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Phase change memory (PCM) is a byte-addressable type of non-volatile memory. 

Compared to other volatile and non-volatile memories, PCM is two to four times denser 
than dynamic random access memory (DRAM). It has better read latency than NAND 
flash memory. Even though the write endurance of PCM is 10 times better than NAND 
flash memory, it is still limited to 106 times per PCM cell. Decreasing and balancing the 
number of writes among PCM cells can solve the endurance problem and, where possible, 
keep PCM cells usable. 

Our objective is to design a PCR*-tree – a novel PCM-aware R*-tree that can store 
spatial data. Initially, we examine how R*-tree causes endurance problems in PCM, and 
then, we optimize it for PCM. Furthermore, the performance of R*-tree is very poor, es-
pecially for insertion, which needs to be solved since it will be used for in-memory data-
bases. According to our experimental results, when the benchmark dataset is used, 
PCR*-tree dramatically reduced the number of write operations to PCM in average 30 
times and also improve the performance in terms of processing time. These results sug-
gest our new method outperforms existing ones for the PCM endurance problem, as well 
as in its performance. 
 
Keywords: PCM, R*-tree, R-tree, in-memory databases, spatial tree, endurance 
 
 

1. INTRODUCTION 
 
In-memory databases that consist of dynamic random access memory (DRAM) are 

used by enterprises for fast decision support. DRAM is a volatile memory; it requires 
periodic backup to prevent data loss. However, data will be lost if power is lost before 
the backup. Phase change memory (PCM) is a byte-addressable storage system estab-
lished by the Samsung Electronics and Micron Technology group. This new storage sys-
tem is two to four times denser than DRAM and has a better read latency magnitude than 
NAND flash memory [2, 6]. Even though PCM’s endurance is 10 times better than 
NAND flash memory, it is still lower than DRAM. Despite this, PCM is a secondary 
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memory preferable to NAND flash memory and a better main memory than DRAM. 
In this paper, we propose using PCM for in-memory databases. As previously men-

tioned, PCM has endurance limitations. We aim to improve this so PCM can be used for 
in-memory databases. Furthermore, the existing wear-leveling techniques proposed for 
NAND flash memory [8-10, 12, 14] are not suitable for PCM as NAND flash memory is 
page addressable, but the PCM memory is byte addressable. Our main goal for this pro-
ject is to decrease and balance the number of writes to PCM cells. This will solve the 
endurance problem and keep PCM cells usable as long as possible, so we can use it for 
in-memory databases.  

Being the most used index structure algorithm, the B+ tree algorithm has been al-
tered for PCM [3-5, 13]. Nowadays location information is very important; it is used by 
smartphones, T-map, Google Earth, and global positioning systems, etc. B+ tree cannot 
handle location information. R-tree, another tree structure, is very similar to B-tree. It can 
store spatial information like geographic coordinates and multi-dimensional objects. In 
our studies, we use R*-tree structures for PCM to reduce the number of writes per PCM 
cell. Of the various kinds of R-trees, we chose R*-tree as it has a more compact structure 
and more populated nodes, compared to other R-tree variants. Moreover, according to 
[17], R*-tree outperform the traditional R-tree in query processing and perfor-
mance. However, these advantages also come with liabilities, such as a higher number of 
writes and low performance (compared to other R-tree variants), which need to be 
solved. 

The basic idea of the R*-tree is to group nearby objects and represent them with 
minimum bounding rectangles in the next higher level of the tree. R*-tree reduces cov-
erage and overlap with a modified node split; it reinserts algorithms when nodes over-
flow. R*-tree requires many writes during insertion and deletion, for keeping the given 
R*-tree requirements. Our goal is to design a PCM-aware R*-tree that is capable of stor-
ing spatial data.  

In this paper, we initially evaluated whether R*-tree causes endurance problems, 
and at the same time, measured performance for insertion, search, and deletion. To check 
this, we inserted a synthetically developed dataset (consisting of three million elements) 
into R*-tree. From the figures depicted in Section 3, we saw that R*-tree causes endur-
ance problems. Some records had a huge number of writes, indicating those cells would 
die much earlier than others. Moreover, performance measurements are presented in 
performance evaluation section of this paper. Our goal is to decrease the number of 
writes and spread them equally among all PCM cells in order to keep all cells usable as 
long as possible, and at the same time, improve performance. 

