
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 1359-1374 (2017)
DOI: 10.6688/JISE.2017.33.5.15

1359

PCR*-Tree: PCM-Aware R*-Tree

ELKHAN JABAROV1, MYONG-SOON PARK1,+, BYUNG-WON ON2

AND GYU SANG CHOI3

1Department of Computer and Radio Communications Engineering
Korea University

Seoul, 02841 Korea
E-mail: {ejabarov; myongsp}@korea.ac.kr

2Department of Statistics and Computer Science
Kunsan National University

Gunsan, 54150 Korea
E-mail: bwon@kunsan.ac.kr

3Department of Information and Communication Engineering
Yeungnam University

Gyeongbuk, 38541 Korea
E-mail: castchoi@ynu.ac.kr

Phase change memory (PCM) is a byte-addressable type of non-volatile memory.

Compared to other volatile and non-volatile memories, PCM is two to four times denser
than dynamic random access memory (DRAM). It has better read latency than NAND
flash memory. Even though the write endurance of PCM is 10 times better than NAND
flash memory, it is still limited to 106 times per PCM cell. Decreasing and balancing the
number of writes among PCM cells can solve the endurance problem and, where possible,
keep PCM cells usable.

Our objective is to design a PCR*-tree – a novel PCM-aware R*-tree that can store
spatial data. Initially, we examine how R*-tree causes endurance problems in PCM, and
then, we optimize it for PCM. Furthermore, the performance of R*-tree is very poor, es-
pecially for insertion, which needs to be solved since it will be used for in-memory data-
bases. According to our experimental results, when the benchmark dataset is used,
PCR*-tree dramatically reduced the number of write operations to PCM in average 30
times and also improve the performance in terms of processing time. These results sug-
gest our new method outperforms existing ones for the PCM endurance problem, as well
as in its performance.

Keywords: PCM, R*-tree, R-tree, in-memory databases, spatial tree, endurance

1. INTRODUCTION

In-memory databases that consist of dynamic random access memory (DRAM) are

used by enterprises for fast decision support. DRAM is a volatile memory; it requires
periodic backup to prevent data loss. However, data will be lost if power is lost before
the backup. Phase change memory (PCM) is a byte-addressable storage system estab-
lished by the Samsung Electronics and Micron Technology group. This new storage sys-
tem is two to four times denser than DRAM and has a better read latency magnitude than
NAND flash memory [2, 6]. Even though PCM’s endurance is 10 times better than
NAND flash memory, it is still lower than DRAM. Despite this, PCM is a secondary

Received May 9, 2016; revised September 19 & October 30, 2016; accepted November 7, 2016.
Communicated by Jianliang Xu.
+ Corresponding author.

ELKHAN JABAROV, MYONG-SOON PARK, BYUNG-WON ON AND GYU SANG CHOI

1360

memory preferable to NAND flash memory and a better main memory than DRAM.
In this paper, we propose using PCM for in-memory databases. As previously men-

tioned, PCM has endurance limitations. We aim to improve this so PCM can be used for
in-memory databases. Furthermore, the existing wear-leveling techniques proposed for
NAND flash memory [8-10, 12, 14] are not suitable for PCM as NAND flash memory is
page addressable, but the PCM memory is byte addressable. Our main goal for this pro-
ject is to decrease and balance the number of writes to PCM cells. This will solve the
endurance problem and keep PCM cells usable as long as possible, so we can use it for
in-memory databases.

Being the most used index structure algorithm, the B+ tree algorithm has been al-
tered for PCM [3-5, 13]. Nowadays location information is very important; it is used by
smartphones, T-map, Google Earth, and global positioning systems, etc. B+ tree cannot
handle location information. R-tree, another tree structure, is very similar to B-tree. It can
store spatial information like geographic coordinates and multi-dimensional objects. In
our studies, we use R*-tree structures for PCM to reduce the number of writes per PCM
cell. Of the various kinds of R-trees, we chose R*-tree as it has a more compact structure
and more populated nodes, compared to other R-tree variants. Moreover, according to
[17], R*-tree outperform the traditional R-tree in query processing and perfor-
mance. However, these advantages also come with liabilities, such as a higher number of
writes and low performance (compared to other R-tree variants), which need to be
solved.

