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The information comes from physical shop floor and manufacturing process is 

closely monitored and coordinated under the framework of cyber-physical system in In-
dustry 4.0. Wireless sensor networks are deployed to collect the massive amounts of data 
generated in a smart factory. Researchers employ sensor cloud to facilitate the manage-
ment of a large scale deployment of wireless sensor nodes. Facing with lots of concurrent 
sensing demands of users administrators of a manufacturing network need to deal with 
the mapping of physical sensors and virtual sensors. We propose a cost-efficient virtual 
sensor management scheme which is able to accord an overall virtual sensor instantiation 
result for the whole manufacturing network. Both the architecture of the manufacturing 
network and the application scenario are modeled by entities, actions, and messages. The 
key component of the proposed model is called k resource scheduler. Different resource 
scheduling algorithms could be applied to the k resource scheduler, and thus make our 
model flexible. Three resource scheduling algorithms are devised to tackle the problem 
of virtual sensor management. The effectiveness of the proposed model is verified by 
simulation experiments and a comprehensive analysis of the experimental results is pro-
vided.     
 
Keywords: manufacturing network, cyber-physical system, Industry 4.0, wireless sensor 
networks, virtual sensor, k-median   
 
 

1. INTRODUCTION 
 

Recent years, the booming development of information communication technology 
has enlightened an evolution which transforms traditional manufacturing industry to the 
next generation, namely Industry 4.0. Smart factory is the primary application entity 
which holds up Industry 4.0. Modern production lines and manufacturing processes con-
tain various data, such as temperature, pressure, displacement, thermal energy, vibration, 
and noise. Multiple forms of analysis can be conducted based on these data, such as de-
vice diagnostics, energy consumption, quality assurance, and automated logistics. A brief 
comparison between today’s factory and an Industry 4.0 factory is presented in [1]. The 
utilization of information communication technologies such as Internet of things, sensor 
networks, and cloud computing has significantly accelerated the generation of large 
amounts of data. The rapid growing amounts of data in smart factory pose a critical 
challenge to data acquisition, data storage, data processing, data analysis, etc. In such 
circumstances, pioneers in both the academic and industrial fields advocate to bring in 
the cyber-physical system (CPS). Currently, there is no a unanimous definition of CPS, 
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however. An exact definition depends on the underlying ideas and technologies. One of 
the commonly accepted definition is: the CPS is defined as a collection of innovative 
technologies for regulating interconnected systems between their physical assets and 
computing power [2]. Thus, the deployment of CPS enables a comprehensive linkage 
among mechanical equipment, physical assets, manufacturing process monitor systems, 
etc. These entities are connected with each other by specialized network infrastructures. 
The information comes from physical shop floor and manufacturing process is closely 
monitored and coordinated under the framework of CPS. For a manufacturing plant, 
multitudinous control requirements and operations are the major routines. Generally 
speaking, the corresponding control mechanisms are distributed among several entities. 
The cooperation among these mechanisms facilitates a self-organized production system. 
The high flexibility and reconfigurability of this production system could handle the dy-
namic nature of production line and manufacturing process in a smart factory. 

The application of CPS in Industry 4.0 contains two aspects [3]: wireless sensor 
network and cloud computing. 

Wireless sensor network focuses on delivering collected data with various types of 
sensors and is currently bridging the gap between the cyber and physical systems [4]. 
The data obtained by sensors play a crucial role in machine behavior modeling and man-
ufacturing process optimization. In other words, the sensor data possess vital potential 
information which can be applied to manufacturing status prediction and adjustment, 
production line optimization, device diagnostics, etc. To enable a highly flexible and 
reconfigurable smart factory and conduct the operations mentioned above, data should be 
obtained appropriately and efficiently in the first place. In a smart factory, there are var-
ious kinds of data requesters such as A/C controller, energy analyzer, LED panel, human 
operator, etc. For simplicity, we refer to them collectively as users. Traditional data col-
lection methods use the physical sensors in a direct way. However, this approach has a 
major drawback: with a large scale deployment of wireless sensor nodes, users are faced 
with the problem of choosing a functionally matched sensor node with minimum over-
head. 

To address this problem, researchers introduced cloud computing technologies. 
Cloud computing provides shared computing resources and data in the light of user de-
mands. Thus, the concept sensor cloud [5] sprang up with the combination of wireless 
sensor network and cloud computing. As the name implies, sensor cloud refers to an in-
frastructure within which physical sensors are connected to cloud for management. It 
provides users with cloud service instances in an automated way. The cloud service in-
stance is called virtual sensor. A virtual sensor is an emulation of a physical sensor and 
its data are obtained from underlying physical sensors [6]. The term virtual means trans-
parency to users. That is to say, there is no difference between a cloud service instance 
and other physical resources in the system in terms of user experience. To be specific, 
virtual sensors provide user with customized views by conducting distribution transpar-
ency and location transparency. Before the concept of sensor cloud appears, the real-time 
communication of cloud computing has been discussed [7, 8]. Then it comes up with 
extensive studies on the integration of sensor with cloud framework. In [5], a clear pic-
ture of the establishment and opportunities of sensor cloud architecture was provided. In 
[9], a detailed review of sensor cloud was given, including concepts, inherent natures, 
and application advantages. In addition, a comparison among the message types involved 
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in different models was also conducted. In [10], the integration of sensor with cloud 
scheme was applied to health monitoring. An optimal gateway selection model is pro-
posed for the purpose of maximizing bandwidth for health data transmission. In [11], the 
authors listed the challenges in front of the integration of wireless sensor network and 
cloud, and proposed a dedicated sensor cloud framework for Software-as-a-Service ap-
plications. A similar work was provided in [12], the authors discussed the challenges for 
comprehension of sensor cloud diversification, implementation of scalable functions, 
privacy protection, etc. Moreover, a baseline for studying the above issues was also giv-
en. In [13], a simple virtual wireless sensor network infrastructure was proposed. The 
scheme is independent of the underlying protocols, and is able to combine with popular 
routing protocols and data aggregation protocols. In [14], a topology virtualization model 
was implemented by node self-organization for underwater sensor network. 