To the best of our knowledge, we are the first researchers to show how R*-tree 
causes endurance problems in PCM and we believe we are the first to provide a solution 
to it based on the application level. According to our experimental results, by using both 
synthetic and benchmark datasets, PCR*-tree deals significantly with this endurance 
problem by reducing the number of PCM writes; it also improves performance. 

2. RELATED WORK 

Several attempts have been made in this research area to reduce the number of PCM 
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write operations by redesigning existing tree structures. A common index structure algo-
rithm, B+ tree is mostly used for DRAM and hard disk drive (HDD) memory, in which 
case, the number of writes need not be considered. Nevertheless, the number of writes is 
important when using PCM.  

The approaches [3-5, 13, 15] focus on optimizing B+-tree for PCM. As previously 
stated, our goal is to store spatial objects in memory. One dimensional index structure 
B+-tree does not work well with spatial data since search space is multidimensional. 

R-tree and its variants are commonly used to store spatial objects. Many researchers 
[8-10, 12, 14] redesigned and applied R-tree to solid state disk (SSD) and flash memory. 
Wu et al. aimed to efficiently handle fine-grained updates caused by R-tree index access 
to spatial data over flash memory [10]. They proposed using a reservation buffer and a 
node translation table to reduce the number of unnecessary and frequent updates of in-
formation in flash memory storage systems.  

Lv et al. [8] introduced a tree index structure named log compacted R-tree (LCR- 
tree). They combined newly arrival logs with the original ones in the same node, which 
rendered a great decrement in random writes and, at most, one additional read for each 
node access. 

Pawlik and Macyna [9] separated R-tree metadata and aggregated data into different 
sectors of flash memory. 

[16] presents scalable QSF-tree that rely on heuristic optimization to reduce the 
number of false drops into pages, which does not contain objects satisfying the query.  

Jin et al. [12] propose to defer the node-splitting operations on R-tree by introducing 
overflow nodes. In addition, they present a new buffering scheme to efficiently cache the 
updates to the tree in order to reduce the number writes to flash memory. However cre-
ating the buffer does not solve the endurance problem in our case due to the reason that 
different from NAND Flash memory, PCM is byte addressable.   

However, none of the above-mentioned proposed versions of R-tree [8-10, 12, 14, 
16] could be directly applied to PCM as they have been proposed for NAND flash 
memory. NAND flash memory is page addressable, but PCM is byte addressable. Be-
cause the structure of PCM is different from the structure of NAND flash memory, the 
ones designed for NAND flash memory are not suitable for PCM. To the best of our 
knowledge, we are the first researchers to show how R*-tree cause endurance problems 
in PCM, and we believe we are the first to provide a solution to it based on the applica-
tion level.  

In [18] a new logging scheme called PCMLogging is presented, which exploits 
PCM for both data caching and transaction logging to minimize I/O accesses in disk- 
based databases. PCMLogging enables simplified recovery and prolongs PCM lifetime 
by integrating log and cached updates. However, in this paper we are focusing on the 
proposing new R-Tree scheme for PCM without considering logging scheme. 

3. PCR*-TREE 

As previously mentioned, the maximum number of writes per PCM cell is limited to 10଺ times (then the cell dies). For that reason, we initially need to check whether R*-tree 
causes the endurance problem. We counted the number of writes per node (and per rec-
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leaf nodes in PCR*-tree, and we categorize them based on majority. Considering all the 
maximum fill factor values based on the majority, we will determine whether the maxi-
mum fill factor of PCR*-tree is equal to leaf-node size or non-leaf-node size. For this 
experiment, we refer to the results that we gained by using the benchmark dataset.  

 

Fig. 5. The percentage of leaf nodes by inserting benchmark dataset. 
 

From Fig. 5, we can see that the number of non-leaf nodes is much lower than the 
number of leaf nodes, where at most, 24% are non-leaf nodes (PCR*-tree 5X). At least, 
only 1% are non-leaf nodes (in cases when leaf maximum fill factor = 256/512). As the 
maximum fill factor value increases, the percentage of leaf nodes radically increases, 
compared to non-leaf nodes. However, as the leaf-node maximum fill factor increases 
compared to the non-leaf node size, the number of non-leaf nodes also increases. Ac-
cording to an experiment results, in an average case 94% of the nodes are leaf nodes. 
Thus, the maximum fill factor value for PCR*-tree is defined based on the number of 
elements the leaf nodes can store. 