The basic idea of the R*-tree is to group nearby objects and represent them with
minimum bounding rectangles in the next higher level of the tree. R*-tree reduces cov-
erage and overlap with a modified node split; it reinserts algorithms when nodes over-
flow. R*-tree requires many writes during insertion and deletion, for keeping the given
R*-tree requirements. Our goal is to design a PCM-aware R*-tree that is capable of stor-
ing spatial data.

In this paper, we initially evaluated whether R*-tree causes endurance problems,
and at the same time, measured performance for insertion, search, and deletion. To check
this, we inserted a synthetically developed dataset (consisting of three million elements)
into R*-tree. From the figures depicted in Section 3, we saw that R*-tree causes endur-
ance problems. Some records had a huge number of writes, indicating those cells would
die much earlier than others. Moreover, performance measurements are presented in
performance evaluation section of this paper. Our goal is to decrease the number of
writes and spread them equally among all PCM cells in order to keep all cells usable as
long as possible, and at the same time, improve performance.

To the best of our knowledge, we are the first researchers to show how R*-tree
causes endurance problems in PCM and we believe we are the first to provide a solution
to it based on the application level. According to our experimental results, by using both
synthetic and benchmark datasets, PCR*-tree deals significantly with this endurance
problem by reducing the number of PCM writes; it also improves performance.

2. RELATED WORK

Several attempts have been made in this research area to reduce the number of PCM

PCR*-TREE: PCM-AWARE R-TREE 1361

write operations by redesigning existing tree structures. A common index structure algo-
rithm, B+ tree is mostly used for DRAM and hard disk drive (HDD) memory, in which
case, the number of writes need not be considered. Nevertheless, the number of writes is
important when using PCM.

The approaches [3-5, 13, 15] focus on optimizing B+-tree for PCM. As previously
stated, our goal is to store spatial objects in memory. One dimensional index structure
B+-tree does not work well with spatial data since search space is multidimensional.

R-tree and its variants are commonly used to store spatial objects. Many researchers
[8-10, 12, 14] redesigned and applied R-tree to solid state disk (SSD) and flash memory.
Wu et al. aimed to efficiently handle fine-grained updates caused by R-tree index access
to spatial data over flash memory [10]. They proposed using a reservation buffer and a
node translation table to reduce the number of unnecessary and frequent updates of in-
formation in flash memory storage systems.

Lv et al. [8] introduced a tree index structure named log compacted R-tree (LCR-
tree). They combined newly arrival logs with the original ones in the same node, which
rendered a great decrement in random writes and, at most, one additional read for each
node access.

Pawlik and Macyna [9] separated R-tree metadata and aggregated data into different
sectors of flash memory.

[16] presents scalable QSF-tree that rely on heuristic optimization to reduce the
number of false drops into pages, which does not contain objects satisfying the query.

Jin et al. [12] propose to defer the node-splitting operations on R-tree by introducing
overflow nodes. In addition, they present a new buffering scheme to efficiently cache the
updates to the tree in order to reduce the number writes to flash memory. However cre-
ating the buffer does not solve the endurance problem in our case due to the reason that
different from NAND Flash memory, PCM is byte addressable.

However, none of the above-mentioned proposed versions of R-tree [8-10, 12, 14,
16] could be directly applied to PCM as they have been proposed for NAND flash
memory. NAND flash memory is page addressable, but PCM is byte addressable. Be-
cause the structure of PCM is different from the structure of NAND flash memory, the
ones designed for NAND flash memory are not suitable for PCM. To the best of our
knowledge, we are the first researchers to show how R*-tree cause endurance problems
in PCM, and we believe we are the first to provide a solution to it based on the applica-
tion level.

In [18] a new logging scheme called PCMLogging is presented, which exploits
PCM for both data caching and transaction logging to minimize I/O accesses in disk-
based databases. PCMLogging enables simplified recovery and prolongs PCM lifetime
by integrating log and cached updates. However, in this paper we are focusing on the
proposing new R-Tree scheme for PCM without considering logging scheme.