Most of the existing work discussed the benefits of sensor cloud and concomitant 
challenges. However, an efficient sensor management scheme dealing with concurrent 
sensing demands in sensor cloud is missing. Specifically, two key problems need to be 
investigated: (1) how concurrent sensing requests of a group of users are mapped to the 
sensor cloud; and (2) which physical sensor is used to instantiate a specific virtual sensor. 

In this work, we address the problem of virtual sensor management in a manufac-
turing network. The basic idea is introducing a resource scheduler and formulating it as 
the famous facility location problem (FLP). Our proposal concentrates on obtaining an 
overall cost-efficient virtual sensor instantiation result for concurrent sensing demands. 
For k simultaneously active virtual sensors in the sensor cloud, we devise three algo-
rithms to pursuit an optimal solution which minimizes the total connection cost of the 
manufacturing network. 

The remainder of the paper is organized as follows: Section 2 reviews the facility 
location problem and introduces the k-median problem. Section 3 proposes a k resource 
scheduler model. Three virtual sensor management algorithms are elaborated with de-
tailed theoretical analysis. In Section 4, we evaluate our proposal by simulation and pre-
sent a comprehensive analysis of the simulation results. Section 5 draws the conclusions 
and possible future extensions for the proposed method. 

2. FACILITY LOCATION PROBLEM 

The theory of facility location problem (FLP) was created by Cooper [15] in 1963. 
As the adoption of FLP is widespread both in scientific area and everyday life, it has 
been a research hotspot for nearly sixty years [16]. Originally, the facility location prob-
lem focuses on the modeling of facility location. It is a branch of operations research and 
also known as location analysis. Theoretically, the facility location problem refers to 
determine a series of optimal locations for several facilities that will provide services 
from a given set of points.  

 
2.1 FLP Overview 

 
Assume there are n potential facility locations and m users in the region of interest. 

These potential facility locations are denoted by set FL = {fl1, fl2, …, fln}. We denote the 
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opening cost of facility location fli by fi, where fi  0. By opening cost of a facility loca-
tion, we mean a catch-all term which includes the facility construction/renting cost, daily 
operation cost, and equipment maintenance/upgrading cost. For each location fli  FL, 
we denote the corresponding opening costs by set F = {f1, f2, …, fn}. Provided a facility 
location is open, it is able to offer services to a user. For a single user to be served, one 
facility is sufficient.  

We denote all possible users by set U = {u1, u2, ..., um}. The connection cost for a 
user uj  U to use the service provided by a facility at facility location fli is denoted by 
d(fli, uj), where d(fli, uj)  0. The facility locations and the users in the region of interest 
constitute a point set V = FL ∪ U. We assume that FL ∩ U = . Thus, V = {v1, v2, ..., vi}, 
where 1  i  n + m. For vi = fli  FL and vj = uj  U, the total cost for the user uj to be 
served by a facility located at facility location fli can be calculated as C(vi, vj) = fi + d(vi, 
vj). The solution to a facility location problem is a subset S  FL whose facilities are able 
to serve all users in set U. Besides, the subset S minimizes the overall cost 

( ) ( , ).
i j

i i j
v S v U

C S f d v v
 

    (1) 

As stated, there only needs one facility for an individual user. We denote the coex-
isted facilities at facility location fli by set F(fli). For a facility at facility location fli, the 
concurrent users of the facility are denoted by set U(fli). If there are no upper bounds for 
both the number of elements in sets F(fli) and U(fli), this specific facility location prob-
lem is called Uncapacitated Facility Location Problem (UFLP) [17]. The UFLP was 
proved to be NP-hard [18]. As the facility locations and the users in the region of interest 
constitute a point set V, we define a unified metric space Θ for the elements in V. The 
distance metric in Θ is denoted by d. Consider three arbitrary points vi, vj, vk  Θ, we 
have d(vi, vj)  0, d(vi, vi) = 0, and d(vi, vj) = d(vj, vi). A sufficient condition of vi = vj is 
d(vi, vi) = 0. Furthermore, the inequality d(vi, vj) + d(vj, vk)  d(vi, vk) holds. 

However, in real applications, restrictions are imposed on a plain application of the 
UFLP. For example, the number of users concurrently served by a specific facility is 
restricted due to various limits of resources. In addition, the number of facilities concur-
rently opened at the same facility location is also limited. Thus, the evaluation of the 
overall cost requires an analysis of facility location selection and the number of facilities 
opened at each location. The overall cost consists of opening cost and connection cost. 
This kind of problem is referred to as Capacitated Facility Location Problem with Hard 
Capacities (HCFLP) [19]. Generally, there is only one opened facility at each facility 
location in the real world. That is to say, for facility location fli, the number of coexisted 
facilities |F(fli)| = 1. This results in the k-median problem [20]. 
 
2.2 K-median Problem 

 
The k-median problem is the most popular variant of the original FLP. Generally 

speaking, it is categorized as a method for clustering data [21]. It differs from the UFLP 
that a parameter k is introduced, where 0 < k < |FL|. In the realm of clustering, if the 
number of clusters is larger than k, a solution to the k-median problem keeps merging the 
existing clusters until there are exactly k clusters. Besides the additional parameter k, 
there are three major differences between the k-median problem and the original UFLP: 
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 Only one facility can be opened at each facility location. 
 The number of open facilities is no more than k. 
 There is no opening cost for facility locations. 

 
To solve the k-median problem, we should obtain a subset S  FL, where |S|  k 

such that all users are served by facilities at locations in the set S. The obtained set S 
minimizes the overall cost. Since there is no opening cost for facility locations in the k- 
median problem, the overall cost is 

( ) ( , ).
j

i j
v U

C S d v v


   (2) 

Now that the number of coexisted facilities at facility location fli is |F(fli)| = 1, a fa-
cility location can be considered as equivalent to a facility. In the reminder of of this sec-
tion, we use the facility location set FL to denote the facilities interchangeably. We con-
fine the number of concurrent users of a facility in the range of [0, m], namely 0  |U(fli)| 

 m, where m = |U|. The ideal solution of the k-median problem is that each user is 
served by the facility whose connection cost is minimum. For vi = fli  FL and vj = uj  U, 
the ideal solution of the k-median problem can be formulated as 

ˆ, ( , ) min { ( , )}.
k

j i j k j
v FL

v V d v v d v v
 

    (3) 

By Eq. (3), each d̂(vi, vj) is minimized. Thus, the overall cost C(S) in Eq. (2) is also 
minimized. 

