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Phase change memory (PCM) is a byte-addressable type of non-volatile memory.
Compared to other volatile and non-volatile memories, PCM is two to four times denser
than dynamic random access memory (DRAM). It has better read latency than NAND
flash memory. Even though the write endurance of PCM is 10 times better than NAND
flash memory, it is still limited to 10° times per PCM cell. Decreasing and balancing the
number of writes among PCM cells can solve the endurance problem and, where possible,
keep PCM cells usable.

Our objective is to design a PCR*-tree — a novel PCM-aware R*-tree that can store
spatial data. Initially, we examine how R*-tree causes endurance problems in PCM, and
then, we optimize it for PCM. Furthermore, the performance of R*-tree is very poor, es-
pecially for insertion, which needs to be solved since it will be used for in-memory data-
bases. According to our experimental results, when the benchmark dataset is used,
PCR*-tree dramatically reduced the number of write operations to PCM in average 30
times and also improve the performance in terms of processing time. These results sug-
gest our new method outperforms existing ones for the PCM endurance problem, as well
as in its performance.
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1. INTRODUCTION

In-memory databases that consist of dynamic random access memory (DRAM) are
used by enterprises for fast decision support. DRAM is a volatile memory; it requires
periodic backup to prevent data loss. However, data will be lost if power is lost before
the backup. Phase change memory (PCM) is a byte-addressable storage system estab-
lished by the Samsung Electronics and Micron Technology group. This new storage sys-
tem is two to four times denser than DRAM and has a better read latency magnitude than
NAND flash memory [2, 6]. Even though PCM’s endurance is 10 times better than
NAND flash memory, it is still lower than DRAM. Despite this, PCM is a secondary
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memory preferable to NAND flash memory and a better main memory than DRAM.

In this paper, we propose using PCM for in-memory databases. As previously men-
tioned, PCM has endurance limitations. We aim to improve this so PCM can be used for
in-memory databases. Furthermore, the existing wear-leveling techniques proposed for
NAND flash memory [8-10, 12, 14] are not suitable for PCM as NAND flash memory is
page addressable, but the PCM memory is byte addressable. Our main goal for this pro-
ject is to decrease and balance the number of writes to PCM cells. This will solve the
endurance problem and keep PCM cells usable as long as possible, so we can use it for
in-memory databases.

Being the most used index structure algorithm, the B+ tree algorithm has been al-
tered for PCM [3-5, 13]. Nowadays location information is very important; it is used by
smartphones, T-map, Google Earth, and global positioning systems, etc. B+ tree cannot
handle location information. R-tree, another tree structure, is very similar to B-tree. It can
store spatial information like geographic coordinates and multi-dimensional objects. In
our studies, we use R*-tree structures for PCM to reduce the number of writes per PCM
cell. Of the various kinds of R-trees, we chose R*-tree as it has a more compact structure
and more populated nodes, compared to other R-tree variants. Moreover, according to
[17], R*-tree outperform the traditional R-tree in query processing and perfor-
mance. However, these advantages also come with liabilities, such as a higher number of
writes and low performance (compared to other R-tree variants), which need to be
solved.

The basic idea of the R*-tree is to group nearby objects and represent them with
minimum bounding rectangles in the next higher level of the tree. R*-tree reduces cov-
erage and overlap with a modified node split; it reinserts algorithms when nodes over-
flow. R*-tree requires many writes during insertion and deletion, for keeping the given
R*-tree requirements. Our goal is to design a PCM-aware R*-tree that is capable of stor-
ing spatial data.

In this paper, we initially evaluated whether R*-tree causes endurance problems,
and at the same time, measured performance for insertion, search, and deletion. To check
this, we inserted a synthetically developed dataset (consisting of three million elements)
into R*-tree. From the figures depicted in Section 3, we saw that R*-tree causes endur-
ance problems. Some records had a huge number of writes, indicating those cells would
die much earlier than others. Moreover, performance measurements are presented in
performance evaluation section of this paper. Our goal is to decrease the number of
writes and spread them equally among all PCM cells in order to keep all cells usable as
long as possible, and at the same time, improve performance.

