

 Correctness: If cloud servers and all users follow the designed protocols, the final

response should be decrypted to the correct result of the target function.
 Confidentiality: During the outsourced process, nothing private regarding the content

of each user’s inputs, intermediate results, or the outputs should be revealed to cloud
servers, or other parties.

 Efficiency: The cloud servers should take charge of most outsourced computation and
process queries with relatively small latency, meanwhile the workload and communi-
cation overhead on clients’ side should be minimized.

3. PRELIMINARIES

Proxy Re-Encryption (PRE) is a practical scheme proposed by Blaze et al. [14]. In a
PRE system, a proxy is given a re-encryption key rkij so that it can transform a cipher-
text under public key pki into an encryption of the same plaintext under another user’s
public key pkj. The proxy, however, learns nothing regarding the corresponding plain-
text.

PRE schemes can be categorized into two types: bidirectional and unidirectional
PRE. If the re-encryption key rkij allows the proxy to convert ciphertext under pki into
ciphertexts under pkj and vice versa, then the scheme is bidirectional. If rkij merely al-

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 639

lows the proxy to convert from pki to pkj, then the scheme is unidirectional. In this work,
we use the classic bidirectional PRE scheme based on ElGamal cryptosystem [15]. It
consists of the following five algorithms:

 KeyGen(, p, g)  {pki, ski}: Let  be a multiplicative cyclic group of an order of p,

and g be a generator of . Ui uses this key generation algorithm to generate a key pair
ski = ap* and pki = ga.

 ReKeyGen{ski, skj}  {rkij}: The re-encryption key generation algorithm takes two
private keys ski and skj as inputs, and outputs a re-encryption key rkij = skj/ski. Here,
it is required that ij in that there’s no point to re-encrypt own ciphertext.

 Enc(pki, m)  {CTi}: The encryption algorithm takes a public key pki and a message
m as inputs. It outputs a ciphertext CTi = (mgr, pkr

i) under pki. Here,  denotes
the message space, and r is a random number in p*.

 ReEnc{rkij, CTi}  {CTj}: The re-encryption algorithm takes a re-encryption key
rkij and an original ciphertext CTi as inputs, and outputs a transformed ciphertext CTj
= (m  gr, (pkr

i)
rkij) under pkj.

 Dec(ski, CTi)  {m}: The decryption algorithm takes a private key ski and an original or
converted ciphertext CTi under pki. It outputs a plaintext message m = m  gr/((pkr

i)
1/ski).

Furthermore, ElGamal encryption has multiplicatively homomorphic property over

ciphertexts. More specifically, we have the following:

Encpk(m1)  Encpk(m2) = Encpk(m1  m2) (2)

Encpk(m1)
 = Encpk(m


1) (3)

where m1, m2, and “ ” denotes the multiplication operation in the plaintext domain,
while “” denotes the multiplication operation in the ciphertext domain.

4. PROPOSED PRIACY-PRESERVING BUILDING BLOCKS

Our solution for generic outsourced computation has two diverse secure building
blocks, that is, OPBB+ and OPBB*. Specifically, OPBB+ is constructed based on additive
homomorphism of variant PRE while OPBB* is constructed based on original PRE. In
each scheme, we propose a set of protocols addressing such operations that cannot be
evaluated by C1 independently via homomorphic property. In the following sections, we
first present the scheme for key generation and distribution. Next, we describe the design
details of OPBB+ and OPBB* respectively.

4.1 Key Distribution Protocol

In the beginning, the key management authority initializes the cryptosystem param-
eters composed of a multiplicative cyclic group  with order p, and group generator g.
Then, these parameters are distributed to all parties, including cloud servers as well as
clients. Each party generates its key pairs by running KeyGen(, p, g), including Oi’s
key (pki, ski) for 1  i  n, U’s key (pk, sk) and C2’s unified key (pku, sku). After that,

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

640

servers and data owners generate re-encryption keys in a collaborative manner. First, C1
produces a random number ri in group p* (Hereafter, we use the notion rRp* to de-
note random number generation), and sends it to Oi who computes ri/ski. Then, Oi deliv-
ers ri/ski to C2. C2 later blinds the message by multiplying it by sku and sends it to C1. In
the end, C1 is able to gain the re-encryption key between Oi and C2 via (risku/ski)ri

-1. The
overall communication is protected by secure communication protocol like SSL. It’s
evident that ski is unknown to cloud servers, since the intermediate result is blinded by ri.
sku is unknown to C1, because the final input is randomized by ski. Moreover, we assume
all the public keys are accessible to C1.

4.2 Construction of OPBB+

OPBB+ is constructed based on a variant version of ElGamal encryption. Given that
m, the encrypted form is like CT = (gm  gr, gar) instead of CT = (m  gr, gar) men-
tioned in Section 3. This change contributes to additively homomorphic property, which
can be described as below:

Encpk(m1)  Encpk(m2) = Encpk(m1 + m2) (4)

Encpk(m1)
 = Encpk(m1  ) (5)

The decryption requires solving a discrete logarithm, but no efficient general method for
computing discrete logarithms on conventional computers has been proposed. However,
a large lookup table or Pollard’s Kangaroo algorithm [16] can be used to solve this effi-
ciently as long as the message size is small enough.