3. A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 

The vertical integration of manufacturing network in a smart factory enables a flex-
ible and reconfigurable manufacturing system which is composed of several hierarchical 
subsystems. As the number and scale of subsystems keep growing, the numbers of phys-
ical sensors and users in a smart factory have increased exponentially. Thus, the CPS 
administrators in a smart factory are confronted with a problem of how to reach an over-
all virtual sensor instantiation result for the whole manufacturing network. In this section, 
we propose a k resource scheduler to address the issue of virtual sensor management in a 
manufacturing network. 

 

3.1 k Resource Scheduler 
 

The application scenario of our proposal is illustrated in Fig. 1. Specifically, Fig. 1 
depicts a layered architecture of the manufacturing network, which is divided into four 
layers. 

 
(1) Cyber-physical subsystem layer. A smart factory possesses several cyber-physical 
subsystems, such as cooperative planning system, mechanical driving system, signal sen- 
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Fig. 1. Manufacturing network. 

 
sing system, control system, and production management system. Generally, a coopera-
tive planning system possesses three key features: the timeliness of information feedback, 
the coexistence of synchronous operation and asynchronous operation, and the reliability 
of information transfer. The role of a mechanical driving system is the delivery of motion 
and force. Common driving types are toothed wheel, worm wheel, chain drive, and gear 
train. A signal sensing system contains several kinds of sensors. The underlying cooper-
ation among different components with a device relies on signal sensing. A control sys-
tem consists of control subject, control object, and control medium. It is a management 
mechanism which has clearly defined goals. A production management system dedicates 
to establish a real-time production database. The database is efficiently managed in order 
to monitor the manufacturing processes. Conventionally, a system within this layer is 
independent. In other words, this layer represents the physical world. 
 
(2) Wireless sensor network layer. This layer contains various wireless sensor networks. 
For different cyber-physical subsystems in a smart factory, there usually exist several 
heterogeneous wireless sensor networks. The sensors of these networks aim at intuitive 
physical phenomena such as temperature, pressure, displacement, thermal energy, vibra-
tion, and noise. Due to lack of standardized data exchange formats among heterogeneous 
wireless sensor networks. Popular ways to handle this problem include introducing a 
certain description model, a middle middleware, and an upper layer communication pro-
tocol, etc. For instance, the extensible markup language (XML) is suitable to establish a 
framework which provides a unified data exchange format to facilitate the communica-
tion among heterogeneous wireless sensor networks. 
 
(3) Sensor cloud layer. This layer deals with the virtualization of physical sensors and 
other resources in the cloud. Similar to common cloud systems, the virtualization pro-
vides users with cloud-based sensing services. The overall virtual sensor instantiation 
result is given by the k resource scheduler. The instantiated virtual sensors are able to 
process sensing requests and send sensing replies. In general, a virtual sensor is able to 
simultaneously handle several sensing requests from multiple users. Sensor data collect-
ed by the physical sensors in the wireless sensor networks are transmitted to the corre-
sponding virtual sensors in the sensor cloud. Users in the manufacturing network issue 
sensing requests to the sensor cloud. Then, virtual sensors in the sensor cloud contact 
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specific physical sensors in the wireless sensor networks to collect potential data. At last, 
the sensor cloud sends sensing replies to users based on the obtained sensor data. In [6], 
the authors implemented virtual sensors in four different configurations: one-to-many, 
many-to-one, many-to-many, and derived configurations. For simplicity, the relation 
between virtual sensors and physical sensors illustrated in Fig. 1 is one-to-many. Alt-
hough our work is presented in this setting, the key idea of the proposed scheme applies 
to the other three configurations as well. 
 
(4) User layer. This layer contains all potential entities which need data. To a great de-
gree, the operation of a smart factory and the detailed production status are presented by 
data contained in the production lines and manufacturing processes. To conduct data 
visualization and data analysis, relevant data should be obtained in the first place. The 
term user is a catch-all term which encloses system modules and human beings. Com-
mon users in the manufacturing network are LED panels, A/C controllers, energy ana-
lyzers, conveyor belts, robotic manipulators, and human operators. When a user needs 
some data, it issues a sensing demand to the k resource scheduler. For the concurrent 
sensing demands in the manufacturing network, the k resource scheduler generates an 
overall virtual sensor instantiation result. Then, the users send sensing requests to the 
sensor cloud based on the virtual sensor instantiation result. 

To facilitate the presentation of our proposal, we make the following formal defini-
tions. A manufacturing network (MN) is composed of eight types of entities: CPS ad-
ministrator (CA), k resource scheduler (RS), manufacturing system (MS), physical sen-
sor (PS), wireless sensor network (WSN), virtual sensor (VS), sensor cloud (SC), and 
user (U). The definitions of the eight entities are shown in Table 1. 
 

Table 1. Entity definitions. 
Entity Components 

CA ca_id algorithm 
RS rs_id CA sensor_db k 
MS ms_id 
PS ps_id type VS… max_Nv cur_Nv 

WSN wsn_id prot PS {PS…}  
VS vs_id PS s_cost max_Nu cur_Nu  
SC sc_id VS {VS …} 
U u_id u_cost {VS…} 

 

There are two kinds of brackets used in the definitions of entities: angle brackets () 
and braces ({}). The variables and values within angle brackets are integral parts of a 
valid definition whereas a pair of braces represents a set. Even if the set is empty, the 
definition is still valid. For the sake of simplicity, the MS just contains one property for 
identification, namely ms_id. Though a physical sensor possesses multiple attributes, we 
in this paper use five properties to portray it. The first one is an identification property 
ps_id. The second property type indicates the physical phenomenon a physical sensor 
targeted at. As stated, a physical sensor may be shared by several virtual sensors. The 
third property of a physical sensor is a set of virtual sensors. If a physical sensor is not 



CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG 

 

 

1082

 

associated with any virtual sensor, the third property is an empty set. The fourth and the 
fifth properties are the maximum number and the current number of virtual sensors asso-
ciated with it, respectively. 

