
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 1075-1097 (2019)
DOI: 10.6688/JISE.201909_35(5).0009

1075

A Cost-Efficient Virtual Sensor Management Scheme
for Manufacturing Network in Smart Factory

CONG GAO1,2, ZHENZHOU TIAN1,2, YANPING CHEN1,2 AND ZHONGMIN WANG1,2

1School of Computer Science and Technology
2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing

Xi’an University of Posts and Telecommunications
Xi’an, 710121 P.R. China

E-mail: {cgao; zztian; chenyp; zmwang}@xupt.edu.cn

The information comes from physical shop floor and manufacturing process is

closely monitored and coordinated under the framework of cyber-physical system in In-
dustry 4.0. Wireless sensor networks are deployed to collect the massive amounts of data
generated in a smart factory. Researchers employ sensor cloud to facilitate the manage-
ment of a large scale deployment of wireless sensor nodes. Facing with lots of concurrent
sensing demands of users administrators of a manufacturing network need to deal with
the mapping of physical sensors and virtual sensors. We propose a cost-efficient virtual
sensor management scheme which is able to accord an overall virtual sensor instantiation
result for the whole manufacturing network. Both the architecture of the manufacturing
network and the application scenario are modeled by entities, actions, and messages. The
key component of the proposed model is called k resource scheduler. Different resource
scheduling algorithms could be applied to the k resource scheduler, and thus make our
model flexible. Three resource scheduling algorithms are devised to tackle the problem
of virtual sensor management. The effectiveness of the proposed model is verified by
simulation experiments and a comprehensive analysis of the experimental results is pro-
vided.

Keywords: manufacturing network, cyber-physical system, Industry 4.0, wireless sensor
networks, virtual sensor, k-median

1. INTRODUCTION

Recent years, the booming development of information communication technology
has enlightened an evolution which transforms traditional manufacturing industry to the
next generation, namely Industry 4.0. Smart factory is the primary application entity
which holds up Industry 4.0. Modern production lines and manufacturing processes con-
tain various data, such as temperature, pressure, displacement, thermal energy, vibration,
and noise. Multiple forms of analysis can be conducted based on these data, such as de-
vice diagnostics, energy consumption, quality assurance, and automated logistics. A brief
comparison between today’s factory and an Industry 4.0 factory is presented in [1]. The
utilization of information communication technologies such as Internet of things, sensor
networks, and cloud computing has significantly accelerated the generation of large
amounts of data. The rapid growing amounts of data in smart factory pose a critical
challenge to data acquisition, data storage, data processing, data analysis, etc. In such
circumstances, pioneers in both the academic and industrial fields advocate to bring in
the cyber-physical system (CPS). Currently, there is no a unanimous definition of CPS,

Received October 29, 2018; revised December 5, 2018; accepted December 21, 2018.
Communicated by Xiaohong Jiang.

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1076

however. An exact definition depends on the underlying ideas and technologies. One of
the commonly accepted definition is: the CPS is defined as a collection of innovative
technologies for regulating interconnected systems between their physical assets and
computing power [2]. Thus, the deployment of CPS enables a comprehensive linkage
among mechanical equipment, physical assets, manufacturing process monitor systems,
etc. These entities are connected with each other by specialized network infrastructures.
The information comes from physical shop floor and manufacturing process is closely
monitored and coordinated under the framework of CPS. For a manufacturing plant,
multitudinous control requirements and operations are the major routines. Generally
speaking, the corresponding control mechanisms are distributed among several entities.
The cooperation among these mechanisms facilitates a self-organized production system.
The high flexibility and reconfigurability of this production system could handle the dy-
namic nature of production line and manufacturing process in a smart factory.

The application of CPS in Industry 4.0 contains two aspects [3]: wireless sensor
network and cloud computing.

Wireless sensor network focuses on delivering collected data with various types of
sensors and is currently bridging the gap between the cyber and physical systems [4].
The data obtained by sensors play a crucial role in machine behavior modeling and man-
ufacturing process optimization. In other words, the sensor data possess vital potential
information which can be applied to manufacturing status prediction and adjustment,
production line optimization, device diagnostics, etc. To enable a highly flexible and
reconfigurable smart factory and conduct the operations mentioned above, data should be
obtained appropriately and efficiently in the first place. In a smart factory, there are var-
ious kinds of data requesters such as A/C controller, energy analyzer, LED panel, human
operator, etc. For simplicity, we refer to them collectively as users. Traditional data col-
lection methods use the physical sensors in a direct way. However, this approach has a
major drawback: with a large scale deployment of wireless sensor nodes, users are faced
with the problem of choosing a functionally matched sensor node with minimum over-
head.

To address this problem, researchers introduced cloud computing technologies.
Cloud computing provides shared computing resources and data in the light of user de-
mands. Thus, the concept sensor cloud [5] sprang up with the combination of wireless
sensor network and cloud computing. As the name implies, sensor cloud refers to an in-
frastructure within which physical sensors are connected to cloud for management. It
provides users with cloud service instances in an automated way. The cloud service in-
stance is called virtual sensor. A virtual sensor is an emulation of a physical sensor and
its data are obtained from underlying physical sensors [6]. The term virtual means trans-
parency to users. That is to say, there is no difference between a cloud service instance
and other physical resources in the system in terms of user experience. To be specific,
virtual sensors provide user with customized views by conducting distribution transpar-
ency and location transparency. Before the concept of sensor cloud appears, the real-time
communication of cloud computing has been discussed [7, 8]. Then it comes up with
extensive studies on the integration of sensor with cloud framework. In [5], a clear pic-
ture of the establishment and opportunities of sensor cloud architecture was provided. In
[9], a detailed review of sensor cloud was given, including concepts, inherent natures,
and application advantages. In addition, a comparison among the message types involved

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1077

in different models was also conducted. In [10], the integration of sensor with cloud
scheme was applied to health monitoring. An optimal gateway selection model is pro-
posed for the purpose of maximizing bandwidth for health data transmission. In [11], the
authors listed the challenges in front of the integration of wireless sensor network and
cloud, and proposed a dedicated sensor cloud framework for Software-as-a-Service ap-
plications. A similar work was provided in [12], the authors discussed the challenges for
comprehension of sensor cloud diversification, implementation of scalable functions,
privacy protection, etc. Moreover, a baseline for studying the above issues was also giv-
en. In [13], a simple virtual wireless sensor network infrastructure was proposed. The
scheme is independent of the underlying protocols, and is able to combine with popular
routing protocols and data aggregation protocols. In [14], a topology virtualization model
was implemented by node self-organization for underwater sensor network.

Most of the existing work discussed the benefits of sensor cloud and concomitant
challenges. However, an efficient sensor management scheme dealing with concurrent
sensing demands in sensor cloud is missing. Specifically, two key problems need to be
investigated: (1) how concurrent sensing requests of a group of users are mapped to the
sensor cloud; and (2) which physical sensor is used to instantiate a specific virtual sensor.