OPBB+ mainly consists of two sub-protocols, secure addition protocol and secure
exponentiation protocol.

A. Secure Multiplication (SM+) Protocol:
Given that C1 holds private inputs Encpku(a), Encpku(b), and C2 holds the private key

sku, the goal of this protocol is compute the encryption of multiplication of a and b, i.e.,
Encpku(a  b). This protocol cannot be conducted by C1 alone, by contrast, requiring close
interactions between C1 and C2. This indicates that decryption is an indispensable part of
execution. Since it is a computational intensive operation in virtue of solving discrete
logarithm, our design tries to reduce the count of decryption operations to its minimum.
The steps of SM+ protocol are shown as follows:

Step 1: C1 generates two random numbers r1, r2Rp*, and computes X1 = Encpku(a)r1, X2
= Encpku(b)r2. Then, X1, X2 are sent to C2.

Step 2: C2 decrypts X2 by running h = Dec(sku, X2) with its private key sku, and computes
Y = Xh

1. Afterwards, Y is sent to C1. Obviously, it can be seen that h = r2  b and Y =
Encpku(r1  r2  a  b) based on Eq. (5).

Step 3: Upon receiving Y, C1 computes Y(r1r2)-1 to obtain the encrypted a  b. The correct-
ness can be easily proved in the following:

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 641

Y(r1r2)-1
 = Encpku(r1  r2  a  b)r1

-1r2
-1

 = Encpku(r1  r2  a  b  r1
-1  r2

-1)

= Encpku(ab) (6)

Besides, note that a, b, and random numbers cannot be arbitrarily large in that the

decryption has restriction on the plaintext size.

B. Secure Exponentiation (SE+) Protocol:
Given that C1 holds private input Encpku(a), Encpku(b), and C2 holds the private key

sku, the goal of this protocol is compute the encryption of exponentiation of b with base a,
i.e., Encpku(a

b). However, it is rather formidable to design such a secure protocol that
does not disclose any privacy under two-server setting, because the underlying scheme
cannot be used to randomize plaintext with an exponent. Thus, we adopt the third party P
which is also semi-honest but non-colluding with others to assist the computation. P who
can be any cloud user holds its public/private key pair pkP/skP and pku. The details of SE+
protocol are shown as follows:

Step 1: C1 generates four random numbers r1, r2, r3, r4 Rp*, and computes the encryp-
tions X1 = Encpku(a)r1, X2 = Encpku(b)  Encpku(r2), X3 = Encpku(a)r3, X4 = Encpku(b)-1

  Encpku

(r4). Moreover, C1 performs H1 = ReEnc(rkuP, X3), H2 = ReEnc(rkuP, X4) with re-en-
cryption key rkuP, R1 = EncpkP(r1), and R2 = EncpkP(r2). Then, , are sent to C2,
while H1, H2, R1, R2 are sent to P.

Step 2-1: C2 decrypts X1, X2, and gets their plaintexts denoted by Y1, Y2, respectively.
Later, C2 computes K1 = Encpku(Y1

Y2) and sends it to C. It can be observed that K1 = Encpku

((r1a)b+r2) according to Eqs. (4) and (5).

Step 2-2: P decrypts H1, H2 with skP, and obtains the plaintexts denoted by h1, h2, res-
pectively. By decrypting R1, R2, P recovers r1, r2. Then, P computes K2 = Encpku(h1

-r2), K3
= Encpku(r1

h2). It can be seen that K2 = Encpku((r3a)-r2), and K3 = Encpku(r1
r4-b). These two

ciphertexts K2, K3 are transmitted to C1.

Step 3: Once receiving K1, K2, K3 from other parties, C1 computes S1 = EncpkP(r1

-r2), S2 =
EncpkP(r1

-r4), S3 = EncpkP(r3
r2). It is able to calculate the target encryption Encpku(a

b) by
multiplying those encryptions with SM+ protocol. The correctness can be verified as fol-
lows:

SM+(K1, K2, K3, S1, S2, S3) = Encpku(Y1
Y2  h1

-r2  r1
h2  r1

-r2  r1
-r4  r3

r2)

= Encpku((r1a)r2+b  (r3a)-r2  r1
r4-b-r2-r4  r3

r2))

= Encpku(a
b). (7)

4.3 Construction of OPBB*

Differing from the above solution, OPBB* is constructed based on ElGamal scheme
with the multiplicatively homomorphic property. In other words, C1 can evaluate multi-

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

642

plication over encrypted data without interactions with C2. By contrast, addition of ci-
phertexts still requires interactions, but there is no restriction on the length of plaintext.