A wireless sensor network is composed of multiple physical sensors, thus the WSN 
contains one PS at least. The second property of the WSN indicates the communication 
protocol used within the wireless sensor network. Similar to a wireless sensor network, a 
sensor cloud contains one virtual sensor at least. Each virtual sensor is instantiated with a 
specific physical sensor. Thus, the VS contains an identification vs id and a PS. The third 
property of the VS is the connection cost for the VS to communicate with its corre-
sponding PS. The fourth and the fifth properties are the maximum number and the cur-
rent number of users associated with it, respectively. 

The RS contains the CPS administrator and a database of all physical sensors 
available in a manufacturing network. For ease of an efficient operation and administra-
tion, there needs an upper bound for the number of virtual sensors simultaneously active 
in the sensor cloud. This upper bound is denoted by the fourth property k of the RS. The 
second property of the CPS administrator CA is algorithm. The role of this algorithm is 
to obtain an overall virtual sensor instantiation result for the whole manufacturing net-
work. This operation is conducted by the RS. For each user U, the second property u cost 
denotes the connection cost for the U to communicate with the border gateway of the SC. 
The third property of the U is the set of virtual sensors assigned to the user. 

As shown in Fig. 1, the interactions among the four layers are represented by black 
line arrows. There are two kinds of connections: a dotted line with bidirectional arrows 
and a solid line with unidirectional arrow. The former connection is merely appeared 
between the wireless sensor network layer and the sensor cloud layer. As stated before, 
the relation between virtual sensor and physical sensor is one-to-many. Namely, one 
physical sensor may be shared by several virtual sensors. The corresponding relation 
between physical sensors and virtual sensors is determined by the k resource scheduler. 
Unlike the former connection, there are totally seven cases of the latter connection. They 
are sensor data, sensor registration/update, sensing demands, instantiation, VS list, sens-
ing request, and sensing reply. We refer to the above seven connection as actions. As 
shown in Table 2, an action has three attributes: sender, receiver, and type. Moreover, all 
actions are unidirectional, which contributes to a simple and clear design. Sensing de-
mands are sent to the RS then the RS gives an instantiation result to the SC and respons-
es to the users with a VS list. A sensor registration/update is a request sent to the RS, 
which means it is the WSN who maintains the physical sensors database proactively. The 
RS just updates the database upon being requested and reads the database when it works 
on an instantiation result. Namely, the management of physical sensors is handled by the 
WSN, and the RS just uses the records of physical sensors and concentrates on formu-
lating the instantiation result. Upon receiving the corresponding VS list of the instantia-
tion result, each U makes a sensing request towards the virtual sensor assigned to it. 
Then, the relevant virtual sensors in the SC communicate with the corresponding physi-
cal sensors. The sensor data collected by physical sensors are sent to the SC. At last, the 
SC sends sensing replies containing the sensor data to the U. 

On the whole, when a user has a potential need of data, it generates a sensing de-
mand and then sends it to the resource scheduler. For a manufacturing network which 
contains considerable number of users, it is probably that there turn up massive sensing 
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Table 2. Actions. 
Action Sender Receiver Type 

Sensor Data WSN SC Result 
Sensor Registration/Update WSN RS Request 
Sensing Demands U RS Request 
Instantiation RS SC Result 
VS List RS U Result 
Sensing Request U SC Request 
Sensing Reply SC U Result 

 

demands concurrently. The resource scheduler is designed to formulate an overall virtual 
sensor instantiation result which meets all sensing demands based on the current infor-
mation of available physical sensors. The overall virtual sensor instantiation result is 
obtained according to the specific algorithm stipulated by the CPS administrator. The 
resource scheduler sends the information contained in the VS list point to point in re-
sponse to each sensing demand. Once a user receives the information of a virtual sensor, 
it may issue a sensing request to the specific virtual sensor in the sensor cloud. For the 
communication between a user and a virtual sensor, there is a connection cost u cost. 
Similarly, for the communication between a virtual sensor and a physical sensor, there is 
a connection cost s_cost. In practice, the CPS administrator does not only take the total 
connection cost into account, but also consider the number of virtual sensors simultane-
ously active in the sensor cloud. For ease of an efficient operation and administration, we 
denote the upper bound of this number by k. 

The interactions described above are conducted with eight types of messages: sen-
sor registration, sensor update, sensing demand, instantiation, VS result, sensing request, 
sensor data, and sensing reply. The definitions of the eight messages are shown in Table 3. 

 

Table 3. Message definitions. 
Message Components 

Sensor Registration wsn_id ps_id type max_Nv 
Sensor Update modify ps_id cur-Nv | del ps_id 
Sensing Demand rs_id u_id type 
Instantiation vs_id ps_id 
VS Result u_id sc_id vs_id rs_id 
Sensing Request sc_id vs_id u_id 
Sensor Data wsn_id ps_id s_data vs_id 
Sensing Reply sc_id vs_id data u_id 

 

The basic information of a physical sensor is registered with the resource scheduler 
by sensor registration message. Since the operation of registration is conducted by a new 
physical sensor, the current number of virtual sensors associated with it is zero. Thus, the 
property cur_Nv is omitted. The sensor update message is sent to the resource scheduler 
by a wireless sensor network. It has two forms: modify and del. The former is used to 
update the current number of virtual sensors associated with a physical sensor. While the 
latter is used to remove the entry of a physical sensor from the database of the resource 
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scheduler. A sensing demand message is sent to the resource scheduler by a user. For 
each sensing demand, the resource scheduler sends a VS result message to the corre-
sponding user according to an overall virtual sensor instantiation result. Upon receiving a 
VS result message, a user may send a sensing request message to the sensor cloud. The 
virtual sensor specified in the sensing request message communicates with the associated 
physical sensor to collect sensor data. Both the sensing request message and the sensing 
reply message contain sc_id, vs_id, and u_id to indicate source and destination. 

For a manufacturing network which has m users, we assume that the sensor cloud in 
the manufacturing network is able to accommodate a maximum of n virtual sensors. We 
denote the users and the virtual sensors by sets U = {u1, u2, ..., um} and VS = {vs1, vs2, ..., 
vsn}, respectively. 