In this work, we address the problem of virtual sensor management in a manufac-
turing network. The basic idea is introducing a resource scheduler and formulating it as
the famous facility location problem (FLP). Our proposal concentrates on obtaining an
overall cost-efficient virtual sensor instantiation result for concurrent sensing demands.
For k simultaneously active virtual sensors in the sensor cloud, we devise three algo-
rithms to pursuit an optimal solution which minimizes the total connection cost of the
manufacturing network.

The remainder of the paper is organized as follows: Section 2 reviews the facility
location problem and introduces the k-median problem. Section 3 proposes a k resource
scheduler model. Three virtual sensor management algorithms are elaborated with de-
tailed theoretical analysis. In Section 4, we evaluate our proposal by simulation and pre-
sent a comprehensive analysis of the simulation results. Section 5 draws the conclusions
and possible future extensions for the proposed method.

2. FACILITY LOCATION PROBLEM

The theory of facility location problem (FLP) was created by Cooper [15] in 1963.
As the adoption of FLP is widespread both in scientific area and everyday life, it has
been a research hotspot for nearly sixty years [16]. Originally, the facility location prob-
lem focuses on the modeling of facility location. It is a branch of operations research and
also known as location analysis. Theoretically, the facility location problem refers to
determine a series of optimal locations for several facilities that will provide services
from a given set of points.

2.1 FLP Overview

Assume there are n potential facility locations and m users in the region of interest.

These potential facility locations are denoted by set FL = {fl1, fl2, …, fln}. We denote the

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1078

opening cost of facility location fli by fi, where fi  0. By opening cost of a facility loca-
tion, we mean a catch-all term which includes the facility construction/renting cost, daily
operation cost, and equipment maintenance/upgrading cost. For each location fli  FL,
we denote the corresponding opening costs by set F = {f1, f2, …, fn}. Provided a facility
location is open, it is able to offer services to a user. For a single user to be served, one
facility is sufficient.

We denote all possible users by set U = {u1, u2, ..., um}. The connection cost for a
user uj  U to use the service provided by a facility at facility location fli is denoted by
d(fli, uj), where d(fli, uj)  0. The facility locations and the users in the region of interest
constitute a point set V = FL ∪ U. We assume that FL ∩ U = . Thus, V = {v1, v2, ..., vi},
where 1  i  n + m. For vi = fli  FL and vj = uj  U, the total cost for the user uj to be
served by a facility located at facility location fli can be calculated as C(vi, vj) = fi + d(vi,
vj). The solution to a facility location problem is a subset S  FL whose facilities are able
to serve all users in set U. Besides, the subset S minimizes the overall cost

() (,).
i j

i i j
v S v U

C S f d v v
 

   (1)

As stated, there only needs one facility for an individual user. We denote the coex-
isted facilities at facility location fli by set F(fli). For a facility at facility location fli, the
concurrent users of the facility are denoted by set U(fli). If there are no upper bounds for
both the number of elements in sets F(fli) and U(fli), this specific facility location prob-
lem is called Uncapacitated Facility Location Problem (UFLP) [17]. The UFLP was
proved to be NP-hard [18]. As the facility locations and the users in the region of interest
constitute a point set V, we define a unified metric space Θ for the elements in V. The
distance metric in Θ is denoted by d. Consider three arbitrary points vi, vj, vk  Θ, we
have d(vi, vj)  0, d(vi, vi) = 0, and d(vi, vj) = d(vj, vi). A sufficient condition of vi = vj is
d(vi, vi) = 0. Furthermore, the inequality d(vi, vj) + d(vj, vk)  d(vi, vk) holds.

However, in real applications, restrictions are imposed on a plain application of the
UFLP. For example, the number of users concurrently served by a specific facility is
restricted due to various limits of resources. In addition, the number of facilities concur-
rently opened at the same facility location is also limited. Thus, the evaluation of the
overall cost requires an analysis of facility location selection and the number of facilities
opened at each location. The overall cost consists of opening cost and connection cost.
This kind of problem is referred to as Capacitated Facility Location Problem with Hard
Capacities (HCFLP) [19]. Generally, there is only one opened facility at each facility
location in the real world. That is to say, for facility location fli, the number of coexisted
facilities |F(fli)| = 1. This results in the k-median problem [20].

2.2 K-median Problem

The k-median problem is the most popular variant of the original FLP. Generally

speaking, it is categorized as a method for clustering data [21]. It differs from the UFLP
that a parameter k is introduced, where 0 < k < |FL|. In the realm of clustering, if the
number of clusters is larger than k, a solution to the k-median problem keeps merging the
existing clusters until there are exactly k clusters. Besides the additional parameter k,
there are three major differences between the k-median problem and the original UFLP:

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1079

 Only one facility can be opened at each facility location.
 The number of open facilities is no more than k.
 There is no opening cost for facility locations.

To solve the k-median problem, we should obtain a subset S  FL, where |S|  k

such that all users are served by facilities at locations in the set S. The obtained set S
minimizes the overall cost. Since there is no opening cost for facility locations in the k-
median problem, the overall cost is

() (,).
j

i j
v U

C S d v v


  (2)

Now that the number of coexisted facilities at facility location fli is |F(fli)| = 1, a fa-
cility location can be considered as equivalent to a facility. In the reminder of of this sec-
tion, we use the facility location set FL to denote the facilities interchangeably. We con-
fine the number of concurrent users of a facility in the range of [0, m], namely 0  |U(fli)|

 m, where m = |U|. The ideal solution of the k-median problem is that each user is
served by the facility whose connection cost is minimum. For vi = fli  FL and vj = uj  U,
the ideal solution of the k-median problem can be formulated as

ˆ, (,) min { (,)}.
k

j i j k j
v FL

v V d v v d v v
 

   (3)

By Eq. (3), each d̂(vi, vj) is minimized. Thus, the overall cost C(S) in Eq. (2) is also
minimized.

3. A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME

The vertical integration of manufacturing network in a smart factory enables a flex-
ible and reconfigurable manufacturing system which is composed of several hierarchical
subsystems. As the number and scale of subsystems keep growing, the numbers of phys-
ical sensors and users in a smart factory have increased exponentially. Thus, the CPS
administrators in a smart factory are confronted with a problem of how to reach an over-
all virtual sensor instantiation result for the whole manufacturing network. In this section,
we propose a k resource scheduler to address the issue of virtual sensor management in a
manufacturing network.

3.1 k Resource Scheduler

The application scenario of our proposal is illustrated in Fig. 1. Specifically, Fig. 1
depicts a layered architecture of the manufacturing network, which is divided into four
layers.