To the best of our knowledge, we are the first researchers to show how R*-tree
causes endurance problems in PCM and we believe we are the first to provide a solution
to it based on the application level. According to our experimental results, by using both
synthetic and benchmark datasets, PCR*-tree deals significantly with this endurance
problem by reducing the number of PCM writes; it also improves performance.

2. RELATED WORK

Several attempts have been made in this research area to reduce the number of PCM
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write operations by redesigning existing tree structures. A common index structure algo-
rithm, B+ tree is mostly used for DRAM and hard disk drive (HDD) memory, in which
case, the number of writes need not be considered. Nevertheless, the number of writes is
important when using PCM.

The approaches [3-5, 13, 15] focus on optimizing B+-tree for PCM. As previously
stated, our goal is to store spatial objects in memory. One dimensional index structure
B+-tree does not work well with spatial data since search space is multidimensional.

R-tree and its variants are commonly used to store spatial objects. Many researchers
[8-10, 12, 14] redesigned and applied R-tree to solid state disk (SSD) and flash memory.
Wau et al. aimed to efficiently handle fine-grained updates caused by R-tree index access
to spatial data over flash memory [10]. They proposed using a reservation buffer and a
node translation table to reduce the number of unnecessary and frequent updates of in-
formation in flash memory storage systems.

Lv et al. [8] introduced a tree index structure named log compacted R-tree (LCR-
tree). They combined newly arrival logs with the original ones in the same node, which
rendered a great decrement in random writes and, at most, one additional read for each
node access.

Pawlik and Macyna [9] separated R-tree metadata and aggregated data into different
sectors of flash memory.

[16] presents scalable QSF-tree that rely on heuristic optimization to reduce the
number of false drops into pages, which does not contain objects satisfying the query.

Jin et al. [12] propose to defer the node-splitting operations on R-tree by introducing
overflow nodes. In addition, they present a new buffering scheme to efficiently cache the
updates to the tree in order to reduce the number writes to flash memory. However cre-
ating the buffer does not solve the endurance problem in our case due to the reason that
different from NAND Flash memory, PCM is byte addressable.

However, none of the above-mentioned proposed versions of R-tree [8-10, 12, 14,
16] could be directly applied to PCM as they have been proposed for NAND flash
memory. NAND flash memory is page addressable, but PCM is byte addressable. Be-
cause the structure of PCM is different from the structure of NAND flash memory, the
ones designed for NAND flash memory are not suitable for PCM. To the best of our
knowledge, we are the first researchers to show how R*-tree cause endurance problems
in PCM, and we believe we are the first to provide a solution to it based on the applica-
tion level.

In [18] a new logging scheme called PCMLogging is presented, which exploits
PCM for both data caching and transaction logging to minimize I/O accesses in disk-
based databases. PCMLogging enables simplified recovery and prolongs PCM lifetime
by integrating log and cached updates. However, in this paper we are focusing on the
proposing new R-Tree scheme for PCM without considering logging scheme.

3. PCR*-TREE

As previously mentioned, the maximum number of writes per PCM cell is limited to
10° times (then the cell dies). For that reason, we initially need to check whether R*-tree
causes the endurance problem. We counted the number of writes per node (and per rec-
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ord) for R*-tree while inserting a dataset of 3 million elements. We simulated our ex-
periments with 32, 64, 128, 256, and 512 maximum fill factor values.

3.1 Motivation
3.1.1 Simulation environment

As it is infeasible to get the real PCM we have simulated the results on DRAM. For
all the experiments in this paper the server with the following test-bed configurations
have been used: CPU — Intel Xeon E3-1220 v3 3.10GHZ, L2 cache size — 8192KB, Main
memory — 8GB, HDD — 1TB, OS — Linux 3.19.0. We used two kinds of dataset for our
experimental evaluations: a synthetic dataset consisting of five million objects and a
benchmark dataset consisting of 76,999 objects. We have created the synthetic dataset by
using the uniform distribution. The benchmark dataset was downloaded from an R-tree
portal that is a geographic spatial dataset of Germany in a 2D space'.