Suppose the number of concurrent sensing demands sent to the resource scheduler 
is m  m. The maximum number of virtual sensors active in the sensor cloud is k, where 
k  n. We make the assumption that there are enough physical sensors deployed in wire-
less sensor networks such that arbitrary sensing demands can be served. For the m con-
current sensing demands, we denote a solution to the virtual sensor instantiation problem 
by a set R = {r1, r2, ..., rm}. Thus, the total connection cost for the manufacturing net-
work is 

1

( ) ( .VS. _ cos .U. _ ).
m

i
i

C R r s t r u cost




   (4) 

Note that in Eq. (4), “VS” and “U” merely denote the virtual sensor and the user of 
ri, respectively. They are not set symbols. Though there are m terms in Eq. (4), the 
number of virtual sensors involved in R is no more than k. These involved virtual sensors 
constitute a set V, where |V|  k. We make the assumption that only one virtual sensor is 
needed to meet a sensing demand. Thus, we have |V|  m. Our goal is to minimize the 
total connection cost C(R). Based on the above discussion, it can be formulated as a 
k-median problem. 

In our application scenario, the actual interactions among the four layers within the 
manufacturing network are of high volume. During the operation of the manufacturing 
network, a lot of virtual sensor instantiation records which list pairs of a sensing request 
and a physical sensor are readily available. Thus, to concentrate on the elaboration of our 
model, we make a premise that there exists a function FS(VS) which is able to give a 
feasible solution for m concurrent sensing demands based on the available virtual sen-
sors. The solution includes two parts: V and R. The former one is a set of involved virtual 
sensors and contains exactly k elements; the latter one is a set of records and contains 
exactly m elements, each record resolves one sensing demands. In addition, we denote 
the concurrent sensing demands by set D, where |D| = m. 

 
3.2 Progressive Swap Algorithm 

 
The progressive swap algorithm mainly consists of three steps. 

 
(1) A feasible solution is generated by FS(VS), the records which resolve the m sensing 
demands constitute a set R, where |R| = m. The virtual sensors involved in set R consti-
tute a set V, where V ⊂ VS and |V| = k. 
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(2) To get a reduction of C(R), the elements of set V are modified for the purpose of 
changing the elements of set R. We introduce a plain swap operation s(V) to modify set V. 
The operation s(V) is conducted between elements in V and VS \ V. The elements of V is 
progressively modified in order to reduce C(R). 
 
(3) As the number of swaps increases, C(R) is progressively reduced. When there is no 
s(V) which is able to get C(R) reduced, the algorithm terminates. At this point, C(R) is 
minimized. However, in the real world, a thorough execution which leads to a minimized 
result is always not permissible or practical due to various limitations. Thus, to control 
the number of swap operations, we introduce a variable cap as the upper bound which 
terminates the execution of the algorithm. In most cases, an execution terminated by cap 
does not lead to a minimized result, for there still exists one or more s(V) which can re-
duce C(R). In this case, we refer to the set R as a partial optimal solution. The progres-
sive swap algorithm (PSA) is detailed in Algorithm 1. 

 
Algorithm 1: Progressive Swap Algorithm 
Require: VS, D, k. 
1: V, R  FS(VS) 
2: s := s(V) = V \ {vsi}  {vsi} 
3: V := V + s(V) 
4: R := R + V 
5: c  0 
6: repeat 
7:  if s allows C(R) < C(R) then 
8:   V  V 
9:   R  R 
10: end if 
11: c ← c + 1 
12: until (no s can reduce C(R)) |(c == cap) 
13: return V, R 

 
Let R* be a partial optimal solution. For a feasible solution R, the involved virtual 

sensors are denoted by set V. We make the assumption that there exists a swap s(V) 
which allows 

( ) 1 ( )
( , )

C R C R
P n m

      
 (5) 

holds, where  > 0 and p(n, m) is a polynomial of n and m. The number of swap opera-
tions is at most  

*

( , )

1
log( ( ) / ( )) / log .

1 p n m

C R C R



 (6) 

Since the input size of log(C(R)) is polynomial and the time complexity of operation 
s is also polynomial, the time complexity of Algorithm 1 is polynomial [22].  
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For any feasible solution R, the corresponding set of involved virtual sensors V 
possesses two properties: V  VS and |V| = k. The minimization process of C(R) is con-
ducted by swapping elements between set V and set VS \ V. A small k indicates more al-
ternative virtual sensors in set VS \ V. While a large k leads to less room for the swap op-
eration. Thus, a variation of a small k is more influential to the total connection cost (or 
the average connection cost) of the manufacturing network than that of a large k. 

3.3 Greedy Algorithm 

In most cases, an algorithm called “greedy” indicates that the expected return keeps 
being maximized during each step of execution. For our application scenario, since the 
sensor cloud in the manufacturing network is able to accommodate a maximum of n vir-
tual sensors, the initial state of a greedy strategy takes n virtual sensors into account. On 
this premise, we derive the corresponding initial solution. In the first place, the number 
of current users of each virtual sensor in set VS is set to zero. We denote the current users 
of a virtual sensors vsi by set U(vsi). Initially, |U(vsi)| = 0, where 1  i  n. The total con-
nection between virtual sensor vsi and user uj is  

d(vsi, uj) = vsi.s_cost + uj.u_cost.  (7) 

Since n virtual sensors are considered initially, for each j  [1, m], d(vsi, uj) can be 
minimized. This is the ideal solution. Then, for each j  [1, m], we add user uj to the 
corresponding set of current users U(vsi). At this point, we denote the number of ele-
ments in set V by n. As the number of involved virtual sensors should be no more than k, 
a value of n which is larger than k is invalid. When this happens, the virtual sensors 
whose current users are few should be removed from set V. A user formerly served by a 
removed virtual sensor is reassigned to another virtual sensor in set V. When there are 
exactly k virtual sensors in set V, the algorithm terminates and the set R is a partial opti-
mal solution. The greedy algorithm (GA) is illustrated in Algorithm 2. 

In Algorithm 2, there are three parts of calculation. They possess different time com- 
plexities; (1) The number of current users of n virtual sensors: O(max(n, m)); (2) The 
searching of the virtual sensor whose current users is the fewest: O(n); (3) The reassign- 
ment of orphan users: O(n  m). So the time complexity of Algorithm 2 is O(n2  m). 