(1) Cyber-physical subsystem layer. A smart factory possesses several cyber-physical
subsystems, such as cooperative planning system, mechanical driving system, signal sen-

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1080

Fig. 1. Manufacturing network.

sing system, control system, and production management system. Generally, a coopera-
tive planning system possesses three key features: the timeliness of information feedback,
the coexistence of synchronous operation and asynchronous operation, and the reliability
of information transfer. The role of a mechanical driving system is the delivery of motion
and force. Common driving types are toothed wheel, worm wheel, chain drive, and gear
train. A signal sensing system contains several kinds of sensors. The underlying cooper-
ation among different components with a device relies on signal sensing. A control sys-
tem consists of control subject, control object, and control medium. It is a management
mechanism which has clearly defined goals. A production management system dedicates
to establish a real-time production database. The database is efficiently managed in order
to monitor the manufacturing processes. Conventionally, a system within this layer is
independent. In other words, this layer represents the physical world.

(2) Wireless sensor network layer. This layer contains various wireless sensor networks.
For different cyber-physical subsystems in a smart factory, there usually exist several
heterogeneous wireless sensor networks. The sensors of these networks aim at intuitive
physical phenomena such as temperature, pressure, displacement, thermal energy, vibra-
tion, and noise. Due to lack of standardized data exchange formats among heterogeneous
wireless sensor networks. Popular ways to handle this problem include introducing a
certain description model, a middle middleware, and an upper layer communication pro-
tocol, etc. For instance, the extensible markup language (XML) is suitable to establish a
framework which provides a unified data exchange format to facilitate the communica-
tion among heterogeneous wireless sensor networks.

(3) Sensor cloud layer. This layer deals with the virtualization of physical sensors and
other resources in the cloud. Similar to common cloud systems, the virtualization pro-
vides users with cloud-based sensing services. The overall virtual sensor instantiation
result is given by the k resource scheduler. The instantiated virtual sensors are able to
process sensing requests and send sensing replies. In general, a virtual sensor is able to
simultaneously handle several sensing requests from multiple users. Sensor data collect-
ed by the physical sensors in the wireless sensor networks are transmitted to the corre-
sponding virtual sensors in the sensor cloud. Users in the manufacturing network issue
sensing requests to the sensor cloud. Then, virtual sensors in the sensor cloud contact

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1081

specific physical sensors in the wireless sensor networks to collect potential data. At last,
the sensor cloud sends sensing replies to users based on the obtained sensor data. In [6],
the authors implemented virtual sensors in four different configurations: one-to-many,
many-to-one, many-to-many, and derived configurations. For simplicity, the relation
between virtual sensors and physical sensors illustrated in Fig. 1 is one-to-many. Alt-
hough our work is presented in this setting, the key idea of the proposed scheme applies
to the other three configurations as well.

(4) User layer. This layer contains all potential entities which need data. To a great de-
gree, the operation of a smart factory and the detailed production status are presented by
data contained in the production lines and manufacturing processes. To conduct data
visualization and data analysis, relevant data should be obtained in the first place. The
term user is a catch-all term which encloses system modules and human beings. Com-
mon users in the manufacturing network are LED panels, A/C controllers, energy ana-
lyzers, conveyor belts, robotic manipulators, and human operators. When a user needs
some data, it issues a sensing demand to the k resource scheduler. For the concurrent
sensing demands in the manufacturing network, the k resource scheduler generates an
overall virtual sensor instantiation result. Then, the users send sensing requests to the
sensor cloud based on the virtual sensor instantiation result.

To facilitate the presentation of our proposal, we make the following formal defini-
tions. A manufacturing network (MN) is composed of eight types of entities: CPS ad-
ministrator (CA), k resource scheduler (RS), manufacturing system (MS), physical sen-
sor (PS), wireless sensor network (WSN), virtual sensor (VS), sensor cloud (SC), and
user (U). The definitions of the eight entities are shown in Table 1.

Table 1. Entity definitions.
Entity Components

CA ca_id algorithm
RS rs_id CA sensor_db k
MS ms_id
PS ps_id type VS… max_Nv cur_Nv

WSN wsn_id prot PS {PS…}
VS vs_id PS s_cost max_Nu cur_Nu
SC sc_id VS {VS …}
U u_id u_cost {VS…}

There are two kinds of brackets used in the definitions of entities: angle brackets ()
and braces ({}). The variables and values within angle brackets are integral parts of a
valid definition whereas a pair of braces represents a set. Even if the set is empty, the
definition is still valid. For the sake of simplicity, the MS just contains one property for
identification, namely ms_id. Though a physical sensor possesses multiple attributes, we
in this paper use five properties to portray it. The first one is an identification property
ps_id. The second property type indicates the physical phenomenon a physical sensor
targeted at. As stated, a physical sensor may be shared by several virtual sensors. The
third property of a physical sensor is a set of virtual sensors. If a physical sensor is not

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1082

associated with any virtual sensor, the third property is an empty set. The fourth and the
fifth properties are the maximum number and the current number of virtual sensors asso-
ciated with it, respectively.

A wireless sensor network is composed of multiple physical sensors, thus the WSN
contains one PS at least. The second property of the WSN indicates the communication
protocol used within the wireless sensor network. Similar to a wireless sensor network, a
sensor cloud contains one virtual sensor at least. Each virtual sensor is instantiated with a
specific physical sensor. Thus, the VS contains an identification vs id and a PS. The third
property of the VS is the connection cost for the VS to communicate with its corre-
sponding PS. The fourth and the fifth properties are the maximum number and the cur-
rent number of users associated with it, respectively.

The RS contains the CPS administrator and a database of all physical sensors
available in a manufacturing network. For ease of an efficient operation and administra-
tion, there needs an upper bound for the number of virtual sensors simultaneously active
in the sensor cloud. This upper bound is denoted by the fourth property k of the RS. The
second property of the CPS administrator CA is algorithm. The role of this algorithm is
to obtain an overall virtual sensor instantiation result for the whole manufacturing net-
work. This operation is conducted by the RS. For each user U, the second property u cost
denotes the connection cost for the U to communicate with the border gateway of the SC.
The third property of the U is the set of virtual sensors assigned to the user.

As shown in Fig. 1, the interactions among the four layers are represented by black
line arrows. There are two kinds of connections: a dotted line with bidirectional arrows
and a solid line with unidirectional arrow. The former connection is merely appeared
between the wireless sensor network layer and the sensor cloud layer. As stated before,
the relation between virtual sensor and physical sensor is one-to-many. Namely, one
physical sensor may be shared by several virtual sensors. The corresponding relation
between physical sensors and virtual sensors is determined by the k resource scheduler.
Unlike the former connection, there are totally seven cases of the latter connection. They
are sensor data, sensor registration/update, sensing demands, instantiation, VS list, sens-
ing request, and sensing reply. We refer to the above seven connection as actions. As
shown in Table 2, an action has three attributes: sender, receiver, and type. Moreover, all
actions are unidirectional, which contributes to a simple and clear design. Sensing de-
mands are sent to the RS then the RS gives an instantiation result to the SC and respons-
es to the users with a VS list. A sensor registration/update is a request sent to the RS,
which means it is the WSN who maintains the physical sensors database proactively. The
RS just updates the database upon being requested and reads the database when it works
on an instantiation result. Namely, the management of physical sensors is handled by the
WSN, and the RS just uses the records of physical sensors and concentrates on formu-
lating the instantiation result. Upon receiving the corresponding VS list of the instantia-
tion result, each U makes a sensing request towards the virtual sensor assigned to it.
Then, the relevant virtual sensors in the SC communicate with the corresponding physi-
cal sensors. The sensor data collected by physical sensors are sent to the SC. At last, the
SC sends sensing replies containing the sensor data to the U.