Execution time for insert operation is the total time to insert the given dataset to the
tree structure. In case of Search operation, access time is the time spent to find the each
data object of a given dataset (500,000 objects for synthetic dataset and 20,000 objects
for benchmark dataset) in the leaf nodes. Execution time for deletion is the access time to
Search for every data object plus the time spends on its removal as well as merging and
updating parent nodes if necessary for the a given dataset (500,000 objects for synthetic
dataset and 20,000 objects for benchmark dataset).

3.1.2 Simulation results

Fig. 1 presents the original R*-tree simulation results after inserting synthetically
generated three million dataset.

7 % 2000 4000 6000 8000 10000 12000 14000 16000 18000
xid Node Number

(a) Per node with maximum fill factor 64. (b) Per node with maximum fill factor 256.
Fig. 1. The number of write operations per node when inserting three million objects with 64 and
256 maximum fill factor value into the R*-tree.

According to the results (Fig. 1), the number of writes per PCM node dramatically
increases when the R*-tree node splits. It happens for the following reasons.

o The node needs to be sorted in order to find the proper split point.
e R*-tree removes elements from the split point that are somewhere in the middle of the

! http://chorochronos.datastories.org/?q=node/54.
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node, and furthermore, removes elements one by one. So each time an element is re-
moved during a split, the rest of the elements must come one step to the left, which
dramatically increases the number of writes.

o In R*-tree, the split operation degrades performance as the algorithm decides whether
to reinsert the element or split it. In any case, it will start to solve the overflow node
problem by reinserting elements; however, if the problem is not solved, it then splits
the node. It should be noted that the Reinsert operation is an expensive operation for
PCM because it consumes many writes and also downgrades the performance.

o All the parent nodes must be updated if there is any change in leaf nodes.

3.2 Proposed Scheme
The detailed algorithms of the proposed scheme are shown in Appendixes A, B and C.

3.2.1 Increased leaf node size

The node needs to be sorted right before reinsert or split operation that deteriorates
the performance. As all the elements are being stored in leaf nodes, the split or reinsert
will initially execute when the leaf node overflows. If the size of a leaf node will be in-
creased over the size of intermediate nodes, we are then able to postpone executing the
OverflowTreatment function that will split or reinsert elements within the node. R*-tree
uses the same maximum fill factor value both for intermediate and leaf nodes and ac-
cordingly the minimum fill factor value is half of the maximum fill factor value. In case
of PCR*-tree, the maximum fill factor value is separated for leaf and intermediate nodes.
In initialization step the maximum fill factor value for intermediate nodes, as well as for
leaf nodes must set. Figs. 2 (a) and (b), respectively, show examples of the R*-tree and
PCR*-tree structures that stores 32 data objects. It is obvious that the proposed structure
is more compact, as fewer intermediate nodes are required. In other words, the proposed
version will postpone calling the OverflowTreatment function that will decrease the
number of writes, and at the same time, improves performance. In performance evolution
section we will compare various leaf node size such as increasing the leaf node size two
(2X), three (3X), four (4X) and five (5X) times compared to intermediate nodes.

| T OO T OO OO O OO ) O T [TTTTT] CIITTITTT [TTTTTT]
(a) R*-tree max fill factor = 4. (b) PCR*-tree (leaf max ff = 8, non-leaf max
fill factor = 4).
Fig. 2. Example of R*-tree and PCR*-tree 2X that stores 32 data elements.

3.2.2 Move once

When the node splits, it is mandatory to find the split-index, indicating which part of
the node should be moved to the newly created node. The split-index is somewhere in the
middle of the node. R*-tree moves elements starting from the split-index point to the new
node one-by-one, which dramatically increases the number of writes. The number of
writes rapidly rises because after removing the elements in the middle, the remaining
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ones move one step to the left to keep the node consistent. Fig. 3 illustrates the case when
datum I is inserted into a node with a maximum fill factor value of 8. Because the node is
full, it should split, and the split-index is the fifth element of the node. The number in the
top-left corner of each record shows the number of writes, and the sum of those numbers
within a node is the number of writes to that node. So, all the data objects starting from
datum E should move to the newly created node. When data object E is moved, the re-
maining ones must move one step to the left. In this small example, the number of writes
to that node has already increased four times. Furthermore, data objects F, G, H, and I
must also move to the newly created node, which will rapidly increase the number of
writes to the split node.