The greedy algorithm initially considers n virtual sensors. When the ideal solution is 
derived, there are n virtual sensors involved, where |V| = n and n  n. However, a nec-
essary condition of a valid solution is n  k. For n > k, the virtual sensors whose current 
users are few should be removed from set V. A user formerly served by a removed virtu-
al sensor is reassigned to another virtual sensor in set V. This process repeats until n = k, 
namely there are k elements in set V. For a small k, the number of virtual sensors in set V 
is also small at the ending part of the execution of the algorithm. It is probably that a 
reassignment of a user merely leads to a slight difference between its former connection 
cost and the new one, since all virtual sensors in set V could be considered far away from 
the user. When k is large, there are more alternative virtual sensors. For a reassignment 
of a user, the former virtual sensor is considered near to the user, while the new virtual 
sensor could be considered far from the user. Thus, a variation of a large k is more in-
fluential to the total connection cost (or the average connection cost) of the manufactur-
ing network than that of a small k. 
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Algorithm 2: Greedy Algorithm 
Require: VS, D, k. 

1: for i = 1 to |VS| do 
2: U(vsi)   
3: end for 
4: for i = 1 to |VS| do 
5: for j = 1 to |D| do 
6:  dij  d(vsi, uj) 
7: end for 
8: end for 
9: for j = 1 to |D| do 

10: 
1 | |
min{ }kj iji V

d d
 

  

11: U(vsk)  U(vsk){uj} 
12: end for 
13: repeat 
14:  1 | |

| min ( )r i ii V
vs vs U vs

 
  

15: for j = 1 to vsr.cur_Nu do 
16:  dkkj = min{{d1j, d2j, …, d|V|j}\{drj}} 
17:  U(vsk)  U(vsk)  {uj} 
18: end for 
19: V  V | {vsr} 
20: until |V| == k 
21: return V, R 
 
3.4 RK Algorithm 

 
The RK algorithm is a hybrid of the progressive swap algorithm and the greedy al-

gorithm. To some degree, the progressive swap algorithm and the greedy algorithm show 
two opposite strategies, respectively. The former one initially considers k virtual sensors 
which meet the m sensing demands then adjusts the solution by swapping virtual sensors. 
The status it starts at is random then the algorithm proceeds with optimization. The initial 
solution merely contains k virtual sensors. Thus, the benefit to cost ratio of the subse-
quent swapping process is low. While, the latter one initially considers all virtual sensors 
available, then adjust the solution by deleting virtual sensors. The status it starts at is the 
ideal case, then the algorithm proceeds with degradation. The initial solution contains n 
virtual sensors. In most cases, n  k holds. Hence, the subsequent degradation process is 
expatiatory. 

In view of the above, we develop the RK algorithm which combines the progressive 
swap algorithm and the greedy algorithm. The RK algorithm consists of two parts. In the 
first part (lines: 1-7), r ꞏ k virtual sensors are eventually obtained which meet the m sens- 
ing demands. The parameter r is a coefficient for the candidate virtual sensors, where r = 
1, 2, 3, …, 

| | .VS
k

    Specifically, a feasible solution is generated by FS(VS) in the first place, 
and the virtual sensors involved constitute set V. Then, another feasible solution is gen-
erated by FS(VS \ V), and the virtual sensors involved constitute set Vt. We let the virtual 
sensors contained in set V and set Vt constitute set V. This process continues until |V| = 



CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG 

 

 

1088

 

r ꞏ k. In the second part (line 8), the greedy algorithm is executed. At this point, the vir-
tual sensors initially considered are denoted by set V. The detailed RK algorithm is 
showed in Algorithm 3. The parameter r indicates the number of feasible solutions gen-
erated. In the first part of the RK algorithm, several feasible solutions are successively 
generated. For instance, when r = 2, two feasible solutions are successively generated. 
After the first feasbile solution is generated, the virtual sensors involved are not consid-
ered in the generation of the second feasible solution. This exclusion is carried out by the 
set operation VS \ V. Thus, the value of r is directly proportional to the number of ele-
ments in set V. The operation of the first part ends up with |V| = r ꞏ k. The second part is 
the very greedy algorithm. However, the set of virtual sensors initially considered is V, 
instead of VS. By the greedy algorithm, we know that as long as set VS is determined, the 
final solution (V and R) is also determined. Generally speaking, the greater the number of 
virtual sensors in set VS is, the better the performance of the greedy algorithm is. How-
ever, the more the number of virtual sensors initially considered, the more time consum-
ing the greedy algorithm is. Thus, the first part of the RK algorithm introduces a param-
eter r to control the number of virtual sensors passed to the second part.  

 
Algorithm 3: RK Algorithm 
Require: VS, D, k, r. 
1: V  , Vt   
2: V  FS(VS) 
3: for i = 1 to r − 1 do 
4:  Vt  FS(VS \ V) 
5:  V  VVt 

6:  Vt   
7: end for 
8: exec GA with V, D, k. 

4. SIMULATION RESULTS 

We conduct a set of simulations to evaluate the performance of our proposal. In 
these simulations, we show (1) the relation between the performance and the number of 
iteration for the PSA and the GA; (2) the ranges of the number of iteration for the solu-
tions and the corresponding values for optimal solutions for the PSA and the GA; and (3) 
the variation of the average connection cost for different numbers of virtual sensors sim-
ultaneously active and different numbers of concurrent sensing demands for the PSA, the 
GA, and the RKA. The simulations are conducted on a 2.50 GHz Intel Core i5 processor 
and 8GB RAM under Debian Stretch 9.4.0 [23]. The simulation platform is developed 
based on the NS-3 [24] simulator framework. The entities and the associated actions are 
implemented in the light of Section 3. 

 
4.1 Simulation Settings 

 

For simplicity, we consider an MN with one WSN and one SC. We employ three 
types of physical sensors: temperature sensors (TPS), humidity sensors (HPS) and pres-
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sure sensors (PPS). Each type of sensor consists of 100 nodes. The SC is able to ac-
commodate a maximum of n = 150 virtual sensors and the number of users is m = 600. 
The physical sensors are randomly distributed in an 80  80 region, while the users are 
not restricted in this area. The values of u_cost and s_cost are uniformly distributed in 
the range of (0, 80] and (0, 600], respectively. 