On the whole, when a user has a potential need of data, it generates a sensing de-
mand and then sends it to the resource scheduler. For a manufacturing network which
contains considerable number of users, it is probably that there turn up massive sensing

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1083

Table 2. Actions.
Action Sender Receiver Type

Sensor Data WSN SC Result
Sensor Registration/Update WSN RS Request
Sensing Demands U RS Request
Instantiation RS SC Result
VS List RS U Result
Sensing Request U SC Request
Sensing Reply SC U Result

demands concurrently. The resource scheduler is designed to formulate an overall virtual
sensor instantiation result which meets all sensing demands based on the current infor-
mation of available physical sensors. The overall virtual sensor instantiation result is
obtained according to the specific algorithm stipulated by the CPS administrator. The
resource scheduler sends the information contained in the VS list point to point in re-
sponse to each sensing demand. Once a user receives the information of a virtual sensor,
it may issue a sensing request to the specific virtual sensor in the sensor cloud. For the
communication between a user and a virtual sensor, there is a connection cost u cost.
Similarly, for the communication between a virtual sensor and a physical sensor, there is
a connection cost s_cost. In practice, the CPS administrator does not only take the total
connection cost into account, but also consider the number of virtual sensors simultane-
ously active in the sensor cloud. For ease of an efficient operation and administration, we
denote the upper bound of this number by k.

The interactions described above are conducted with eight types of messages: sen-
sor registration, sensor update, sensing demand, instantiation, VS result, sensing request,
sensor data, and sensing reply. The definitions of the eight messages are shown in Table 3.

Table 3. Message definitions.
Message Components

Sensor Registration wsn_id ps_id type max_Nv
Sensor Update modify ps_id cur-Nv | del ps_id
Sensing Demand rs_id u_id type
Instantiation vs_id ps_id
VS Result u_id sc_id vs_id rs_id
Sensing Request sc_id vs_id u_id
Sensor Data wsn_id ps_id s_data vs_id
Sensing Reply sc_id vs_id data u_id

The basic information of a physical sensor is registered with the resource scheduler
by sensor registration message. Since the operation of registration is conducted by a new
physical sensor, the current number of virtual sensors associated with it is zero. Thus, the
property cur_Nv is omitted. The sensor update message is sent to the resource scheduler
by a wireless sensor network. It has two forms: modify and del. The former is used to
update the current number of virtual sensors associated with a physical sensor. While the
latter is used to remove the entry of a physical sensor from the database of the resource

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1084

scheduler. A sensing demand message is sent to the resource scheduler by a user. For
each sensing demand, the resource scheduler sends a VS result message to the corre-
sponding user according to an overall virtual sensor instantiation result. Upon receiving a
VS result message, a user may send a sensing request message to the sensor cloud. The
virtual sensor specified in the sensing request message communicates with the associated
physical sensor to collect sensor data. Both the sensing request message and the sensing
reply message contain sc_id, vs_id, and u_id to indicate source and destination.

For a manufacturing network which has m users, we assume that the sensor cloud in
the manufacturing network is able to accommodate a maximum of n virtual sensors. We
denote the users and the virtual sensors by sets U = {u1, u2, ..., um} and VS = {vs1, vs2, ...,
vsn}, respectively.

Suppose the number of concurrent sensing demands sent to the resource scheduler
is m  m. The maximum number of virtual sensors active in the sensor cloud is k, where
k  n. We make the assumption that there are enough physical sensors deployed in wire-
less sensor networks such that arbitrary sensing demands can be served. For the m con-
current sensing demands, we denote a solution to the virtual sensor instantiation problem
by a set R = {r1, r2, ..., rm}. Thus, the total connection cost for the manufacturing net-
work is

1

() (.VS. _ cos .U. _).
m

i
i

C R r s t r u cost




  (4)

Note that in Eq. (4), “VS” and “U” merely denote the virtual sensor and the user of
ri, respectively. They are not set symbols. Though there are m terms in Eq. (4), the
number of virtual sensors involved in R is no more than k. These involved virtual sensors
constitute a set V, where |V|  k. We make the assumption that only one virtual sensor is
needed to meet a sensing demand. Thus, we have |V|  m. Our goal is to minimize the
total connection cost C(R). Based on the above discussion, it can be formulated as a
k-median problem.

In our application scenario, the actual interactions among the four layers within the
manufacturing network are of high volume. During the operation of the manufacturing
network, a lot of virtual sensor instantiation records which list pairs of a sensing request
and a physical sensor are readily available. Thus, to concentrate on the elaboration of our
model, we make a premise that there exists a function FS(VS) which is able to give a
feasible solution for m concurrent sensing demands based on the available virtual sen-
sors. The solution includes two parts: V and R. The former one is a set of involved virtual
sensors and contains exactly k elements; the latter one is a set of records and contains
exactly m elements, each record resolves one sensing demands. In addition, we denote
the concurrent sensing demands by set D, where |D| = m.

3.2 Progressive Swap Algorithm

The progressive swap algorithm mainly consists of three steps.

(1) A feasible solution is generated by FS(VS), the records which resolve the m sensing
demands constitute a set R, where |R| = m. The virtual sensors involved in set R consti-
tute a set V, where V ⊂ VS and |V| = k.

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1085

(2) To get a reduction of C(R), the elements of set V are modified for the purpose of
changing the elements of set R. We introduce a plain swap operation s(V) to modify set V.
The operation s(V) is conducted between elements in V and VS \ V. The elements of V is
progressively modified in order to reduce C(R).

(3) As the number of swaps increases, C(R) is progressively reduced. When there is no
s(V) which is able to get C(R) reduced, the algorithm terminates. At this point, C(R) is
minimized. However, in the real world, a thorough execution which leads to a minimized
result is always not permissible or practical due to various limitations. Thus, to control
the number of swap operations, we introduce a variable cap as the upper bound which
terminates the execution of the algorithm. In most cases, an execution terminated by cap
does not lead to a minimized result, for there still exists one or more s(V) which can re-
duce C(R). In this case, we refer to the set R as a partial optimal solution. The progres-
sive swap algorithm (PSA) is detailed in Algorithm 1.