A. Secure Addition (SA*) Protocol:

Assume that C1 holds private inputs Encpku(a), Encpku(b), and C2 holds the secret
key sku. The goal of this protocol is to compute the encrypted addition of a and b, i.e.,
Encpku(a+b) as output to C1. As the encryption system is only partial homomorphic for
multiplication, we adopt blinding approach like SM+. Nevertheless, it has been proven
that the two non-colluding servers setting may disclose private information about inputs
ratio [17]. A straightforward approach is to send Encpku(ra), Encpku(rb) to C2, but the
blinding factor r can be simply removed by computing ra/rb  a/b, where the random-
ized ra and rb are known to C2. Their security enhanced solution needs three non-col-
luding servers to complete. However, in this paper, we still consider two-server model
while guaranteeing that there’s no privacy leakage about inputs and outputs.

In this protocol, we leverage ElGamal blinding ciphertext technique, denoted as
Blind(C, r). It is an operation that randomizes c1 of ciphertext C by multiplying random
value r so that the plaintext b is blinded by r, where C = (c1, c2), c1 = rbgr, r, b  , and
rRp*. This operation only requires one multiplication over . The overall steps of SA*
are presented as follows:

Step 1: C1 generates random numbers: r1, r2R, r3, r4R, and ensure that r1, r2 holds the
relation that r1 + r2  2 mod N, where N is used to generate multiplicative cyclic group .
C1 then computes L1 = Encpku(a)  Encpku(b), L2 = Blind(Encpku(a)2, r3), L3 = Blind(L1, r1 
r3), L4 = Blind(Encpku(b)2, r4), L5 = Blind(L1, r2  r4). Finally, C1 sends two pairs {L2, L3},
{L4, L5} to C2. It can be verified that L2 = Encpku(a  b), L2 = Encpku(r3  a2), L3 = Encpku(r1

r3ab), L4 = Encpku(r4  b2), L5 = Encpku(r2  r4  a  b).

Step 2: C2 decrypts each element by running Li = Dec(sku, L[i]), for i  [2, 5], and com-
putes S1 = L2 + L3 and S2 = L4 + L5. After that, {S1, S2} is encrypted as {S1, S2}, which are
sent back to C1.

Step 3: After receiving {S1, S2}, C1 generates random number r5, meanwhile it com-
putes 1 = Blind(S1, r3

-1  r5), 2 = Blind(S2, r4
-1  r5). It can be inferred that 1 = Encpku(r5a

2

+ r1r5  a  b), 2 = Encpku(r5b
2+ r2r5  a  b). 1 and 2 are sent to C2.

Step 4: C2 decrypts {1, 2}, and gains the corresponding plaintexts, denoted by 1, 2
respectively. Then, C2 computes the summation  = 1 + 2 and encrypts it as  using
pku. Ultimately,  is transmitted to C1.

Step 5: Upon receiving , C1 is able to obtain the desired encryption of a+b by blinding
with r5

-1. The former result is powered by 2-1 mod p. The correctness of this protocol can
be verified in the following equation:

Blind(, r5
-1)2-1 = Encpku((r5a

2+r1r5ab+r5b
2+r2r5ab)  r5

-1)2-1

= Encpku((a
2+b2+(r1+r2)ab)2-1

)

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 643

= Encpku(((a+b)2)2-1
)

= Encpku(a+b). (8)

B. Secure Exponentiation (SE*) Protocol:
Given that C1 holds private input Encpku(a), Encpku(b), and C2 holds the private key

sku, the goal of this protocol is compute the encryption of exponentiation of b with base a,
i.e., Encpku(a

b). Thanks to the multiplicatively homomorphic property of underlying en-
cryption scheme, exponentiation of the ciphertext has the equal effect on its correspond-
ing plaintext, as shown by Eq. (3). This makes it possible to blind the exponent with
random values whereas SE+ cannot do similar work without third party. The complete
steps are presented as follows:

Step 1: C1 generates three random numbers r1R, r2, r3Rp*, and computes X0 =
Blind(Encpku(a), r1), X1 = X0

r3, X2 = Blind(Encpku(b), r2), as well as X3 = Encpku(r1). Then, X1,
X2, X3 are sent to C2. Based on Eqs. (1) and (2), we can infer that X1 = Enc(a  r1)

r3), X2 =
Encpku(b  r2).

Step 2: C2 decrypts X1, X2 by running Y1 = Dec(sku, X1), Y2 = Dec(sku, X2). It also recov-
ers r1 from X3 with sku. After that, C2 computes Z1 = Encpku(Y1

Y2), Z2 = Encpku(r1
Y2), which

are then sent to C1.

Step 3: After receiving Z1, Z2, C1 calculates two exponentiations: H1 = Z1
r2r3, and H2= Z2

-r2,
where r2 = r2

-1 mod p and r3 = r3
-1 mod p. The final encryption of ab can be achieved by

H1H2. Its correctness proof is given below:

H1  H2 = Encpku((Y1

Y2)r2
-1r3

-1

) Encpku((r1
Y2)-r2

-1
)

= Encpku((a  r1)
r3br2r2

-1r3
-1

r1

-br2r2
 -1

)

= Encpku(a
b  r1

b  r1
-b)

= Encpku(a
b). (9)

5. SECURITY ANALYSIS

In this section, we analyze the security of the proposed building blocks, focusing on
how our solutions can preserve the privacy of each data owners’ dataset and the result
from analyzing and eavesdropping attacks by the adversarial servers and data owners.