Due to limited resources and real-time requirements, the chances for a complete 
execution of an algorithm which achieves an optimal solution is slim to none. Thus, we 
introduce a parameter iter to indicate the number of iterations an algorithm is executed. 
For the progressive swap algorithm, as long as the value of cap is large enough, the total 
connection cost C(R) will eventually be minimized. In other words, if the value of iter is 
large enough, the progressive swap algorithm will obtain an optimal solution. For the 
greedy algorithm, when n > k, there are n − k virtual sensors to be removed from set V 
before the minimized C(R) is obtained. When iter is greater than or equal to n − k, the 
greedy algorithm will accord an optimal solution. In Table 4, we identified five key pa-
rameters for our simulation: k, m, cap, n − k, and r. k is the number of virtual sensors 
simultaneously active in the sensor cloud. m is the number of concurrent sensing de-
mands sent to the resource scheduler. cap is the upper bound which terminates the exe-
cution of the progressive swap algorithm. n − k is the number of virtual sensors which 
should be removed from set V. 

 

Table 4. Key parameters. 
Parameter Explanation 

k # of VS simultaneously active in the SC 

m # of concurrent sensing demands sent to the RS 
cap the upper bound of the iter for the PSA 

n− k # of VS which should be removed from set V 
r # of feasible solutions generated in the RKA 

 

4.2 Simulation Results and Analysis 
 

To investigate the performance of our proposal, we conducted extensive simulations. 
There are three cases of the relation between cap and n − k: cap < n − k, cap = n − k, 
and cap > n − k. The corresponding simulation results are depicted in Figs. 2-4. As 
shown in Figs. 2-4, the total connection cost of the progressive swap algorithm mono-
tonically decreases with the increase of iter, while the total connection cost of the greedy 
algorithm monotonically increases with the increase of iter. The performance of the pro-
gressive swap algorithm is bounded within the curves PSAw and PSAb. And specifically, 
the curve PSAw stands for the worst case, while the curve PSAb indicates the best case. 
The curve GA is a representative which shows the performance of the greedy algorithm. 
At the beginning of the greedy algorithm (i.e., iter = 0), the ideal solution is achieved and 
there are n virtual sensors involved. The total connection cost increases with the in-
crease of iter. When the greedy algorithm terminates, an optimal solution is obtained. 
We denote the corresponding coordinates for the curve GA by (iterg, cg). The termination 
of a progressive swap algorithm also accords an optimal solution. We denote the corre-
sponding coordinates for the curves PSAw and PSAb by (iterw, cw) and (iterb, cb), respec-
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tively. Trivially, iter  [0, +∞]. However, there is a range of iter within which an algo-
rithm is able to produce feasible solutions. Table 5 lists the ranges of iter for the solu-
tions and the corresponding values for the optimal solutions. 

 

Table 5. Solutions and optimal solutions. 
 cap < n − k cap = n − k cap > n − k 

Solution Optimal Solution Optimal Solution Optimal 
PSA iter  0 iter = 40 iter  0 iter = 50 iter  0 iter = 50 
GA iter  50 iter = 50 iter  50 iter = 50 iter  40 iter = 40 

 

The case of cap < n − k is depicted in Fig. 2, where cap and n − k are 40 and 50, 
respectively. When iter = n − k = 50, the optimal solution of the greedy algorithm is ob-
tained, namely iterg = 50. Similarly, as cap = 40, the curves PSAw and PSAb end at iter = 
40. Thus, iterw = iterb = 40. For iter  0, the progressive swap algorithm is able to give a 
solution; while the greedy algorithm is able to give a solution when iter  50. 

 

 
Fig. 2. cap < n − k. 

 

The case of cap = n − k is depicted in Fig. 3, where both cap and n − k are 50. 
When iter = 50, the optimal solution of the progressive swap algorithm is obtained, 
namely iterw = iterb = 50. Analogously, iterg = 50. For iter  0, the progressive swap al-
gorithm is able to give a solution; while the greedy algorithm is able to give a solution 
when iter  50.  

The case of cap > n − k is depicted in Fig. 4, where cap and n − k are 50 and 40, 
respectively. When iter = n − k = 40, the optimal solution of the greedy algorithm is ob-
tained, namely iterg = 40. Similarly, as cap = 50, the curves PSAw and PSAb end at iter = 
50. Thus, iterw = iterb = 50. For iter  0, the progressive swap algorithm is able to give a 
solution; while the greedy algorithm is able to give a solution when iter  40. 

For the progressive swap algorithm, if the number of swap operations is large 
enough, namely the variable cap is large enough, the execution of the progressive swap 
algorithm will terminate with an optimal solution. For the greedy algorithm, n − k virtu- 
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Fig. 3. cap = n – k.                        Fig. 4. cap > n – k. 

 

al sensors should be removed from set V before the optimal solution is obtained. As 
shown in Fig. 3, when the greedy algorithm obtains the optimal solution, we have cg = cb 
< cw. In other words, the performance of the greedy algorithm is better than the progres-
sive swap algorithm when cap = n − k. For the purpose of investigating the parameters k 
and m, we set cap = n − k. All things being equal, the total connection cost for the MN 
increases with the number of concurrent sensing demands sent to the resource scheduler. 
Thus, we concentrate on the average connection cost for m concurrent sensing demands 
and k virtual sensors simultaneously active in the sensor cloud. For m = 200 and 400, we 
consider a confined range of k as k  [50, 100]. For k = 30 and 60, we consider a con-
fined range of m as m  [100, 500]. The simulation results for k and m are depicted in 
Figs. 5 and 6, respectively. 

 

 
Fig. 5. Variation of cost with different k for PSA 

and GA. 
Fig. 6. Variation of cost with different m for 

PSA and GA. 
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As shown in Fig. 5, the average connection costs of both algorithms monotonically 
decrease with the increase of k. The overall performance of the GA is superior to the PSA. 
For the PSA, the variation of the average connection cost around a small k is more sig-
nificant than that of a large k, and the inflection point is around k = 75. In other words, 
the curves of the PSA are concave. For the GA, there also exists an inflection point which 
is around k = 75. However, the curves of the GA are convex. In other words, the varia-
tion of the average connection cost around a large k is more significant than that of a 
small k. 

As shown in Fig. 6, the fluctuation of the average connection costs of both algo-
rithms are slight with the variation of m. Namely, the average connection cost is rela-
tively steady. Though the average connection cost as a whole shows an increasing trend, 
the variation of the average connection cost is not monotonical. This indicates that the 
characteristics of the relation between m and the the average connection cost is not as 
obvious as that of k. For simplicity, we consider two cases of k = 30 and 60. With the in- 
crease of k, there are more virtual sensors which could be used in the sensor cloud. Name- 
ly, there are more room for the solving process and the final solution of both algorithms. 
Thus, when k = 60, the overall performances of both algorithms are better than k = 30. 