Algorithm 1: Progressive Swap Algorithm
Require: VS, D, k.
1: V, R  FS(VS)
2: s := s(V) = V \ {vsi}  {vsi}
3: V := V + s(V)
4: R := R + V
5: c  0
6: repeat
7: if s allows C(R) < C(R) then
8: V  V
9: R  R
10: end if
11: c ← c + 1
12: until (no s can reduce C(R)) |(c == cap)
13: return V, R

Let R* be a partial optimal solution. For a feasible solution R, the involved virtual

sensors are denoted by set V. We make the assumption that there exists a swap s(V)
which allows

() 1 ()
(,)

C R C R
P n m

      
 (5)

holds, where  > 0 and p(n, m) is a polynomial of n and m. The number of swap opera-
tions is at most

*

(,)

1
log(() / ()) / log .

1 p n m

C R C R



 (6)

Since the input size of log(C(R)) is polynomial and the time complexity of operation
s is also polynomial, the time complexity of Algorithm 1 is polynomial [22].

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1086

For any feasible solution R, the corresponding set of involved virtual sensors V
possesses two properties: V  VS and |V| = k. The minimization process of C(R) is con-
ducted by swapping elements between set V and set VS \ V. A small k indicates more al-
ternative virtual sensors in set VS \ V. While a large k leads to less room for the swap op-
eration. Thus, a variation of a small k is more influential to the total connection cost (or
the average connection cost) of the manufacturing network than that of a large k.

3.3 Greedy Algorithm

In most cases, an algorithm called “greedy” indicates that the expected return keeps
being maximized during each step of execution. For our application scenario, since the
sensor cloud in the manufacturing network is able to accommodate a maximum of n vir-
tual sensors, the initial state of a greedy strategy takes n virtual sensors into account. On
this premise, we derive the corresponding initial solution. In the first place, the number
of current users of each virtual sensor in set VS is set to zero. We denote the current users
of a virtual sensors vsi by set U(vsi). Initially, |U(vsi)| = 0, where 1  i  n. The total con-
nection between virtual sensor vsi and user uj is

d(vsi, uj) = vsi.s_cost + uj.u_cost. (7)

Since n virtual sensors are considered initially, for each j  [1, m], d(vsi, uj) can be
minimized. This is the ideal solution. Then, for each j  [1, m], we add user uj to the
corresponding set of current users U(vsi). At this point, we denote the number of ele-
ments in set V by n. As the number of involved virtual sensors should be no more than k,
a value of n which is larger than k is invalid. When this happens, the virtual sensors
whose current users are few should be removed from set V. A user formerly served by a
removed virtual sensor is reassigned to another virtual sensor in set V. When there are
exactly k virtual sensors in set V, the algorithm terminates and the set R is a partial opti-
mal solution. The greedy algorithm (GA) is illustrated in Algorithm 2.

In Algorithm 2, there are three parts of calculation. They possess different time com-
plexities; (1) The number of current users of n virtual sensors: O(max(n, m)); (2) The
searching of the virtual sensor whose current users is the fewest: O(n); (3) The reassign-
ment of orphan users: O(n  m). So the time complexity of Algorithm 2 is O(n2  m).

The greedy algorithm initially considers n virtual sensors. When the ideal solution is
derived, there are n virtual sensors involved, where |V| = n and n  n. However, a nec-
essary condition of a valid solution is n  k. For n > k, the virtual sensors whose current
users are few should be removed from set V. A user formerly served by a removed virtu-
al sensor is reassigned to another virtual sensor in set V. This process repeats until n = k,
namely there are k elements in set V. For a small k, the number of virtual sensors in set V
is also small at the ending part of the execution of the algorithm. It is probably that a
reassignment of a user merely leads to a slight difference between its former connection
cost and the new one, since all virtual sensors in set V could be considered far away from
the user. When k is large, there are more alternative virtual sensors. For a reassignment
of a user, the former virtual sensor is considered near to the user, while the new virtual
sensor could be considered far from the user. Thus, a variation of a large k is more in-
fluential to the total connection cost (or the average connection cost) of the manufactur-
ing network than that of a small k.

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1087

Algorithm 2: Greedy Algorithm
Require: VS, D, k.

1: for i = 1 to |VS| do
2: U(vsi)  
3: end for
4: for i = 1 to |VS| do
5: for j = 1 to |D| do
6: dij  d(vsi, uj)
7: end for
8: end for
9: for j = 1 to |D| do

10:
1 | |
min{ }kj iji V

d d
 



11: U(vsk)  U(vsk){uj}
12: end for
13: repeat
14:  1 | |

| min ()r i ii V
vs vs U vs

 


15: for j = 1 to vsr.cur_Nu do
16: dkkj = min{{d1j, d2j, …, d|V|j}\{drj}}
17: U(vsk)  U(vsk)  {uj}
18: end for
19: V  V | {vsr}
20: until |V| == k
21: return V, R

3.4 RK Algorithm

The RK algorithm is a hybrid of the progressive swap algorithm and the greedy al-

gorithm. To some degree, the progressive swap algorithm and the greedy algorithm show
two opposite strategies, respectively. The former one initially considers k virtual sensors
which meet the m sensing demands then adjusts the solution by swapping virtual sensors.
The status it starts at is random then the algorithm proceeds with optimization. The initial
solution merely contains k virtual sensors. Thus, the benefit to cost ratio of the subse-
quent swapping process is low. While, the latter one initially considers all virtual sensors
available, then adjust the solution by deleting virtual sensors. The status it starts at is the
ideal case, then the algorithm proceeds with degradation. The initial solution contains n
virtual sensors. In most cases, n  k holds. Hence, the subsequent degradation process is
expatiatory.

In view of the above, we develop the RK algorithm which combines the progressive
swap algorithm and the greedy algorithm. The RK algorithm consists of two parts. In the
first part (lines: 1-7), r ꞏ k virtual sensors are eventually obtained which meet the m sens-
ing demands. The parameter r is a coefficient for the candidate virtual sensors, where r =
1, 2, 3, …,

| | .VS
k

   Specifically, a feasible solution is generated by FS(VS) in the first place,
and the virtual sensors involved constitute set V. Then, another feasible solution is gen-
erated by FS(VS \ V), and the virtual sensors involved constitute set Vt. We let the virtual
sensors contained in set V and set Vt constitute set V. This process continues until |V| =

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1088

r ꞏ k. In the second part (line 8), the greedy algorithm is executed. At this point, the vir-
tual sensors initially considered are denoted by set V. The detailed RK algorithm is
showed in Algorithm 3. The parameter r indicates the number of feasible solutions gen-
erated. In the first part of the RK algorithm, several feasible solutions are successively
generated. For instance, when r = 2, two feasible solutions are successively generated.
After the first feasbile solution is generated, the virtual sensors involved are not consid-
ered in the generation of the second feasible solution. This exclusion is carried out by the
set operation VS \ V. Thus, the value of r is directly proportional to the number of ele-
ments in set V. The operation of the first part ends up with |V| = r ꞏ k. The second part is
the very greedy algorithm. However, the set of virtual sensors initially considered is V,
instead of VS. By the greedy algorithm, we know that as long as set VS is determined, the
final solution (V and R) is also determined. Generally speaking, the greater the number of
virtual sensors in set VS is, the better the performance of the greedy algorithm is. How-
ever, the more the number of virtual sensors initially considered, the more time consum-
ing the greedy algorithm is. Thus, the first part of the RK algorithm introduces a param-
eter r to control the number of virtual sensors passed to the second part.