3. PCR*-TREE

As previously mentioned, the maximum number of writes per PCM cell is limited to 10଺ times (then the cell dies). For that reason, we initially need to check whether R*-tree
causes the endurance problem. We counted the number of writes per node (and per rec-

1362

ord)
perim

3.1 M

3.1.1

all th
have
mem
expe
benc
using
porta

tree
data
for b
Sear
upda
datas

3.1.2

gene

(a

Fig.

incre

 Th
 R*

1 http

ELKHAN J

for R*-tree w
ments with 32

Motivation

1 Simulation

As it is infea
he experimen
e been used: C
mory  8GB, H
erimental eval
chmark datase
g the uniform
al that is a geo
Execution tim
structure. In c
object of a g

benchmark dat
rch for every d
ating parent n
set and 20,000

2 Simulation

Fig. 1 presen
erated three m

a) Per node with
1. The number

256 maximu

According to
eases when th

he node needs
*-tree removes

p://chorochronos.d

JABAROV, MYON

while insertin
2, 64, 128, 256

environment

asible to get th
nts in this pap
CPU  Intel Xe
HDD  1TB,
luations: a sy

et consisting o
m distribution.
ographic spati
me for insert o
case of Search
given dataset (
taset) in the le
data object pl
odes if necess
0 objects for b

results

nts the origin
million dataset.

h maximum fill
of write opera

um fill factor va

o the results (F
e R*-tree nod

to be sorted in
s elements fro

datastories.org/?q

NG-SOON PARK

ng a dataset o
6, and 512 max

t

he real PCM w
per the server
eon E3-1220 v
OS  Linux 3

ynthetic datas
f 76,999 obje
The benchm

al dataset of G
operation is th
h operation, a
(500,000 obje
eaf nodes. Exe
us the time sp
sary for the a
benchmark dat

nal R*-tree sim

factor 64.
ations per node
alue into the R*

Fig. 1), the nu
de splits. It hap

n order to find
om the split po

q=node/54.

K, BYUNG-WON O

f 3 million el
aximum fill fac

we have simul
r with the fol
v3 3.10GHZ,
3.19.0. We us
set consisting
ects. We have

mark dataset w
Germany in a
he total time t
access time is
ects for synth
ecution time f
pends on its r
given dataset

taset).

mulation resu

 (b) Per node
when inserting
-tree.

umber of writ
ppens for the f

d the proper sp
oint that are s

ON AND GYU SA

lements. We
ctor values.

lated the resul
llowing test-b
L2 cache size

sed two kinds
of five milli

created the sy
was downloade

2D space1.
o insert the gi
the time spen
etic dataset an

for deletion is
removal as we
t (500,000 obj

ults after inser

e with maximum
g three million

tes per PCM
following reas

plit point.
somewhere in

ANG CHOI

simulated our

lts on DRAM.
bed configurat
e  8192KB, M
of dataset for

ion objects an
ynthetic datase
ed from an R

iven dataset to
nt to find the
nd 20,000 obj
the access tim

ell as merging
jects for synth

rting synthetic

m fill factor 256
objects with 64

node dramatic
sons.

the middle o

r ex-

. For
tions
Main
r our

and a
et by

R-tree

o the
each

bjects
me to
g and
hetic

cally

6.
4 and

cally

of the

no
mo
dra

 In
to
pro
the
PC

 All

3.2 P

3.2.1

the p
will
creas
Over
uses
cord
of PC
In in
leaf
PCR
is mo
versi
num
secti
(2X)

3.2.2

the n
midd
node
write

ode, and furthe
oved during a
amatically inc
R*-tree, the s
reinsert the e

oblem by rein
e node. It sho
CM because it
l the parent no

Proposed Sch

The detailed a

1 Increased le

The node nee

performance.
initially execu
sed over the s
rflowTreatme
the same ma

dingly the min
CR*-tree, the

nitialization st
nodes must s

R*-tree structu
ore compact,
ion will post

mber of writes,
ion we will co
), three (3X), f

(a) R*-tree

Fig. 2. E

2 Move once

When the no

node should b
dle of the nod
e one-by-one,
es rapidly rise

PCR

ermore, remo
a split, the res
creases the num
split operation
element or spl
nserting eleme
ould be noted

consumes ma
odes must be u

heme

algorithms of

eaf node size

eds to be sort
As all the ele
ute when the
size of interm
nt function th

aximum fill fa
nimum fill fac

maximum fil
tep the maxim
et. Figs. 2 (a)

ures that stores
as fewer inter

tpone calling
and at the sam

ompare variou
four (4X) and

max fill factor

Example of R*

de splits, it is
e moved to th
e. R*-tree mo
, which dram
es because af

R*-TREE: PCM-

ves elements
st of the elem
mber of write
n degrades pe
lit it. In any c
ents; however
that the Rein

any writes and
updated if the

the proposed s

ted right befor
ements are be
leaf node ove

mediate nodes,
hat will split o
factor value bo
tor value is ha
l factor value

mum fill factor
) and (b), resp
s 32 data obje
rmediate node
the Overflow

me time, impr
us leaf node si

five (5X) tim

= 4.