In order to solve this problem, we propose to move all the elements of the node,
starting from the split-index point, at once. This approach rapidly decreases the number
of writes in the split node, and at the same time, improves the performance.

3.2.3 Split node replacement

Prior to splitting the node, the split algorithm must figure out the point where the
node should split. In order to find the split point, the algorithm does some rearranging of
the elements within the node, which dramatically increases the number of writes. Our
solution to this problem is to write a split node into a new node with the minimum num-
ber if writes. Once the node successfully splits, we create a new blank node and then
copy the split node where all the rearrangements have been handled in this newly created
node. Finally, we replace the split node with the newly created node. A new node is an
empty node with a minimum number of writes. Even though this approach increases the
number of writes by one time per updated record, it lets us balance the number of writes
among all PCM cells, and keeps all PCM cells alive as long as possible.

- . P T :
T B |
A8 d DB F G[ H | A8l ¢ DB d H I E|

(a) The node must split when the data I is inserted (b) Moving E to the newly created node

T 0 0 T — T O T
A8 d Hl 1 El ¥ A 8 d 1 e f g
(c) Moving F to the newly created node (d) Moving G to the newly created node

A 8 d Dl:| e fl & H ‘ A8 d o 8 H dH 1 ‘

(e) Moving H to the newly created node (f) Moving I to the newly created node
Fig. 3. Example of an original R*-tree split. The number in the top left corner of each record shows
the number of writes. The split-index point is the record marked in red.

3.2.4 Single parent update

In R*-tree, if there is any change in leaf nodes, it is necessary to update all the par-
ent nodes of that node up to the root node. It is obvious that each time the node is updat-
ed, its endurance goes down. Fig. 4 depicts an example that shows how the parent node is
updated in R*-tree. In Fig. 4 (a) the root node must updated after modifications in the
leaf nodes. Initially, it writes the MBR of data object A, which is (1,1)(2,2), to its parent,
as shown in Fig. 4 (b). Then, the MBR of data object C should be compared with its par-
ent’s MBR, and in our case, the parent’s MBR should be updated again to (1,1)(3,6), as
shown in Fig. 4 (c). Afterwards, the MBR of data object E should be compared with its
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parent’s MBR, and in our case, the parent’s MBR should be updated again to (1,1)(4,6),
as shown in Fig. 4 (d). The above process continues till the MBR of the parent node has
been compared and updated with all the MBRs of the child node. In this example the root
node MBR will be modified two more times while updating parent node with neighbor-
ing leaf node. In a given small example, the parent node MBR has been updated five
times, as the maximum fill factor value was small. However, if we use a larger maximum
fill factor value, number of updates will be huge. Moreover, more writes will be required
with the increase of the R*-tree height.

v
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(a) R*-tree. (c) Updating parent based on A. (¢) R*-tree after parent updates.
| 5 {K s e
A#CE ml (ATCTET ] [(BID[ [ J[ATCTET ] [(BIol T
(b) Updating parent based on A. (d) Updating parent based on E.

Fig. 4. Example of updating a parent node in the original R*-tree.

We propose to compare the value of the MBRs of child node elements and figure
out the MBR value for the parent node. Next, we write the computed value to the parent
node. In other words, with the proposed approach, we write to the parent node only one
time.

3.2.5 No minimum fill factor requirement after deletion

In order to satisfy the minimum fill factor requirements of R*-tree, after the data
have been deleted, if the nodes contains less elements than minimum fill factor value, the
elements of that node should merge with other nodes. However it may be very early to
merge nodes when they just become less than half full as the merge operation waste the
endurance of PCM and degrades the performance. Merge operation wastes the endurance
and lowers the performance because the node that does not meet the minimum fill factor
requirement should be deleted and the data objects of that deleted node should be
re-inserted to tree again. So in the proposed scheme we disable the minimum fill factor
requirement for delete operation. In performance evaluation sections we will compare the
proposed R*-tree with and without merge in case of the number of writes, as well as
performance.