However, as the maximum fill factor values for leaf nodes and non-leaf nodes are 
different, it is essential to figure out the consumed space. Eqs. (4) and (5), respectively, 
show how the space consumption is calculated for R*-tree and PCR*-tree, where numleaf 
is the number of leaf nodes, numnonleaf is the number of non-leaf nodes, and ff is the 
maximum fill factor value. Furthermore, each record takes 32 bytes of memory. 

SpaceConsumptionRstar = (numleaf+numnonleaf)ff32   (4) 

SpaceConsumptionRstar = ((numleafffleaf)(numnonleafffnonleaf)32   (5) 

Based on Fig. 6, we can see that PCR*-tree consumes more space in memory when 
the maximum fill factor value is low. However, its space consumption gets closer to 
R*-tree as the maximum fill factor value increases. Moreover, the more we increase the 
leaf node maximum fill factor value the more space is being consumed. Interestingly, 
PCR*-tree 2X with maximum fill factor value 512 consumes less space than R*-tree. As 
this experiment have been simulated with benchmark dataset, because of the relatively 
small amount of the dataset, PCR*-tree 2X consumes less space in memory. Moreover, at 
worst case, PCR*-tree uses 13% more memory than R*-tree and in average case PCR*- 
tree consumes 4.5% more space in memory compared to R*-tree. As our main objective 
is to handle endurance and improve performance, a slight increase in space consumption 
is not a problem. 
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Table 1. Detailed analysis on number of writes per node by using synthetic dataset. 

 

Fig. 8. The average number of writes per node while inserting the synthetic dataset. Logarithmic 
scale graph (base 10). 

 

number of writes among nodes, average number of writes per node and standard devia-
tion of number of the writes per node. Based on the simulation results, minimum and 
maximum number or writes of PCR*-tree is much lower than R*-tree. Also, according to 
Table 1 average number of writes per node is decreased by 17 and 58 times accordingly 
for 64 and 256 maximum fill factor values by using the PCR*-tree 2X. Furthermore, re-
ducing the number of writes alone cannot completely solve the endurance problem as it is 
essential to reduce the hot spot on PCM. For checking how the PCR*-tree deals with hot 
spot on PCM we have calculated the standard deviation on the number of writes on PCM 
node. The results show that compared to R*-tree, PCR*-tree decreases the standard devi-
ation of the number of writes per node 40 and 147 times accordingly for 64 and 256 
maximum fill factor values. Furthermore, for PCR*-tree 2X the standard deviation of the 
number of writes per node is much lower than the average number of writes per node that 
shows the number of writes are clustered closely around the average. All this results 
proves that the PCR*-tree, solves the endurance problem of PCM by decreasing the 
number of writes as well as spreading the number of writes among all PCM cells equally. 

In order to show how the proposed scheme outperforms the original R*-tree, Figs. 8 
and 9, respectively, demonstrate the average number of writes per node while inserting 
the synthetic dataset and deleting 500,000 random elements among the inserted ones for 
both PCR*-tree and R*-tree. The number of writes per node in average is decreases by 
80 times when using the proposed scheme for inserting. Postponing execution of the 

Maximum fill factor Min. value Max. value Average Stan. Dev. 

 

64 

R*-tree 32 110913 987 1741 

PCR*-tree 2X 7 2058 56 43 

PCR*-tree 3X 2 1738 52 35 

PCR*-tree 4X 4 1468 48 27 

PCR*-tree 5X 2 2183 46 33 

 

256 

R*-tree 128 180420 11233 15923 

PCR*-tree 2X 3 2507 192 108 

PCR*-tree 3X 6 10889 189 119 

PCR*-tree 4X 9 1842 185 73 

PCR*-tree 5X 14 11631 184 114 



PCR*-TREE: PCM-AWARE R-TREE 1369

1

100

10000

32 64 128 256 512Th
e 

av
e.

 n
um

. o
f w

ri
te

s

Leaf maximum fill factor
R*-tree PCR*-tree 2X PCR*-tree 3X PCR*-tree 4X PCR*-tree 5X

OverflowTreatment function by increasing the leaf node size, as well as optimized parent 
update and splitting mechanisms, helps to keep PCM cells usable as long as possible. The 
proposed scheme also decreases the number of writes during deletion by not merging the 
nodes if the minimum fill factor requirement is not met and also by updating the parent 
nodes only once (as the data are removed). Based on the experimental results, the number 
of writes per node in average decreased by 7 times for deletes operation. 