-tree and PCR*

mandatory to
he newly creat
ves elements

matically incre
fter removing

-AWARE R-TREE

one by one.
ments must co

s.
erformance as
case, it will st
r, if the probl
nsert operation
d also downgr
ere is any chan

scheme are sh

re reinsert or
ing stored in
erflows. If the
, we are then
or reinsert ele
oth for interm
alf of the max
 is separated f
r value for int
pectively, sho
ects. It is obvi
es are required
wTreatment fu
roves perform
ize such as in

mes compared

(b) PCR*-tre
fill factor

*-tree 2X that st

o find the split
ted node. The
starting from

eases the num
g the elements

E

So each time
ome one step

 the algorithm
tart to solve t
lem is not sol
n is an expen
rades the perfo
nge in leaf nod

own in Appen

split operation
leaf nodes, th

e size of a lea
able to postp
ments within

mediate and le
ximum fill fac
for leaf and in
termediate nod
w examples o
ious that the p
d. In other wo

function that
mance. In perfo
ncreasing the l
to intermedia

e (leaf max ff =
= 4).

tores 32 data el

-index, indica
split-index is
the split-inde

mber of writes
s in the midd

an element i
to the left, w

m decides whe
the overflow n
lved, it then s
sive operation
ormance.
des.

ndixes A, B an

n that deterior
he split or rein
af node will b
one executing
the node. R*

eaf nodes and
ctor value. In
ntermediate no
des, as well a
of the R*-tree
proposed struc
ords, the prop
will decrease

ormance evolu
leaf node size
te nodes.

= 8, non-leaf ma

ements.

ating which pa
somewhere in
x point to the
s. The numbe
dle, the remai

1363

is re-
which

ether
node
splits
n for

nd C.

rates
nsert

be in-
g the

*-tree
d ac-
case

odes.
as for
e and
cture

posed
e the
ution
e two

ax

art of
n the
new

er of
ining

1364

ones
datum
full,
top-l
with
datum
main
to th
must
write

starti
of w

3.2.3

node
the e
solut
ber i
copy
node
empt
num
amon

Fig. 3

3.2.4

ent n
ed, it
upda
leaf
as sh
ent’s
show

ELKHAN J

s move one ste
m I is inserted
it should split

left corner of
hin a node is t
m E should m
ning ones mus
hat node has a
t also move t
es to the split
In order to s

ing from the
writes in the sp

3 Split node r

Prior to split
e should split.
elements with
tion to this pr
if writes. Onc
y the split nod
e. Finally, we
ty node with

mber of writes
ng all PCM ce

3. Example of a
the number o

4 Single paren

In R*-tree, if

nodes of that n
ts endurance g
ated in R*-tre
nodes. Initiall

hown in Fig. 4
s MBR, and in
wn in Fig. 4 (c

JABAROV, MYON

ep to the left t
d into a node w
t, and the spli
each record sh
he number of

move to the n
st move one st
already increa
to the newly
node.

solve this prob
split-index po
lit node, and a

replacement

tting the node
 In order to fi

hin the node,
roblem is to w
ce the node s

de where all th
replace the s

a minimum n
by one time p
ells, and keep

an original R*-t
of writes. The sp

nt update

f there is any
node up to the
goes down. Fi
ee. In Fig. 4 (
ly, it writes th
4 (b). Then, th
n our case, th
c). Afterward

NG-SOON PARK

o keep the nod
with a maximu
t-index is the
hows the num
f writes to tha
ewly created
tep to the left.
ased four time
created node,

blem, we pro
oint, at once.
at the same tim

e, the split alg
ind the split p
which drama

write a split no
successfully sp
he rearrangem
split node with
number of writ
per updated re
s all PCM cel

tree split. The n
plit-index point

change in lea
e root node. It
ig. 4 depicts a
(a) the root no
he MBR of da
he MBR of da
he parent’s MB
s, the MBR o