Algorithm 3: RK Algorithm
Require: VS, D, k, r.
1: V  , Vt  
2: V  FS(VS)
3: for i = 1 to r − 1 do
4: Vt  FS(VS \ V)
5: V  VVt

6: Vt  
7: end for
8: exec GA with V, D, k.

4. SIMULATION RESULTS

We conduct a set of simulations to evaluate the performance of our proposal. In
these simulations, we show (1) the relation between the performance and the number of
iteration for the PSA and the GA; (2) the ranges of the number of iteration for the solu-
tions and the corresponding values for optimal solutions for the PSA and the GA; and (3)
the variation of the average connection cost for different numbers of virtual sensors sim-
ultaneously active and different numbers of concurrent sensing demands for the PSA, the
GA, and the RKA. The simulations are conducted on a 2.50 GHz Intel Core i5 processor
and 8GB RAM under Debian Stretch 9.4.0 [23]. The simulation platform is developed
based on the NS-3 [24] simulator framework. The entities and the associated actions are
implemented in the light of Section 3.

4.1 Simulation Settings

For simplicity, we consider an MN with one WSN and one SC. We employ three
types of physical sensors: temperature sensors (TPS), humidity sensors (HPS) and pres-

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1089

sure sensors (PPS). Each type of sensor consists of 100 nodes. The SC is able to ac-
commodate a maximum of n = 150 virtual sensors and the number of users is m = 600.
The physical sensors are randomly distributed in an 80  80 region, while the users are
not restricted in this area. The values of u_cost and s_cost are uniformly distributed in
the range of (0, 80] and (0, 600], respectively.

Due to limited resources and real-time requirements, the chances for a complete
execution of an algorithm which achieves an optimal solution is slim to none. Thus, we
introduce a parameter iter to indicate the number of iterations an algorithm is executed.
For the progressive swap algorithm, as long as the value of cap is large enough, the total
connection cost C(R) will eventually be minimized. In other words, if the value of iter is
large enough, the progressive swap algorithm will obtain an optimal solution. For the
greedy algorithm, when n > k, there are n − k virtual sensors to be removed from set V
before the minimized C(R) is obtained. When iter is greater than or equal to n − k, the
greedy algorithm will accord an optimal solution. In Table 4, we identified five key pa-
rameters for our simulation: k, m, cap, n − k, and r. k is the number of virtual sensors
simultaneously active in the sensor cloud. m is the number of concurrent sensing de-
mands sent to the resource scheduler. cap is the upper bound which terminates the exe-
cution of the progressive swap algorithm. n − k is the number of virtual sensors which
should be removed from set V.

Table 4. Key parameters.
Parameter Explanation

k # of VS simultaneously active in the SC

m # of concurrent sensing demands sent to the RS
cap the upper bound of the iter for the PSA

n− k # of VS which should be removed from set V
r # of feasible solutions generated in the RKA

4.2 Simulation Results and Analysis

To investigate the performance of our proposal, we conducted extensive simulations.
There are three cases of the relation between cap and n − k: cap < n − k, cap = n − k,
and cap > n − k. The corresponding simulation results are depicted in Figs. 2-4. As
shown in Figs. 2-4, the total connection cost of the progressive swap algorithm mono-
tonically decreases with the increase of iter, while the total connection cost of the greedy
algorithm monotonically increases with the increase of iter. The performance of the pro-
gressive swap algorithm is bounded within the curves PSAw and PSAb. And specifically,
the curve PSAw stands for the worst case, while the curve PSAb indicates the best case.
The curve GA is a representative which shows the performance of the greedy algorithm.
At the beginning of the greedy algorithm (i.e., iter = 0), the ideal solution is achieved and
there are n virtual sensors involved. The total connection cost increases with the in-
crease of iter. When the greedy algorithm terminates, an optimal solution is obtained.
We denote the corresponding coordinates for the curve GA by (iterg, cg). The termination
of a progressive swap algorithm also accords an optimal solution. We denote the corre-
sponding coordinates for the curves PSAw and PSAb by (iterw, cw) and (iterb, cb), respec-

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1090

tively. Trivially, iter  [0, +∞]. However, there is a range of iter within which an algo-
rithm is able to produce feasible solutions. Table 5 lists the ranges of iter for the solu-
tions and the corresponding values for the optimal solutions.

Table 5. Solutions and optimal solutions.
 cap < n − k cap = n − k cap > n − k

Solution Optimal Solution Optimal Solution Optimal
PSA iter  0 iter = 40 iter  0 iter = 50 iter  0 iter = 50
GA iter  50 iter = 50 iter  50 iter = 50 iter  40 iter = 40

The case of cap < n − k is depicted in Fig. 2, where cap and n − k are 40 and 50,
respectively. When iter = n − k = 50, the optimal solution of the greedy algorithm is ob-
tained, namely iterg = 50. Similarly, as cap = 40, the curves PSAw and PSAb end at iter =
40. Thus, iterw = iterb = 40. For iter  0, the progressive swap algorithm is able to give a
solution; while the greedy algorithm is able to give a solution when iter  50.

Fig. 2. cap < n − k.

The case of cap = n − k is depicted in Fig. 3, where both cap and n − k are 50.
When iter = 50, the optimal solution of the progressive swap algorithm is obtained,
namely iterw = iterb = 50. Analogously, iterg = 50. For iter  0, the progressive swap al-
gorithm is able to give a solution; while the greedy algorithm is able to give a solution
when iter  50.

The case of cap > n − k is depicted in Fig. 4, where cap and n − k are 50 and 40,
respectively. When iter = n − k = 40, the optimal solution of the greedy algorithm is ob-
tained, namely iterg = 40. Similarly, as cap = 50, the curves PSAw and PSAb end at iter =
50. Thus, iterw = iterb = 50. For iter  0, the progressive swap algorithm is able to give a
solution; while the greedy algorithm is able to give a solution when iter  40.

For the progressive swap algorithm, if the number of swap operations is large
enough, namely the variable cap is large enough, the execution of the progressive swap
algorithm will terminate with an optimal solution. For the greedy algorithm, n − k virtu-

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1091

Fig. 3. cap = n – k. Fig. 4. cap > n – k.

al sensors should be removed from set V before the optimal solution is obtained. As
shown in Fig. 3, when the greedy algorithm obtains the optimal solution, we have cg = cb
< cw. In other words, the performance of the greedy algorithm is better than the progres-
sive swap algorithm when cap = n − k. For the purpose of investigating the parameters k
and m, we set cap = n − k. All things being equal, the total connection cost for the MN
increases with the number of concurrent sensing demands sent to the resource scheduler.
Thus, we concentrate on the average connection cost for m concurrent sensing demands
and k virtual sensors simultaneously active in the sensor cloud. For m = 200 and 400, we
consider a confined range of k as k  [50, 100]. For k = 30 and 60, we consider a con-
fined range of m as m  [100, 500]. The simulation results for k and m are depicted in
Figs. 5 and 6, respectively.