5.1 Analysis of OPBB+

Due to Composition Theorem, we evaluate the security of each protocol in OPBB+
by using “Real-vs.-Ideal” framework in the semi-honest model [13]. Note that the secu-
rity of our protocol is based on the well-known “blinding technique”, which means that
the original plaintext is randomized with a random value by using Eq. (5).

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

644

(1) Security of SM+: For C1 corrupted by adversary 1, its view in the real world in-
cludes {Encpku(a), Encpku(b), Encpku(ab), X1, X2, Y}, which are encrypted under pku.
We can build a simulator in the ideal world to simulate the view of 1 by encryption
of random numbers. Due to the semantic security of the ElGamal cryptosystem, 1 is
computationally infeasible to distinguish the real world from the ideal world. For C2
corrupted by 2, its real world view includes {X1, X2, Y}, and {r1a, r2a, r1r2ab}. We
can build a simulator in the ideal world by executing the protocol with random num-
bers as inputs. Since the inputs a, b are blinded by randomly distributed numbers r1
and r2, 2 cannot distinguish from the real world and the ideal world.

(2) Security of SE+: For C1 corrupted by 1, its real world view comprises six encryp-
tions {Encpku(a), Encpku(b), Encpku(a

b), K1, K2, K3}. We build a simulator in the ideal
world that produces six ciphertexts of random values. 1 is not able to distinguish
two worlds because C1 has no knowledge about the private key sku. For C2 compro-
mised by 2, the real world view includes {X1, X2, Y1, Y2, K1}. Y1, Y2 are the decryp-
tions of X1, X2, respectively, but they are randomized by blinding factor r1, r2. Thus,
it is computationally hard for 2 to distinguish the real world from the ideal world.
As for P corrupted by 3, the view of real world includes inputs {H1, H2, R1, R2}, the
corresponding plaintexts {h1, h2, r1, r2}, as well as outputs {K1, K2}. Though 3 can
perform decryption with skP, the sensitive data a, b are still blinded by random num-
bers r3, r4, and they cannot be removed through exponential operation. Therefore, 3
is not able to distinguish the real world from the ideal world created by our simulator.

(3) Security against Eavesdropping Attacks: Supposing that an adversary e has com-
promised one party in our system model, such as Oi, C1, or C2, e may launch eaves-
dropping by using the corrupted party’s private key. During the data uploading stage,

e corrupting Oi may capture Oj’s data (i  j), but he cannot decrypt them since e
does not possess Oj’s private key. During outsourcing stage, e corrupting data own-
ers also cannot decrypt the traffic captured between the servers, because they’re en-
crypted under pku. As for the corrupted C1, no privacy of intercepted data are re-
vealed to e who only knows the re-encryption keys. Moreover, e corrupting C2 al-
so knows nothing about original data or final results, since they’re either blinded by
random values, or encrypted under the client’s own private key. Note that two or
more adversaries compromising multiple parties are not considered in this paper.

5.2 Analysis of OPBB*

Similar to the security analysis of the first scheme, we prove that the OPBB* is se-
cure under semi-honest model by using “Real-vs.-Ideal” framework [13].

(1) Security of SA*: For C1 corrupted by adversary 1, its view in the real world includes

inputs {Encpku(a), Encpku(b), S1, S2, }, final outputs {Encpku(a+b)} and intermediate
results {L1, L2, L3, L4, 1, 2}. We build a simulator in the ideal world that generates
the same number of encrypted random values. Since 1 does not know the private
key, if 1 could discern the real world and ideal world, it indicates that 1 could
have an algorithm to distinguish ciphertexts generated by ElGamal, which contradicts
to the assumption that the encryption scheme is semantically secure. Thereby, it’s
computationally difficult for 1 to discern the two views. For C2 corrupted by 2, the

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 645

real world view can obtain the plaintexts r3a
2, r1r3ab, r4b

2, r2r4ab, r5b
2 + r1r5ab, r5b

2
+ r2r5ab by using its secret key. Obviously, 2 cannot directly obtain either the
plaintexts of a and b or their ratio like a/b, because they are blinded by random
numbers r1, r2, r3, r3, r5. Though 2 may know that r1 + r2  2 mod N, it’s still not
enough to set up equations because the relation r1 = 2  r2 does not necessarily hold.
We build a simulator in the ideal world to simulate the view of 2 by using random
values as inputs and executing the steps in the protocol. If the blinding numbers are
randomly distributed, it’s infeasible for 2 to make differentiation between the real
world and the ideal world.