K, BYUNG-WON O

de consistent.
mum fill factor

fifth element
mber of writes
at node. So, al
node. When
. In this small
es. Furthermo
, which will r

opose to move
This approach
me, improves

gorithm must
oint, the algor

atically increa
ode into a new
plits, we crea

ments have bee
h the newly c
ites. Even thou
ecord, it lets u
lls alive as lon

number in the to
t is the record m

af nodes, it is
t is obvious th

an example tha
ode must upd

ata object A, w
ata object C sh
BR should be
of data object

ON AND GYU SA

 Fig. 3 illustra
value of 8. B
of the node. T
, and the sum
ll the data obj
data object E
l example, the
ore, data objec
rapidly increa

e all the elem
h rapidly decr
the performan

figure out th
rithm does so

ases the numb
w node with th
ate a new bla
en handled in t
created node.
ugh this appro
us balance the
ng as possible.

op left corner o
marked in red.

necessary to u
hat each time
at shows how
dated after mo
which is (1,1)(
hould be comp
e updated agai

E should be

ANG CHOI

ates the case w
ecause the no
The number in
of those num

jects starting f
is moved, the

e number of w
cts F, G, H, a
ase the numbe

ments of the n
reases the num
nce.

e point where
me rearrangin

ber of writes.
he minimum n
nk node and
this newly cre
A new node i
oach increases
 number of w

f each record sh

update all the
the node is up
the parent no

odifications in
(2,2), to its pa
pared with its
in to (1,1)(3,6
compared wit

when
ode is
n the

mbers
from

he re-
writes
and I
er of

node,
mber

e the
ng of

Our
num-
then

eated
is an
s the

writes

hows

 par-
pdat-

ode is
n the
arent,
 par-

6), as
th its

paren
as sh
been
node
ing l
time
fill f
with

out t
node
time

3.2.5

have
elem
merg
endu
and l
requ
re-in
requ
prop
perfo

is ch
leaf
resul

nt’s MBR, an
hown in Fig. 4
n compared an
e MBR will b
leaf node. In
s, as the maxi

factor value, n
h the increase o

(a) R*-t

(b) Updating
Fig

We propose
the MBR valu
e. In other wo
.

5 No minimum

In order to s

e been deleted
ments of that n
ge nodes when
urance of PCM
lowers the pe

uirement shou
nserted to tree
uirement for de
posed R*-tree
ormance.

The size of l
hallenging to f
nodes or non
lts against the

PCR

nd in our case
4 (d). The abo
nd updated wit
e modified tw
a given smal

imum fill fact
number of upd
of the R*-tree

tree. (c

g parent based o
g. 4. Example o

to compare th
ue for the pare
ords, with the

m fill factor r

satisfy the min
d, if the nodes
node should m
n they just be

M and degrade
rformance bec

uld be deleted
e again. So in
elete operation
with and wit

4. S

eaf nodes in P
figure out whe
n-leaf nodes. T
e original R*-

R*-TREE: PCM-

, the parent’s
ove process co
th all the MBR

wo more times
ll example, th
or value was s

dates will be h
e height.

) Updating pare

on A.
of updating a pa

he value of th
ent node. Nex
proposed app

requirement

nimum fill fa
contains less

merge with ot
ecome less tha
es the perform
cause the nod
d and the da
the proposed

n. In performa
thout merge i

SPACE CO

PCR*-tree is
ether the max
This issue is
tree. We deci

-AWARE R-TREE

MBR should
ontinues till th
Rs of the child
s while updat
he parent nod
small. Howev

huge. Moreove

ent based on A.

 (d) Upd
arent node in the

he MBRs of c
xt, we write th
proach, we wr

after deletion

actor requirem
elements than

ther nodes. Ho
an half full as

mance. Merge
de that does no
ata objects of
d scheme we d
ance evaluatio
in case of the

NSUMPTIO

larger than th
ximum fill fact

very importan
ided to find o

E

d be updated a
he MBR of th
d node. In this
ting parent no
de MBR has b
ver, if we use a
er, more write

. (e) R*-tree aft

dating parent ba
e original R*-tr

child node ele
he computed v
rite to the pare

n

ments of R*-tr
n minimum fil
owever it may
s the merge op
operation was
ot meet the m
f that deleted
disable the m
on sections we
e number of