4. SPACE CONSUMPTION

The size of leaf nodes in PCR*-tree is larger than the size of non-leaf nodes, and it
is challenging to figure out whether the maximum fill factor value of the tree is based on
leaf nodes or non-leaf nodes. This issue is very important for a fair comparison of the
results against the original R*-tree. We decided to find out the number of leaf and non-
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leaf nodes in PCR*-tree, and we categorize them based on majority. Considering all the
maximum fill factor values based on the majority, we will determine whether the maxi-
mum fill factor of PCR*-tree is equal to leaf-node size or non-leaf-node size. For this
experiment, we refer to the results that we gained by using the benchmark dataset.

» 150
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32 64 128 256 512
Leaf maximum fill factor
W R*-tree PCR*-tree 2X % PCR*-tree 3X

Fig. 5. The percentage of leaf nodes by inserting benchmark dataset.

From Fig. 5, we can see that the number of non-leaf nodes is much lower than the
number of leaf nodes, where at most, 24% are non-leaf nodes (PCR*-tree 5X). At least,
only 1% are non-leaf nodes (in cases when leaf maximum fill factor = 256/512). As the
maximum fill factor value increases, the percentage of leaf nodes radically increases,
compared to non-leaf nodes. However, as the leaf-node maximum fill factor increases
compared to the non-leaf node size, the number of non-leaf nodes also increases. Ac-
cording to an experiment results, in an average case 94% of the nodes are leaf nodes.
Thus, the maximum fill factor value for PCR*-tree is defined based on the number of
elements the leaf nodes can store.

However, as the maximum fill factor values for leaf nodes and non-leaf nodes are
different, it is essential to figure out the consumed space. Egs. (4) and (5), respectively,
show how the space consumption is calculated for R*-tree and PCR*-tree, where num;q,
is the number of leaf nodes, num,g,s 1S the number of non-leaf nodes, and ff is the
maximum fill factor value. Furthermore, each record takes 32 bytes of memory.

SpaceConsumptiongsay = (MUM g UM yonieq) XX 32 “4)

SpaceConsumption sy = (MM eqpXffieas) <(MUM ponicaffnonieas) x32 ®)

Based on Fig. 6, we can see that PCR*-tree consumes more space in memory when
the maximum fill factor value is low. However, its space consumption gets closer to
R*-tree as the maximum fill factor value increases. Moreover, the more we increase the
leaf node maximum fill factor value the more space is being consumed. Interestingly,
PCR*-tree 2X with maximum fill factor value 512 consumes less space than R*-tree. As
this experiment have been simulated with benchmark dataset, because of the relatively
small amount of the dataset, PCR*-tree 2X consumes less space in memory. Moreover, at
worst case, PCR*-tree uses 13% more memory than R*-tree and in average case PCR*-
tree consumes 4.5% more space in memory compared to R*-tree. As our main objective
is to handle endurance and improve performance, a slight increase in space consumption
is not a problem.
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Fig. 6. Space consumed by inserting benchmark dataset.
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5. PERFORMANCE EVALUATION

In this section, we compare the proposed PCR*-tree with the original R*-tree by
using both a large synthetic and benchmark datasets presented in Section 3.1.1. Compar-
ison is based on the number of writes per node, as well as on performance in terms of
insertion, deletion, and search.

5.1 Synthetic Dataset

As previously presented, our synthetic dataset consists of 3 million elements and has
been developed by us based on the uniform distribution. To measure search and deletion,
we used random 500,000 elements among the inserted ones.

3000
0, 2500
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f
fwrites

2 1500

Numbe
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3 5 7 o 2000 4000 6000 000 10000 12000 14000 16000 18000
Node Number

(a) Per node with maximum fill factor 64. (b) Per node with maximum fill factor 2:56.
Fig. 7. Number of write operations per node while inserting 3 million objects with 64 and 256
maximum fill factor values to PCR*-tree 2X. We also observed similar results using 32,
128 and 512 maximum fill factor values. Due to space limitation, we will omit the other
results.