(2) Security of SE*: For C1 corrupted by 1, the view of real world consists of inputs
{Encpku(a), Encpku(b), Z1, Z2}, outputs {X1, X2, X3, Encpku(a

b)}. Recall that all the in-
puts and outputs are ciphertexts encrypted under . We build a simulator in the
ideal world by performing the same computation with random values. Thus, due to
the security of the encryption scheme, 1 is not able to distinguish from the real
world and the ideal world without sku. For C2 compromised by 2, its real world
view includes inputs {X1, X2, X3}, outputs {Z1, Z2}. Meanwhile, 2 also gets the
plaintexts {Y1, Y2, r1} by decryption. Then, we build a simulator in the ideal world
that conducts the same algorithm but using random values as inputs. Nevertheless, Y1
is randomized by r1, r3 while Y2 is blinded by r2, because Y1 = (a  r1)

r3, Y2 = b  r2. As
long as the hard problem of discrete logarithm holds, 2 cannot compute the base of
Y1 even if he has r1. So 2 cannot distinguish the real world from the ideal world.

(3) Security against Eavesdropping Attacks: OPBB* scheme is also secure against eaves-
dropping attacks on account of different keys used by different parties for encryption.
The proof part can be referred to OPBB+.

6. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our two schemes from both theoreti-
cal and experimental perspectives, and compare our work with similar methods.

6.1 Theoretical Analysis

Let Exp, Mul, and Dlog denote modular exponentiation, multiplication, discrete
logarithm, respectively. In our comparison, we mainly focus on the similar schemes
which enable outsourced computation under multiple keys. For data owners and cloud
users, their costs merely restricted to encryption, decryption, and limited participations.

A. Complexity of OPBB+
Table 1 shows the comparison of complexity between our building block and simi-

lar works. The addition costs for all these schemes are 2Mul, because they are additively
homomorphic. SM+ requires 9Exp+2Mul+1Dlog computation of cloud servers and 6||
bits for interactive communication. It can be seen that the similar schemes Vitamin+ [17]
and PTK [18] consume larger computation overhead for secure multiplication. Note that
since solving Dlog depends on the message size, our scheme cannot be compared with
PTK directly. However, it takes PTK 10Exp + 18Mul computation to re-encrypt one
ciphertext whereas it only takes 1Exp for the other two schemes. Besides, their commu-

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

646

nication costs are the same. As for outsourced exponentiation, it costs cloud servers
95Exp+27Mul+11Dlog to complete SE+ with 18|| traffic load, while there’re no im-
plementations on this kind of computation in both works [17, 18].

Table 1. The complexity comparison of additively homomorphic schemes.
Algorithm Cost OPBB+ Vitamin+ PTK

Addition 2Mul 2Mul 2Mul
Multiplication 9Exp+2Mul+1Dlog 11Exp+5Mul+2Dlog 20Exp+32Mul
Exponentiation 95Exp+27Mul+11Dlog − −

Table 2. The complexity comparison of multiplicatively homomorphic schemes.
Algorithm Cost OPBB* Vitamin*

Addition 15Exp+20Mul 24Exp+32Mul
Multiplication 2Mul 2Mul
Exponentiation 16Exp+13Mul −
Server Count 2 3

B. Complexity of OPBB*
In SA* protocol, it costs servers 15Exp + 20Mul and 18|| bits communication over-

head. As shown in Table 2, compared to the similar method Vitamin* [17] with 24Exp +
32Mul computation and 18|| communication cost, our scheme requires less computa-
tions and no third server. For secure exponentiation outsourcing, SE* requires 16Exp +
13Mul computation and 10|| bits overhead for cloud servers. Obviously, it works faster
than secure addition protocol, because the homomorphic property can be used to blind
the exponent.

6.2 Experimental Analysis

We evaluate the computation cost and communication overhead of the proposed
schemes by performing experiments on local testbed and real cloud environment. All
protocols are implemented in C++ using Crypto++5.6.3 library. As for algorithms which
require solving discrete logarithm, we generate a large lookup table and adopt binary
search algorithm. To achieve practical security level, we choose |p| = 1024 bits for El-
Gamal encryption, and |N| = 1024 bits for BCP encryption in PTK [18].

A. Experiments on Local Testbed
The configurations of our local servers are Intel Xeon E5-2620@2.10 GHz CPU

with 8 GB RAM running CentOS 6.5 with 1Gbps bandwidth. To test the performance of
our schemes for secure addition and multiplication, we choose

1
(,)

m

i ii
f x y x y


   as the

outsourcing function, where ,x y
 

 are two m-dimension vectors. In the test, each element
is a randomly generated integer with 32-bit length, that is, xi, yi[1, 232  1], i[1, m].
The two vectors are encrypted under separate keys before outsourcing. We measure the
computation time and communication traffic during the outsourcing period.

First, we assess the time that cloud clients spend on encrypting their vectors. The
results are presented in Fig. 2. It can be easily observed that the computation time for
each client grows with the increase of vector dimension size, while PTK scheme takes

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 647

much more time than the other schemes. The difference in time mainly arises from the
fact that BCP cryptosystem utilized by PTK scheme as the underlying encryption scheme
incurs more complexity than ElGamal adopted by the rest building blocks because of twice
larger modulus size. For m = 1000, OPBB+ and OPBB* require each data owner about
1.77s to encrypt their vector, which is relatively small compared with cloud overhead.