ON

he size of non-
tor value of th
nt for a fair c

out the numbe

again to (1,1)(
he parent node
s example the
de with neigh
been updated
a larger maxim
es will be requ

er parent updat

ased on E.
ree.

ements and fi
value to the pa
ent node only

ree, after the
ll factor value
y be very earl
peration waste
stes the endur

minimum fill fa
d node should
inimum fill fa
e will compare
writes, as we

-leaf nodes, an
he tree is base
comparison of
r of leaf and

1365

(4,6),
e has
e root
hbor-

five
mum
uired

tes.

igure
arent

y one

data
e, the
rly to
e the
rance
factor
d be

factor
e the

ell as

and it
ed on
f the
non-

ELKHAN JABAROV, MYONG-SOON PARK, BYUNG-WON ON AND GYU SANG CHOI

1366

0

50

100

150

32 64 128 256 512

%
 o

f
le

af
 n

od
es

Leaf maximum fill factor

R*-tree PCR*-tree 2X PCR*-tree 3X

leaf nodes in PCR*-tree, and we categorize them based on majority. Considering all the
maximum fill factor values based on the majority, we will determine whether the maxi-
mum fill factor of PCR*-tree is equal to leaf-node size or non-leaf-node size. For this
experiment, we refer to the results that we gained by using the benchmark dataset.

Fig. 5. The percentage of leaf nodes by inserting benchmark dataset.

From Fig. 5, we can see that the number of non-leaf nodes is much lower than the
number of leaf nodes, where at most, 24% are non-leaf nodes (PCR*-tree 5X). At least,
only 1% are non-leaf nodes (in cases when leaf maximum fill factor = 256/512). As the
maximum fill factor value increases, the percentage of leaf nodes radically increases,
compared to non-leaf nodes. However, as the leaf-node maximum fill factor increases
compared to the non-leaf node size, the number of non-leaf nodes also increases. Ac-
cording to an experiment results, in an average case 94% of the nodes are leaf nodes.
Thus, the maximum fill factor value for PCR*-tree is defined based on the number of
elements the leaf nodes can store.

However, as the maximum fill factor values for leaf nodes and non-leaf nodes are
different, it is essential to figure out the consumed space. Eqs. (4) and (5), respectively,
show how the space consumption is calculated for R*-tree and PCR*-tree, where numleaf
is the number of leaf nodes, numnonleaf is the number of non-leaf nodes, and ff is the
maximum fill factor value. Furthermore, each record takes 32 bytes of memory.

SpaceConsumptionRstar = (numleaf+numnonleaf)ff32 (4)

SpaceConsumptionRstar = ((numleafffleaf)(numnonleafffnonleaf)32 (5)

Based on Fig. 6, we can see that PCR*-tree consumes more space in memory when
the maximum fill factor value is low. However, its space consumption gets closer to
R*-tree as the maximum fill factor value increases. Moreover, the more we increase the
leaf node maximum fill factor value the more space is being consumed. Interestingly,
PCR*-tree 2X with maximum fill factor value 512 consumes less space than R*-tree. As
this experiment have been simulated with benchmark dataset, because of the relatively
small amount of the dataset, PCR*-tree 2X consumes less space in memory. Moreover, at
worst case, PCR*-tree uses 13% more memory than R*-tree and in average case PCR*-
tree consumes 4.5% more space in memory compared to R*-tree. As our main objective
is to handle endurance and improve performance, a slight increase in space consumption
is not a problem.

using
ison
inser

5.1 S

been
we u

Fig.

inser
tree
and
creas
the r

ous l

2.5

3

3.5

4

S
pa

ce
 c

on
. (

by
te

)

m
il

li
on

R*-tree

In this sectio
g both a large
is based on t

rtion, deletion

Synthetic Dat

As previously
n developed by
used random 5

(a) Per node wi
7. Number of

maximum f
128 and 512
results.