To facilitate the operation and management of the MN, the number of virtual sen-
sors simultaneously active in the sensor cloud should be as small as possible. The above 
two algorithms pursue a minimization of the total connection cost. Namely, both k and 
C(R) should be as small as possible. Thus, it is necessary to investigate the relation be-
tween k and C(R). As shown in Fig. 5, the average connection cost monotonically de-
creases with the increase of k. Thus, the total connection cost also monotonically de-
creases with the increase of k. If the CPS administrator shows more concern about the 
total connection cost, a larger k (e.g., k  [75, 100]) is preferred. On the contrary, if the 
CPS administrator pays more attention to the number of virtual sensors simultaneously 
active in the sensor cloud, a smaller k (e.g., k  [50, 75]) is preferred. 

To make an analysis of the Algorithm 3, we set m = 300 and observe how the coef-
ficient for the candidate virtual sensors affects the average connection cost of the whole 
manufacturing network. The setting of m = 300 is in concert with the experimental re-
sults depicted in Fig. 5. This setting facilitates the performance evaluation of the RKA in 
comparison with the PSA and the GA. As shown in Fig. 7, the average connection cost 
for the RKA monotonically decreases with the increase of the coefficient for the candi-
date virtual sensors. In other words, the average connection cost monotonically decreases 
with the increase of the number of candidate virtual sensors. This characteristic coincides 
with the PSA and the GA. In addition, the greater the coefficient for the candidate virtual 
sensors, the greater the rate of decreasing. 

When r = 1, the first part of the RKA ends up with a set V which contains exactly k 
virtual sensors. Thus, the second part does nothing. In this case, the final solution is very 
set V which is obtained by FS(VS) in the first part. There is no further modifications im-
posed on the original feasible solution generated by FS(VS). Thus, the average connec-
tion cost is quite large(C(R) = 850). By the experimental results showed in Fig. 6, when k 
= 30, the average connection costs for the PSA and the GA are 645 and 476, respectively. 
By the experimental results showed in Fig. 6, the performance of the GA is superior to 
the PSA for a fixed k. We use a red dashed line and a blue dashed line to delimit the 
performance of the PSA and the GA when k = 30. The number of virtual sensors consid-
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ered by the second part of the RKA is growing in direct proportion to the coefficient for 
the candidate virtual sensors. For k = 1, 2, 3, 4, 5, 6, the performance of the PSA is supe-
rior to that of the RKA. For k = 7, 8, the performance of the RKA is better than that of 
the PSA. However, the performance of the GA is still superior to that of the RKA. When 
r = 2, the first part of the RKA generates two disjoint feasible solutions. Namely, the 
corresponding sets of involved virtual sensors for the two feasible solutions are disjoint. 
Thus, the first part of the RKA ends up with a set V which contains exactly 2k virtual 
sensors. Since the number of candidate virtual sensors increases, the second part of the 
RKA is able to obtain a better solution than that of r = 1. For r = 1 and r = 2, the num-
bers of involved virtual sensors of the final solutions are both k = 30. The performance 
improvement is due to the increase of the number of candidate virtual sensors processed 
by the second part of the RKA. For k = 60, the performances of both the PSA and the 
GA improve significantly. These two points are marked along with the case of k = 30 for 
a clear comparison. 

 

   
Fig. 7. Variation of cost with different r for RKA. Fig. 8. Variation of cost with different m for RKA. 

 
To further investigate the RKA, we set the number of feasible solutions generated to 

three, namely r = 3. The number of virtual sensors simultaneously active in the sensor 
cloud is k = 20, 30, 40. The relation between the number of concurrent sensing demands 
and the average connection cost is depicted in Fig. 8. With the increase of m, the aver-
age connection cost of the whole network shows a rising trend. It is obvious the total 
connection cost of the whole network is monotonically increasing with the increase of 
the number of concurrent sensing demands. For the average connection cost of the whole 
network, the overall trend is also increasing. However, the way of increasing is not mon-
otonic. Thus, the increasing of the number of concurrent sensing demands has the effect 
of degrading the performance of the RKA. Besides, the degree of degradation is not di-
rectly proportional to the increasing of the number of concurrent sensing demands. The 
average connection costs for k = 20, 30, 40 gradually decrease in a steady way. Thus, the 
increase of the number of virtual sensors simultaneously active in the sensor cloud is able 
to improve the performance of the RKA. This is similar to the cases of the PSA and the GA. 
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5. CONCLUDING REMARKS 

We studied the problem of virtual sensor management in a manufacturing network. 
The vertical integration of a manufacturing network was demonstrated as four layers. We 
described the components and functions of each layer. In addition, we introduced eight 
entities and seven actions to model the operation of a manufacturing network. The inter-
actions among the eight entities were conducted with eight messages. Based on the 
above building blocks, we formulated the issue of virtual sensor instantiation as a 
k-median problem and proposed a cost-efficient virtual sensor management scheme. Our 
proposal provided three resource scheduling algorithms: progressive swap algorithm, 
greedy algorithm, and RK algorithm. Simulations were conducted for five key parame-
ters to evaluate the performance of the above three algorithms. The simulation results 
show that the performance differences between the progressive swap algorithm and the 
greedy algorithm are closely related to the upper bound which terminates the execution 
of the progressive swap algorithm and the number of virtual sensors which should be 
removed from the set of involved virtual sensors. Moreover, the value of k should be 
prudently determined based on different emphases on the number of virtual sensors sim-
ultaneously active in the sensor cloud and the total connection cost. To some degree, the 
progressive swap algorithm and the greedy algorithm represent two opposite strategies, 
respectively. A hybrid solution which combines the progressive swap algorithm and the 
greedy algorithm is formulated by the RK algorithm. The parameter r which indicates the 
number of feasible solutions generated by the first part of the RK algorithm is a key tun-
er of the performance. Besides, there is still room for improvement. To approach the op-
erations in a real-world scenario, details such as message delay, physical sensor node 
failure, and energy conservation in wireless sensor networks should be introduced. 
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