Fig. 3 shows the re-encryption time for current schemes grows linearly with the in-
crease of dimension size. However, the time of PTK scheme rises more sharply than the
others. The reason is that the PRE scheme allows re-encryption to be completed by proxy
server independently while PTK requires heavy interactions between two servers.

200 400 600 800 1000
0

5

10

15

Dimension Size

C
li

en
t C

om
pu

ta
ti

on
 T

im
e

(i
n

s)

OPBB+
OPBB*
Vitamin+
Vitamin*
PTK

200 400 600 800 1000
0

20

40

60

80

100

Dimension Size

R
e-

en
cr

yp
ti

on
 T

im
e

(i
n

s)

OPBB+
OPBB*
Vitamin+
Vitamin*
PTK

Fig. 2. Client overhead vs. vector dimension. Fig. 3. Re-encryption time vs. vector dimension.

Next, we evaluate the computation time and communication overhead for cloud
servers. The computation process for cloud servers consists of re-encryption, as well as
scalar product computation while the communication overhead is brought by two-server
interactions. As shown in Figs. 4 and 5, we can see that both the computation and com-
munication overhead at cloud side increase with dimension size. Fig. 4 reveals that for
additively homomorphic methods, our OPBB+ saves 37.06%, 97.46% computation time
compared with Vitamin+ and PTK, respectively. As for multiplicatively homomorphic
methods, the processing time of OPBB* is only half as much as that of Vitamin*. Note
that the re-encryption cost of PTK accounts for almost half of its entire outsourcing time.
The results are also consistent with theoretical analysis in previous section.

200 400 600 800 1000
0

50

100

150

200

Dimension Size

C
lo

ud
 c

om
pu

ta
ti

on
 T

im
e

(i
n

s)

OPBB+
OPBB*
Vitamin+
Vitamin*
PTK

200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Dimension Size

C
lo

ud
 c

om
m

un
ic

at
io

n
(i

n
K

B
)

OPBB+
OPBB*
Vitamin+
Vitamin*
PTK

Fig. 4. Cloud computation vs. dimension. Fig. 5. Cloud communication vs. dimension.

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

648

From Fig. 5, we can observe that the communication cost of PTK remains the larg-
est compared with other schemes, while multiplicatively homomorphic schemes con-
sume 2.5 times traffic as much as additively homomorphic schemes, since OPBB* and
Vitamin* require one more communication round than OPBB+ and Vitamin+. Moreover,
OPBB+ seems more efficiently than OPBB*, because searching for an index within a
small lookup table is faster than expensive exponential operations. This suggests that the
cloud can leverage OPBB+ to accelerate computation performance for short messages.

B. Experiments on Amazon EC2

In order to analyze the performance on real cloud environment, we conduct tests on
two Amazon EC2 On-Demand instances [19], the type of which is m4.large with 2vCPU
and 8GB memory running Red Hat Enterprise Linux. The function f is a high-degree
polynomial which integrates addition, multiplication, and exponentiation operations.
Specifically, f(x) = 

n

i=1cix
di, in which the coefficient ci and the degree di are contributed

by Oi, while x is provided by U requesting cloud servers to compute f(x). Let n be the
number of data owners. All the data randomly generated on the condition that ci, x[1,
108] and di[1, 103]. Remark that the congregated data are encrypted under their owners’
public keys. Since there’s no existing work that assumes every part of polynomial is en-
crypted, we only implement the outsourcing protocol based on our proposed building
blocks.

0 100 200 300 400 500
0

5

10

15

20

25

Number of data owners

C
lo

ud
 c

om
pu

ta
ti

on
 ti

m
e

(i
n

s)

OPBB+
OPBB*

0 100 200 300 400 500

0

500

1000

1500

2000

2500

3000

Number of data owners

C
lo

ud
 c

om
m

un
ic

at
io

n
(i

n
K

B
)

OPBB+
OPBB*

Fig. 6. Cloud computation vs. owner counts. Fig. 7. Cloud communication vs. owner counts.

We evaluate the computation and communication overhead on cloud servers. Figs.
6 and 7 show the performance of our methods scale linearly with the number of data
owners. However, it’s apparent to find that OPBB* outperform OPBB+ this time, for
there’s a lot of exponentiation operations in f(x) and the sub-protocol SE+ incurs much
more computational and communication cost than SE*. For instance, when n = 500, it
takes OPBB* 23.15s to compute f(x) with 2.2MB while OPBB+ needs 24.74s and
2.76MB to complete the same work. The results indicate that OPBB* is a kind of better
option for outsourced computation involved with exponentiation.

7. RELATED WORK

In order to protect data privacy from access by unauthorized adversary, data are

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 649

usually encrypted before outsourcing. However, how to perform arbitrary computations
over the encrypted data remains an open question. Fully Homomorphic Encryption
(FHE), first proposed by Gentry [20], allows both addition and multiplication operation
over the ciphertexts. Though a lot of new schemes regarding FHE have been proposed to
improve security and efficiency, the complexity of those cryptosystems are still too high
to be used in real application [21]. To enhance performance, some works designed a set
of privacy-preserving primitives based on additive homomorphic property of Paillier
cryptosystem, which are used in outsourced k-Nearest Neighbor classification [3-5].
However, these schemes incur heavy computation and communication overhead.