Fig. 5. Variation of cost with different k for PSA

and GA.
Fig. 6. Variation of cost with different m for

PSA and GA.

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1092

As shown in Fig. 5, the average connection costs of both algorithms monotonically
decrease with the increase of k. The overall performance of the GA is superior to the PSA.
For the PSA, the variation of the average connection cost around a small k is more sig-
nificant than that of a large k, and the inflection point is around k = 75. In other words,
the curves of the PSA are concave. For the GA, there also exists an inflection point which
is around k = 75. However, the curves of the GA are convex. In other words, the varia-
tion of the average connection cost around a large k is more significant than that of a
small k.

As shown in Fig. 6, the fluctuation of the average connection costs of both algo-
rithms are slight with the variation of m. Namely, the average connection cost is rela-
tively steady. Though the average connection cost as a whole shows an increasing trend,
the variation of the average connection cost is not monotonical. This indicates that the
characteristics of the relation between m and the the average connection cost is not as
obvious as that of k. For simplicity, we consider two cases of k = 30 and 60. With the in-
crease of k, there are more virtual sensors which could be used in the sensor cloud. Name-
ly, there are more room for the solving process and the final solution of both algorithms.
Thus, when k = 60, the overall performances of both algorithms are better than k = 30.

To facilitate the operation and management of the MN, the number of virtual sen-
sors simultaneously active in the sensor cloud should be as small as possible. The above
two algorithms pursue a minimization of the total connection cost. Namely, both k and
C(R) should be as small as possible. Thus, it is necessary to investigate the relation be-
tween k and C(R). As shown in Fig. 5, the average connection cost monotonically de-
creases with the increase of k. Thus, the total connection cost also monotonically de-
creases with the increase of k. If the CPS administrator shows more concern about the
total connection cost, a larger k (e.g., k  [75, 100]) is preferred. On the contrary, if the
CPS administrator pays more attention to the number of virtual sensors simultaneously
active in the sensor cloud, a smaller k (e.g., k  [50, 75]) is preferred.

To make an analysis of the Algorithm 3, we set m = 300 and observe how the coef-
ficient for the candidate virtual sensors affects the average connection cost of the whole
manufacturing network. The setting of m = 300 is in concert with the experimental re-
sults depicted in Fig. 5. This setting facilitates the performance evaluation of the RKA in
comparison with the PSA and the GA. As shown in Fig. 7, the average connection cost
for the RKA monotonically decreases with the increase of the coefficient for the candi-
date virtual sensors. In other words, the average connection cost monotonically decreases
with the increase of the number of candidate virtual sensors. This characteristic coincides
with the PSA and the GA. In addition, the greater the coefficient for the candidate virtual
sensors, the greater the rate of decreasing.

When r = 1, the first part of the RKA ends up with a set V which contains exactly k
virtual sensors. Thus, the second part does nothing. In this case, the final solution is very
set V which is obtained by FS(VS) in the first part. There is no further modifications im-
posed on the original feasible solution generated by FS(VS). Thus, the average connec-
tion cost is quite large(C(R) = 850). By the experimental results showed in Fig. 6, when k
= 30, the average connection costs for the PSA and the GA are 645 and 476, respectively.
By the experimental results showed in Fig. 6, the performance of the GA is superior to
the PSA for a fixed k. We use a red dashed line and a blue dashed line to delimit the
performance of the PSA and the GA when k = 30. The number of virtual sensors consid-

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1093

ered by the second part of the RKA is growing in direct proportion to the coefficient for
the candidate virtual sensors. For k = 1, 2, 3, 4, 5, 6, the performance of the PSA is supe-
rior to that of the RKA. For k = 7, 8, the performance of the RKA is better than that of
the PSA. However, the performance of the GA is still superior to that of the RKA. When
r = 2, the first part of the RKA generates two disjoint feasible solutions. Namely, the
corresponding sets of involved virtual sensors for the two feasible solutions are disjoint.
Thus, the first part of the RKA ends up with a set V which contains exactly 2k virtual
sensors. Since the number of candidate virtual sensors increases, the second part of the
RKA is able to obtain a better solution than that of r = 1. For r = 1 and r = 2, the num-
bers of involved virtual sensors of the final solutions are both k = 30. The performance
improvement is due to the increase of the number of candidate virtual sensors processed
by the second part of the RKA. For k = 60, the performances of both the PSA and the
GA improve significantly. These two points are marked along with the case of k = 30 for
a clear comparison.

Fig. 7. Variation of cost with different r for RKA. Fig. 8. Variation of cost with different m for RKA.

To further investigate the RKA, we set the number of feasible solutions generated to

three, namely r = 3. The number of virtual sensors simultaneously active in the sensor
cloud is k = 20, 30, 40. The relation between the number of concurrent sensing demands
and the average connection cost is depicted in Fig. 8. With the increase of m, the aver-
age connection cost of the whole network shows a rising trend. It is obvious the total
connection cost of the whole network is monotonically increasing with the increase of
the number of concurrent sensing demands. For the average connection cost of the whole
network, the overall trend is also increasing. However, the way of increasing is not mon-
otonic. Thus, the increasing of the number of concurrent sensing demands has the effect
of degrading the performance of the RKA. Besides, the degree of degradation is not di-
rectly proportional to the increasing of the number of concurrent sensing demands. The
average connection costs for k = 20, 30, 40 gradually decrease in a steady way. Thus, the
increase of the number of virtual sensors simultaneously active in the sensor cloud is able
to improve the performance of the RKA. This is similar to the cases of the PSA and the GA.

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1094

5. CONCLUDING REMARKS

We studied the problem of virtual sensor management in a manufacturing network.
The vertical integration of a manufacturing network was demonstrated as four layers. We
described the components and functions of each layer. In addition, we introduced eight
entities and seven actions to model the operation of a manufacturing network. The inter-
actions among the eight entities were conducted with eight messages. Based on the
above building blocks, we formulated the issue of virtual sensor instantiation as a
k-median problem and proposed a cost-efficient virtual sensor management scheme. Our
proposal provided three resource scheduling algorithms: progressive swap algorithm,
greedy algorithm, and RK algorithm. Simulations were conducted for five key parame-
ters to evaluate the performance of the above three algorithms. The simulation results
show that the performance differences between the progressive swap algorithm and the
greedy algorithm are closely related to the upper bound which terminates the execution
of the progressive swap algorithm and the number of virtual sensors which should be
removed from the set of involved virtual sensors. Moreover, the value of k should be
prudently determined based on different emphases on the number of virtual sensors sim-
ultaneously active in the sensor cloud and the total connection cost. To some degree, the
progressive swap algorithm and the greedy algorithm represent two opposite strategies,
respectively. A hybrid solution which combines the progressive swap algorithm and the
greedy algorithm is formulated by the RK algorithm. The parameter r which indicates the
number of feasible solutions generated by the first part of the RK algorithm is a key tun-
er of the performance. Besides, there is still room for improvement. To approach the op-
erations in a real-world scenario, details such as message delay, physical sensor node
failure, and energy conservation in wireless sensor networks should be introduced.