 

Fig. 9. The average number of writes per node while deleting random 500,000 elements after in-
serting synthetic dataset. Logarithmic scale graph (base 10). 
 

Based on the Figs. 8 and 9, with the increase of the leaf maximum fill factor value 
the average number of writes per node increases both for insert and delete operations. 
However by more increasing the leaf node size compared to intermediate node size, the 
proposed scheme shows better results. 

 

Table 2. Execution times while using the synthetic dataset for insertion, search, and de-
letion. All times shown are in seconds. 

Maximum fill factor 32 64 128 256 512 

 
R*-Tree 157.1 461.7 1869.1 8671.5 33691.2 

PCR*-Tree 2X 70.9 137.5 403.2 1704.9 7842.1 
Insertion PCR*-Tree 3X 53.9 89.8 197.0 733.5 3624.8 

PCR*-Tree 4X 47.9 66.9 131.5 393.2 1944.7 
PCR*-Tree 5X 46.5 54.6 95.8 259.7 1145.5 

 
R*-Tree 7032.4 23302.9 26194.5 38251.8 50296.6 

PCR*-Tree 2X 7372.8 17480.6 22153.4 30741.5 47578.3 
Search PCR*-Tree 3X 2535.6 14995.7 24070.2 30121.5 44610.8 

PCR*-Tree 4X 1786.9 13185.2 21650.7 33457.7 39008.5 
PCR*-Tree 5X 1265.6 8533.7 21508.3 31580.5 36208.1 

 
R*-Tree 6519.6 20894.5 21307.5 38519.4 56934.1 

PCR*-Tree 2X 6976.6 16487.5 20614.6 28526.4 43152.1 
Deletion PCR*-Tree 3X 2458.7 14241.4 22640.1 28049.9 40783.0 

PCR*-Tree 4X 1705.6 12560.2 20540.9 31179.7 35839.0 
PCR*-Tree 5X 1209.9 8157.9 20431.9 29564.1 33533.5 

 

Since one of goals was to improve performance, Table 2 shows how the PCR*-tree 
improves performance. The Reinsert function in OverflowTreatment is a very expensive 
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operation, because it checks all possible combinations to handle the procedure without a 
split, which decreases performance. Furthermore, if that situation cannot be handled by 
the Reinsert function, the node must be split, meaning that the time spent by the Reinsert 
operation was wasted. Postponing the OverflowTreatment function by doubling the leaf 
node size decreased the time spent on inserting operation. Thus, PCR*-tree improves the 
Insert performance in average 9 times. 

We see a similar pattern in performance improvement for both the Search and De-
lete operations, as well. It is obvious that the shorter tree height makes it is relatively 
faster to reach an appropriate leaf node. As the height of PCR*-tree is decreased by dou-
bling the leaf node sizes, it also improves performance when searching and deleting. In 
average the performance for search operation is decreases by 22%, and for deletion is 
decreased by 27%. Only PCR*-tree 2X with 32 maximum fill factor value takes slightly 
more time for search and delete operation. Our analysis shows that in a given case the 
elements that need to be search or deleted was in an unlucky location (end of the node). 
Moreover according to the results, the execution time for deleting 500,000 data objects 
are faster than searching for that 500,000 data objects. The reason behind that is after 
each deletion, the number of elements in a given tree decreases, making the next search 
or delete operation faster. 

5.2 Benchmark Dataset 

In this section, we show the experimental results when the benchmark dataset was 
used. For search and delete operations, we used a random 20,000 objects from among the 
inserted ones. The results of the benchmark dataset are quite identical to the results that 
we have gained from the synthetic dataset. 

Figs. 10 and 11, respectively, demonstrate the average number of writes per node 
for insert and delete operations for both PCR*-tree and R*-tree. For the insert operation, 
in average the number of writes per node is decreased by 30 times when the benchmark 
dataset have been used. Similar to the results gained from synthetic dataset, with the in-
crease of the maximum fill factor value, the number of the number of writes increases. 
Moreover according to the results, with more increase the size of the leaf nodes com-
pared to intermediate nodes, the number of writes slightly decreases.  