Node Number'

In contrast to Fig. 1, Fig. 7 depicts the number of write operations per node while
inserting three million objects with 64 and 256 maximum fill factor values into PCR*-
tree 2X. From Fig. 7, we can easily see that the number of writes dramatically decreases,
and at the same time, is more proportionally distributed among nodes, which will in-
crease the lifetime of the PCM. Due to similarity of the results and lack of space we omit
the results for remaining maximum fill factor values.

Table 1 sums the results from the Figs. 1 and 7 and also shows the results for vari-
ous leaf node sizes increase (3X, 4X and 5X) by presenting the minimum and maximum
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Table 1. Detailed analysis on number of writes per node by using synthetic dataset.

Maximum fill factor Min. value | Max. value | Average Stan. Dev.
R*-tree 32 110913 987 1741
PCR*-tree 2X 7 2058 56 43
64 PCR*-tree 3X 2 1738 52 35
PCR*-tree 4X 4 1468 48 27
PCR*-tree 5X 2 2183 46 33
R*-tree 128 180420 11233 15923
PCR*-tree 2X 3 2507 192 108
256 PCR*-tree 3X 6 10889 189 119
PCR*-tree 4X 9 1842 185 73
PCR*-tree 5X 14 11631 184 114
s
£ 10000 R
$5 100 3 '% \ \
: s 100 L |
g \ \ \ Y IEN
32 64 128 256 512
Leaf maximum fill factor
W R*-tree PCR*-tree 2X # PCR*-tree 3X = PCR*-tree 4X = PCR*-tree 5X

Fig. 8. The average number of writes per node while inserting the synthetic dataset. Logarithmic

scale graph (base 10).

number of writes among nodes, average number of writes per node and standard devia-
tion of number of the writes per node. Based on the simulation results, minimum and
maximum number or writes of PCR*-tree is much lower than R*-tree. Also, according to
Table 1 average number of writes per node is decreased by 17 and 58 times accordingly
for 64 and 256 maximum fill factor values by using the PCR*-tree 2X. Furthermore, re-
ducing the number of writes alone cannot completely solve the endurance problem as it is
essential to reduce the hot spot on PCM. For checking how the PCR*-tree deals with hot
spot on PCM we have calculated the standard deviation on the number of writes on PCM
node. The results show that compared to R*-tree, PCR*-tree decreases the standard devi-
ation of the number of writes per node 40 and 147 times accordingly for 64 and 256
maximum fill factor values. Furthermore, for PCR*-tree 2X the standard deviation of the
number of writes per node is much lower than the average number of writes per node that
shows the number of writes are clustered closely around the average. All this results
proves that the PCR*-tree, solves the endurance problem of PCM by decreasing the
number of writes as well as spreading the number of writes among all PCM cells equally.

In order to show how the proposed scheme outperforms the original R*-tree, Figs. 8
and 9, respectively, demonstrate the average number of writes per node while inserting
the synthetic dataset and deleting 500,000 random elements among the inserted ones for
both PCR*-tree and R*-tree. The number of writes per node in average is decreases by
80 times when using the proposed scheme for inserting. Postponing execution of the
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OverflowTreatment function by increasing the leaf node size, as well as optimized parent
update and splitting mechanisms, helps to keep PCM cells usable as long as possible. The
proposed scheme also decreases the number of writes during deletion by not merging the
nodes if the minimum fill factor requirement is not met and also by updating the parent
nodes only once (as the data are removed). Based on the experimental results, the number
of writes per node in average decreased by 7 times for deletes operation.

’g’loooo

S

£ 1oo| . S R
5 : \ \ \
Maman
s Y DL LD
= 32 64 128 256 512

Leaf maximum fill factor
W R*-tree PCR*-tree 2X ® PCR*-tree 3X = PCR*-tree 4X % PCR*-tree 5X

Fig. 9. The average number of writes per node while deleting random 500,000 elements after in-
serting synthetic dataset. Logarithmic scale graph (base 10).

Based on the Figs. 8 and 9, with the increase of the leaf maximum fill factor value
the average number of writes per node increases both for insert and delete operations.
However by more increasing the leaf node size compared to intermediate node size, the
proposed scheme shows better results.