To compute a function securely over the database distributed among multiple parties,
Secure Multi-party Computation (SMC) [7] was introduced to address this issue. But this
technique is not fit for computation outsourcing, since SMC based approach assumes
data are not encrypted and held by each participant, and the final result is generally ex-
posed to public, whereas both the datasets and result are encrypted in our system model.
Besides, SMC protocols exert heavy workloads on clients on contrary to our assumption
that they have weak computation power [24, 25]. Recently, Jung et al. [11, 12] proposed
several protocols which enable multiple parties to evaluate multivariate polynomial jointly
by aggregating their data without secure channel. This system model is similar with ours.
However, their product and sum protocols reveal the final output to all participants and
the aggregator. In addition, the coefficients and powers are not encrypted as we do.

Most of aforementioned solutions are based on assumption that a single encryption
key is shared among data owners, but they cannot be used to perform calculation over
ciphertexts under multi-keys. To address this issue, BCP cryptosystem with double trap-
door decryption mechanism was utilized to transform ciphertexts under different keys
into encryptions under a single public key by using master secret key [18]. Then, crypto-
graphic protocols were proposed to evaluate arithmetic circuits. However, the major
drawback of their schemes is that the master secret key has the power to decrypt all kinds
of ciphertexts, which makes the server who holds the key a highly valuable target. Be-
sides, ciphertext transformation requires complex interactions between the servers. To
improve efficiency, Wang et al. [17] proposed two schemes Vitamin* and Vitamin+ by
leveraging proxy re-encryption with partially homomorphic properties. Both schemes
support the basic operations (i.e., additions and multiplications), but they are not secure
and efficient enough in that Vitamin* may directly reveal the ratio of inputs without a
third cloud server. Our schemes are also constructed on PRE; nevertheless, they’re
proven to be secure with only two servers under the semi-honest model, and they support
exponentiation apart from addition and multiplication. Another relevant work [22, 23]
utilized random matrix transformation to preserve security in collaborative outsourced
data mining. Although this method is much more efficient than public key encryption, it
cannot be used as privacy-preserving building blocks to compute generic computations.
Our previous work [26] leveraged encryptions of random numbers to prevent leaking
input ratio with high probability during secure addition process, but it’s not as secure as
method proposed in this paper.

8. CONCLUSION

In this paper, we proposed two sets of privacy-preserving building blocks for out-

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

650

sourcing computation under two-server model, called OPBB+ and OPBB* for short. By
leveraging PRE transformation, these schemes allow cloud servers to collaboratively
calculate a generic function with the data encrypted under owners’ respective keys. Ad-
ditionally, only the legitimate query user can retrieve the final result, which further pro-
tects user privacy. Theoretical analysis shows that the proposed building blocks can
evaluate addition, multiplication, and exponentiation without revealing the privacy of the
data and results in the semi-honest model. Experiments on outsourced scalar product and
polynomial functions have also demonstrated efficiency of our solution. As future work,
we plan to investigate more secure and efficient solutions with the stringent threat model
that the adversaries may have some background knowledge of the outsourced database
and are able to perform collusion attacks.

REFERENCES

1. K. Ren, C. Wang, and Q. Wang, “Security challenges for the public cloud,” IEEE
Internet Computing, Vol. 16, 2012, pp. 69-73.

2. S. Eubank, H. Guclu, G. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai,
and N. Wang, “Modeling disease outbreaks in realistic urban social networks,”
Nature, Vol. 429, 2004, pp. 180-184.

3. Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neighbor query
over encrypted data in outsourced environments,” in Proceedings of the 30th IEEE
International Conference on Data Engineering, 2014, pp. 664-675.

4. B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “K-nearest neighbor classification
over semantically secure encrypted relational data,” IEEE Transactions on Know-
ledge and Data Engineering, Vol. 27, 2015, pp. 1-14.

5. F. Li, R. Shin, and V. Paxson, “Exploring privacy preservation in outsourced K-
nearest neighbors with multiple data owners,” in Proceedings of the 7th ACM Cloud
Computing Security Workshop, 2015, pp. 53-64.

6. E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications,” in Proceedings
of ASIACRYPT, 2003, pp. 37-54.

7. S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party computation,”
IACR Cryptology ePrint Archive, Vol, 2011, 2011, pp. 435-451.

8. H. Hu, J. Xu, C. Ren, and B. Choi, “Processing private queries over untrusted data
cloud trhough privacy homomorphism,”, in Proceedings of the 27th IEEE Inter-
national Conference on Data Engineering, 2011, pp. 217-290.

9. S. S. M. Chow, J. H. Lee, and M. Strauss, “Two-party computation model for pri-
vacy-preserving queries over distributed databases,” in Proceedings of the 16th
Annual Network and Distributed System Security Conference, 2009, pp. 1-16.