 

Fig. 10. The average number of writes per node while inserting the benchmark dataset. Logarith-
mic scale graph (base 10). 
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According to the results (Fig. 11), PCR*-tree decreases the number of writes in case 
of deletion as well, due to not merging nodes if the minimum fill factor requirement does 
not meet and also due to optimized parent node update algorithm. In average case the 
number of writes have been decreased by 20 times by using PCR*-tree while deletion, 
when the benchmark dataset is used. 

Due to reason that simulation results of the performance (execution time) show sim-
ilar patterns with the synthetic dataset, we leave this out because of space limitation in 
this article. 

 

Fig. 11. The average number of writes while deleting 20,000 elements after inserting the bench-
mark dataset. Logarithmic scale graph (base 10). 

 

We have compared the PCR*-tree scheme with and without merging while deletion 
(Table 3) in order to check how efficient is not to merge nodes that do not fulfill the 
minimum fill factor requirement. The benchmark dataset have been used for the experi-
ments. The proposed PCR*-tree with 256 maximum fill factor value have been used for 
the experiment. According to result no merge version of the PCR*-tree shows much bet-
ter results in case of average number of writes per node, as well as in standard deviation 
of number of writes per node. Furthermore, the no merge version of PCR*-Tree im-
proves the delete performance as there is no need to re-insert the element of the node that 
do not fulfill the minimum fill factor requirement. In average, the proposed no merge 
version of R -Tree improves the delete performance up to 39%. 
 

Table 3. Comparison of average number of writes per node, standard deviation of writes 
per node and time spend while deletion for PCR-tree scheme with and without 
merge operation (maximum fill factor value 256). 

 
 
 
 
 
 
 
 
 
 

Tree  Ave. Stan. Dev. Time (sec) 
PCR*-tree 2X merge 3764 2082 19.95 

PCR*-tree 2X no merge 708 1270 15.32 
PCR*-tree 3X merge 3509 2227 13.85 

PCR*-tree 3X no merge 638 1226 9.19 
PCR*-tree 4X merge 3605 2119 6.80 

PCR*-tree 4X no merge 528 1032 5.58 
PCR*-tree 5X merge 3273 2154 7.41 

PCR*-tree 5X no merge 512 1109 4.14 
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6. CONCLUSION AND FUTURE WORK 

Phase change memory is a byte-addressable type of non-volatile memory. Com-
pared to other volatile and non-volatile memories, PCM is two to four times more dense 
than DRAM, and it has better read latency than NAND flash memory. Even though the 
write endurance of PCM is 10 times better than NAND flash memory, it is still limited to 10଺ times per PCM cell. Nowadays, many current applications use spatial data, such as 
location information; for this reason, storing spatial data in memory is very important. 
R-tree is a well-known data structure that can handle spatial data; we propose using its 
variant, R*-tree, over PCM because it is more compact and the nodes are more populated. 
However, R*-tree performs a lot of writes, and moreover, its performance is poor, espe-
cially for insertion. We propose a novel PCM-aware R*-tree algorithm called PCR*-tree. 
By increasing the leaf node size, moving once while splitting, writing the split node to a 
blank node, updating parent nodes one time, and disabling the minimum fill factor re-
quirement for delete operation PCR*-tree achieves a dramatic reduction in the number of 
writes, and at the same time, improves performance. According to our experimental re-
sults, when we used a benchmark dataset, the proposed novel scheme in average reduces 
the number of write operations to PCM node 30 times and also improves performance in 
terms of processing time. These results suggest our new method outperforms existing 
ones that address the PCM endurance problem. 

The limitation is that PCR*-tree (at the application level of the S/W stack) cannot 
become aware of the “write count number” for each PCM cell. Therefore, PCR*-tree 
needs to obtain from the kernel (at the operating system level or the H/W level) the write 
count number. Then, PCR*-tree will be able to select memory cells with the smallest 
count number while creating a new node, as well as replace the split node with the node 
that has smallest number of writes. Our future work will be finding a solution for this 
problem.  

In this paper we propose a PCR*-tree scheme without considering the logging. As a 
future work we will extend our work by applying the logging scheme. 
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