Table 2. Execution times while using the synthetic dataset for insertion, search, and de-
letion. All times shown are in seconds.

Maximum fill factor 32 64 128 256 512
R*-Tree 157.1 461.7 1869.1 8671.5 33691.2
PCR*-Tree 2X 70.9 137.5 403.2 1704.9 7842.1
Insertion | PCR*-Tree 3X 53.9 89.8 197.0 733.5 3624.8
PCR*-Tree 4X 47.9 66.9 131.5 393.2 1944.7
PCR*-Tree 5X 46.5 54.6 95.8 259.7 1145.5

R*-Tree 7032.4 23302.9 | 26194.5 | 38251.8 | 50296.6
PCR*-Tree 2X | 7372.8 17480.6 | 22153.4 | 30741.5 | 475783
Search |PCR*-Tree 3X| 2535.6 14995.7 | 24070.2 | 30121.5 | 44610.8
PCR*-Tree 4X| 1786.9 13185.2 | 21650.7 | 33457.7 | 39008.5
PCR*-Tree 5X| 1265.6 8533.7 21508.3 | 31580.5 | 36208.1

R*-Tree 6519.6 20894.5 | 21307.5 | 38519.4 | 56934.1
PCR*-Tree 2X | 6976.6 16487.5 | 20614.6 | 28526.4 | 43152.1
Deletion |PCR*-Tree 3X | 2458.7 14241.4 | 22640.1 | 28049.9 | 40783.0
PCR*-Tree 4X | 1705.6 12560.2 | 20540.9 | 31179.7 | 35839.0
PCR*-Tree 5X| 1209.9 8157.9 204319 | 29564.1 | 33533.5

Since one of goals was to improve performance, Table 2 shows how the PCR*-tree
improves performance. The Reinsert function in OverflowTreatment is a very expensive
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operation, because it checks all possible combinations to handle the procedure without a
split, which decreases performance. Furthermore, if that situation cannot be handled by
the Reinsert function, the node must be split, meaning that the time spent by the Reinsert
operation was wasted. Postponing the OverflowTreatment function by doubling the leaf
node size decreased the time spent on inserting operation. Thus, PCR*-tree improves the
Insert performance in average 9 times.

We see a similar pattern in performance improvement for both the Search and De-
lete operations, as well. It is obvious that the shorter tree height makes it is relatively
faster to reach an appropriate leaf node. As the height of PCR*-tree is decreased by dou-
bling the leaf node sizes, it also improves performance when searching and deleting. In
average the performance for search operation is decreases by 22%, and for deletion is
decreased by 27%. Only PCR*-tree 2X with 32 maximum fill factor value takes slightly
more time for search and delete operation. Our analysis shows that in a given case the
elements that need to be search or deleted was in an unlucky location (end of the node).
Moreover according to the results, the execution time for deleting 500,000 data objects
are faster than searching for that 500,000 data objects. The reason behind that is after
each deletion, the number of elements in a given tree decreases, making the next search
or delete operation faster.

5.2 Benchmark Dataset

In this section, we show the experimental results when the benchmark dataset was
used. For search and delete operations, we used a random 20,000 objects from among the
inserted ones. The results of the benchmark dataset are quite identical to the results that
we have gained from the synthetic dataset.

Figs. 10 and 11, respectively, demonstrate the average number of writes per node
for insert and delete operations for both PCR*-tree and R*-tree. For the insert operation,
in average the number of writes per node is decreased by 30 times when the benchmark
dataset have been used. Similar to the results gained from synthetic dataset, with the in-
crease of the maximum fill factor value, the number of the number of writes increases.
Moreover according to the results, with more increase the size of the leaf nodes com-
pared to intermediate nodes, the number of writes slightly decreases.

10000

100

R,
]

i

32 64 128 256 512
Leaf maximum fill factor
B R*-tree PCR*-tree 2X #PCR*-tree 3X = PCR*-tree 4X #®PCR*-tree 5X

e

Ave. num. of writes

I
e
b
e
A
R
]

Fig. 10. The average number of writes per node while inserting the benchmark dataset. Logarith-
mic scale graph (base 10).
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According to the results (Fig. 11), PCR*-tree decreases the number of writes in case
of deletion as well, due to not merging nodes if the minimum fill factor requirement does
not meet and also due to optimized parent node update algorithm. In average case the
number of writes have been decreased by 20 times by using PCR*-tree while deletion,
when the benchmark dataset is used.