ACKNOWLEDGMENT

This work is partly supported by the International Science and Technology Cooper-
ation Program of the Science and Technology Department of Shaanxi Province, China
(Grant No. 2018KW-049), the Special Scientific Research Program of Education De-
partment of Shaanxi Province, China (Grant No. 17JK0711), the National Science Foun-
dation of China (Grant No. 61702414), the Shaanxi Science and Technology Coordina-
tion & Innovation Project (No. 2016KTZDGY04-01), and the Communication Soft Sci-
ence Program of Ministry of Industry and Information Technology, China (Grant No.
2019-R-29). The authors would like to thank the anonymous reviewers whose comments
and suggestions greatly helped us improve the quality and presentation of this paper.

REFERENCES

1. J. Lee, “Industry 4.0 in big data environment,” German Harting Magazine, 2013, pp.
8-10.

2. R. Baheti and H. Gill, “Cyber-physical systems,” The Impact of Control Technology,
Vol. 12, 2011, pp. 161-166.

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1095

3. J. C. B. Fernandes, “Industrial mobile app for a sensor cloud,” MS Thesis, Faculty
of Engineering, University of Pedro, 2017.

4. A. Darwish and A. E. Hassanien, “Cyber physical systems design, methodology, and
integration: the current status and future outlook,” Journal of Ambient Intelligence
and Humanized Computing, 2017, pp. 1-16.

5. M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure-physical sensor man-
agement with virtualized sensors on cloud computing,” in Proceedings of IEEE 13th
International Conference on Network-Based Information Systems, 2010, pp. 1-8.

6. S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual sensors,”
IEEE Software, Vol. 31, 2014, pp. 70-77.

7. C.-F. Lai, H. Wang, H.-C. Chao, and G. Nan, “A network and device aware qos ap-
proach for cloud-based mobile streaming,” IEEE Transactions on Multimedia, Vol.
15, 2013, pp. 747-757.

8. C.-F. Lai, H.-C. Chao, Y.-X. Lai, and J. Wan, “Cloud-assisted real-time translating
for http live streaming,” IEEE Wireless Communications, Vol. 20, 2013, pp. 62-70.

9. A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A. Hos-
sain, “A survey on sensor-cloud: architecture, applications, and approaches,” Inter-
national Journal of Distributed Sensor Networks, Vol. 9, 2013.

10. S. Misra, S. Bera, A. Mondal, R. Tirkey, H.-C. Chao, and S. Chattopadhyay, “Opti-
mal gateway selection in sensor-cloud framework for health monitoring,” IET Wire-
less Sensor Systems, Vol. 4, 2013, pp. 61-68.

11. M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud integration
opportunities and challenges,” in Proceedings of the 3rd ACM International Con-
ference on Ubiquitous Information Management and Communication, 2009, pp.
618-626.

12. M. Eggert, R. Häußling, M. Henze, L. Hermerschmidt, R. Hummen, D. Kerpen, A.
N. Pérez, B. Rumpe, D. Thißen, and K. Wehrle, “Sensorcloud: Towards the inter-
disciplinary development of a trustworthy platform for globally interconnected sen-
sors and actuators,” Trusted Cloud Computing, H. Krcmar et al., (ed.), Springer,
Switzerland, 2014, pp. 203-218.

13. S. Olariu, A. Wada, L. Wilson, and M. Eltoweissy, “Wireless sensor networks: lev-
eraging the virtual infrastructure,” IEEE Network, Vol. 18, 2004, pp. 51-56.

14. T. Ojha, M. Khatua, and S. Misra, “Tic-tac-toe-arch: a self-organising virtual archi-
tecture for underwater sensor networks,” IET Wireless Sensor Systems, Vol. 3, 2013,
pp. 307-316.

15. L. Cooper, “Location-allocation problems,” Operations Research, Vol. 11, 1963, pp.
331-343.

16. R. Z. Farahani and M. Hekmatfar, Facility Location: Concepts, Models, Algorithms
and Case Studies, Springer, Berlin, 2009.

17. G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey, “The uncapacitated facility lo-
cation problem,” Technical Report No. 605, Department of Management Sciences,
Carnegie-Mellon University, 1983.

18. J. Krarup and P. M. Pruzan, “The simple plant location problem: survey and synthe-
sis,” European Journal of Operational Research, Vol. 12, 1983, pp. 36-81.

CONG GAO, ZHENZHOU TIAN, YANPING CHEN AND ZHONGMIN WANG

1096

19. K. Aardal, P. L. van den Berg, D. Gijswijt, and S. Li, “Approximation algorithms for
hard capacitated k-facility location problems,” European Journal of Operational
Research, Vol. 242, 2015, pp. 358-368.

20. J. Chuzhoy and Y. Rabani, “Approximating k-median with non-uniform capacities,”
in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
2005, pp. 952-958.

21. A. K. Jain and R. C. Dubes, “Algorithms for clustering data,” 1988.
22. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, “Local

search heuristics for k-median and facility location problems,” SIAM Journal on
Computing, Vol. 33, 2004, pp. 544-562.

23. https://www.debian.org/, 2018.
24. https://www.nsnam.org/, 2018.

Cong Gao (高聪) received the Ph.D. degree in computer ar-
chitecture from Xidian University, Xi’an, China, in 2015. Cur-
rently, he is an Assistant Professor in the School of Computer
Science and Technology at Xi’an University of Posts and Tele-
communications, Xi’an, China. His current research interests in-
clude data sensing and fusion, network and information security,
and service computing.

Zhenzhou Tian (田振洲) received the B.S. degree and Ph.D.
degree in Computer Science and Technology from Xi’an Jiaotong
University, Xi’an, China, in 2010 and 2016, respectively. He is
currently a Lecturer in the School of Computer Science and Tech-
nology at Xi’an University of Posts and Telecommunications. His
research interests include trustworthy software, software plagia-
rism detection and software behavior analysis.

Yanping Chen (陳彦萍) received the Ph.D. degree from

Xi’an Jiaotong University, Xi’an, China, in 2007. Currently, she is
a Professor in the School of Computer Science and Technology at
Xi’an University of Posts and Telecommunications, Xi’an, China.
Her current research interests include service mining, service
computing, and network management.

A COST-EFFICIENT VIRTUAL SENSOR MANAGEMENT SCHEME 1097

Zhongmin Wang (王忠民) received the Ph.D. degree from
Beijing Institute of Technology, Beijing, China, in 2000. Currently,
he is a Professor in the School of Computer Science and Technol-
ogy at Xi’an University of Posts and Telecommunications. His
current research interests include embedded intelligent perception,
big data processing and application, and affective computing.