10. M. D. Van and A. Juels, “On the impossibility of cryptography alone for privacy-
preserving cloud computing,” in Proceedings of the 5th USENIX Workshop on Hot
Topics in Security, 2010, pp. 1-8.

11. T. Jung, X. Mao, X. Li, S. Tang, W. Gong, and L. Zhang, “Privacy-preserving data
aggregation without secure channel: Multivariate polynomial evaluation,” in Pro-

PRIVACY-PRESERVING BUILDING BLOCKS UNDER MULTIPLE KEYS 651

ceedings of the 32nd Annual IEEE International Conference on Computer Commu-
nications, 2013, pp. 2634-2642.

12. T. Jung, X. Li, and M. Wan, “Collusion-tolerable privacy-preserving sum and pro-
duct calculation without secure channel,” IEEE Transactions on Dependable and
Secure Computing, Vol. 12, 2015, pp. 45-57.

13. O. Goldreich, The Foundations of Cryptography, Cambridge University Press, Vol.
2, Ch. Basic Applications, 2004.

14. M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryp-
tography,” in Proceedings of EUROCRYPT, 1998, pp. 127-144.

15. T. ElGamal, “A public-key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Transactions on Information Theory, Vol. 31, 1985, pp. 469-472.

16. J. M. Pollard, “Monte Carlo methods for index computation mod p,” Mathematics of
Computation, Vol. 32, 1978, pp. 918-924.

17. B. Wang, M. Li, S. S. M. Chow, and H. Li, “Computing encrypted cloud data
efficiently under multiple keys,” in Proceedings of the 4th International Workshop
on Security and Privacy in Cloud Computing, 2013, pp. 504-513.

18. A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing multiparty compu-
tation under multiple keys,” IEEE Transactions on Information Forensics and Security,
Vol. 8, 2013, pp. 2046-2058.

19. Amazon EC2 Pricing, https://aws.amazon.com/ec2/pricing/on-demand/.
20. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of

the 41st ACM Symposium on Theory of Computing, 2009, pp. 169-178.
21. Z. Brakerski, C. Gentry, S. Halevi, and V. Vaikuntanathan, “(Leveled) fully homo-

morphic encryption without bootstrapping,” ACM Transactions on Computation
Theory, Vol. 18, 2011, pp. 169-178.

22. Y. Huang, Q. Lu, and Y. Xiong, “Collaboraive outsourced data mining for secure
cloud computing,” Journal of Networks, Vol. 9, 2014, pp. 2655-2664.

23. Q. Lu, Y. Xiong, X. Gong, and W. Huang, “Secure collaborative data mining with
multi-owner in cloud computing,” in Proceedings of the 11th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications,
2012, pp. 100-108.

24. R. Lu, X. Lin, and X. She, “Spoc: A secure and privacy-preserving opportunistic
computing framework for mobile-healthcare emergency,” IEEE Transactions on
Paralell and Distributed Systems, Vol. 24, 2013, pp. 614-624.

25. J. Zhou, Z. Cao, X. Dong, and X. Lin, “PPDM: A privacy-preserving protocol for
cloud-assited e-healthcare systems,” IEEE Journal of Selected Topics in Signal Pro-
cessing, Vol. 9, 2015, pp. 1332-1344.

26. H. Rong, H. Wang, K. Huang, J. Liu, and M. Xian, “Privacy-preserving scalar
product computation in cloud envrionments under multiple keys,” in Proceedings of
the 17th International Conference on Intelligent Data Engineering and Automated
Learning, 2016, pp. 248-258.

HONG RONG, HUI-MEI WANG, JIAN LIU AND MING XIAN

652

Hong Rong received the M.S. degree in School of Electronic
Science and Technology from National University of Defense
Technology in 2013. He is currently working toward the Ph.D.
degree in the State Key Laboratory of CEMEE, National Univer-
sity of Defense Technology. His research interests include priva-
cy-preserving data mining, cloud computing security.

Hui-Mei Wang received the B.S. degree from Southwest
Jiaotong University in 2004, M.S. degree and Ph.D. degree from
National University of Defense Technology in 2007 and 2012.
She is currently a Lecturer in the State Key Laboratory of CEMEE
at National University of Defense Technology. Her research in-
terests include network security, cloud computing and distributed
systems.

Jian Liu is a Lecturer in the CEMEE State Key Laboratory

at National University of Defense Technology. He received the
B.S., M.S., and Ph.D. degrees from National University of De-
fense Technology in 2009, 2011, and 2016 respectively. His re-
search interests include secure storage and computation outsourc-
ing in cloud computing and security of distributed systems.

Ming Xian received the B.S. degree (1991), M.S. degree
(1995), and Ph.D. degree (1998) from National University of De-
fense Technology. Now he is a Professor in the State Key Labor-
atory of CEMEE at National University of Defense Technology.
His research interests include on cryptography and information
security, cloud computing, wireless sensor network and system
modeling, simulation and evaluation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