Due to reason that simulation results of the performance (execution time) show sim-
ilar patterns with the synthetic dataset, we leave this out because of space limitation in
this article.

1000000
10000

100 '«‘\\:
shan
1 | N \
64

32 128 256 512
Leaf maximum fill factor

B R*-tree PCR*-tree 2X # PCR*-tree 3X = PCR*-tree 4X % PCR*-tree 5X

Ave. num. of writes

ot
]
]

Fig. 11. The average number of writes while deleting 20,000 elements after inserting the bench-
mark dataset. Logarithmic scale graph (base 10).

We have compared the PCR*-tree scheme with and without merging while deletion
(Table 3) in order to check how efficient is not to merge nodes that do not fulfill the
minimum fill factor requirement. The benchmark dataset have been used for the experi-
ments. The proposed PCR*-tree with 256 maximum fill factor value have been used for
the experiment. According to result no merge version of the PCR*-tree shows much bet-
ter results in case of average number of writes per node, as well as in standard deviation
of number of writes per node. Furthermore, the no merge version of PCR*-Tree im-
proves the delete performance as there is no need to re-insert the element of the node that
do not fulfill the minimum fill factor requirement. In average, the proposed no merge
version of R -Tree improves the delete performance up to 39%.

Table 3. Comparison of average number of writes per node, standard deviation of writes
per node and time spend while deletion for PCR-tree scheme with and without
merge operation (maximum fill factor value 256).

Tree Ave. Stan. Dev. Time (sec)
PCR*-tree 2X merge 3764 2082 19.95
PCR*-tree 2X no merge 708 1270 15.32
PCR*-tree 3X merge 3509 2227 13.85
PCR*-tree 3X no merge 638 1226 9.19
PCR*-tree 4X merge 3605 2119 6.80
PCR*-tree 4X no merge 528 1032 5.58
PCR*-tree 5X merge 3273 2154 7.41
PCR*-tree 5X no merge 512 1109 4.14
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6. CONCLUSION AND FUTURE WORK

Phase change memory is a byte-addressable type of non-volatile memory. Com-
pared to other volatile and non-volatile memories, PCM is two to four times more dense
than DRAM, and it has better read latency than NAND flash memory. Even though the
write endurance of PCM is 10 times better than NAND flash memory, it is still limited to
106 times per PCM cell. Nowadays, many current applications use spatial data, such as
location information; for this reason, storing spatial data in memory is very important.
R-tree is a well-known data structure that can handle spatial data; we propose using its
variant, R*-tree, over PCM because it is more compact and the nodes are more populated.
However, R*-tree performs a lot of writes, and moreover, its performance is poor, espe-
cially for insertion. We propose a novel PCM-aware R*-tree algorithm called PCR*-tree.
By increasing the leaf node size, moving once while splitting, writing the split node to a
blank node, updating parent nodes one time, and disabling the minimum fill factor re-
quirement for delete operation PCR*-tree achieves a dramatic reduction in the number of
writes, and at the same time, improves performance. According to our experimental re-
sults, when we used a benchmark dataset, the proposed novel scheme in average reduces
the number of write operations to PCM node 30 times and also improves performance in
terms of processing time. These results suggest our new method outperforms existing
ones that address the PCM endurance problem.

The limitation is that PCR*-tree (at the application level of the S/W stack) cannot
become aware of the “write count number” for each PCM cell. Therefore, PCR*-tree
needs to obtain from the kernel (at the operating system level or the H/W level) the write
count number. Then, PCR*-tree will be able to select memory cells with the smallest
count number while creating a new node, as well as replace the split node with the node
that has smallest number of writes. Our future work will be finding a solution for this
problem.

In this paper we propose a PCR*-tree scheme without considering the logging. As a
future work we will extend our work by applying the logging scheme.
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