In contrast to
rting three mi
2X. From Fig
at the same t
se the lifetime
results for rem

Table 1 sums
leaf node size

PCR

32

e PCR*-tree

Fig. 6. Spa

5. PER

on, we compa
e synthetic and
the number o

n, and search.

taset

y presented, o
y us based on
500,000 eleme

ith maximum fi
write operation

fill factor value
2 maximum fil

o Fig. 1, Fig.
illion objects
g. 7, we can ea
time, is more
e of the PCM.

maining maxim
s the results f
es increase (3X

R*-TREE: PCM-

64
Leaf maxim

2X PCR*-tr

ace consumed b

FORMANC

are the propo
d benchmark
f writes per n

our synthetic d
the uniform d

ents among the

ill factor 64.
ns per node wh
es to PCR*-tree
ll factor values

7 depicts the
with 64 and
asily see that t
e proportional
 Due to simila

mum fill factor
from the Figs.
X, 4X and 5X

-AWARE R-TREE

128
mum fill factor

ree 3X PCR*

by inserting ben

CE EVALUA

sed PCR*-tre
datasets prese

node, as well

dataset consist
distribution. T
e inserted one

 (b) Per nod
hile inserting 3
e 2X. We also
. Due to space

e number of w
256 maximum
the number o
lly distributed
arity of the re
r values.
. 1 and 7 and

X) by presentin

E

256 5

*-tree 4X PC

nchmark dataset

ATION

ee with the or
ented in Sectio
as on perform

ts of 3 million
To measure se
es.

de with maximu
3 million objec
observed simil
limitation, we

write operation
m fill factor v
f writes drama

d among node
esults and lack

also shows th
ng the minimu

512

CR*-tree 5X

t.

riginal R*-tre
on 3.1.1. Com
mance in term

n elements and
earch and dele

um fill factor 25
cts with 64 and
lar results using
will omit the

ns per node w
values into PC
atically decrea
es, which wil
k of space we

he results for v
um and maxim

1367

ee by
mpar-
ms of

d has
etion,

56.
d 256
ng 32,

other

while
CR*-
ases,
ll in-
omit

vari-
mum

ELKHAN JABAROV, MYONG-SOON PARK, BYUNG-WON ON AND GYU SANG CHOI

1368

1

100

10000

32 64 128 256 512

Th
e

av
e.

 n
um

. o
f

w
ri

te
s

Leaf maximum fill factor
R*-tree PCR*-tree 2X PCR*-tree 3X PCR*-tree 4X PCR*-tree 5X

Table 1. Detailed analysis on number of writes per node by using synthetic dataset.

Fig. 8. The average number of writes per node while inserting the synthetic dataset. Logarithmic
scale graph (base 10).

number of writes among nodes, average number of writes per node and standard devia-
tion of number of the writes per node. Based on the simulation results, minimum and
maximum number or writes of PCR*-tree is much lower than R*-tree. Also, according to
Table 1 average number of writes per node is decreased by 17 and 58 times accordingly
for 64 and 256 maximum fill factor values by using the PCR*-tree 2X. Furthermore, re-
ducing the number of writes alone cannot completely solve the endurance problem as it is
essential to reduce the hot spot on PCM. For checking how the PCR*-tree deals with hot
spot on PCM we have calculated the standard deviation on the number of writes on PCM
node. The results show that compared to R*-tree, PCR*-tree decreases the standard devi-
ation of the number of writes per node 40 and 147 times accordingly for 64 and 256
maximum fill factor values. Furthermore, for PCR*-tree 2X the standard deviation of the
number of writes per node is much lower than the average number of writes per node that
shows the number of writes are clustered closely around the average. All this results
proves that the PCR*-tree, solves the endurance problem of PCM by decreasing the
number of writes as well as spreading the number of writes among all PCM cells equally.

In order to show how the proposed scheme outperforms the original R*-tree, Figs. 8
and 9, respectively, demonstrate the average number of writes per node while inserting
the synthetic dataset and deleting 500,000 random elements among the inserted ones for
both PCR*-tree and R*-tree. The number of writes per node in average is decreases by
80 times when using the proposed scheme for inserting. Postponing execution of the

Maximum fill factor Min. value Max. value Average Stan. Dev.

64

R*-tree 32 110913 987 1741

PCR*-tree 2X 7 2058 56 43

PCR*-tree 3X 2 1738 52 35

PCR*-tree 4X 4 1468 48 27

PCR*-tree 5X 2 2183 46 33

256

R*-tree 128 180420 11233 15923

PCR*-tree 2X 3 2507 192 108

PCR*-tree 3X 6 10889 189 119

PCR*-tree 4X 9 1842 185 73

PCR*-tree 5X 14 11631 184 114

PCR*-TREE: PCM-AWARE R-TREE 1369

1

100

10000

32 64 128 256 512Th
e

av
e.

 n
um

. o
f w

ri
te

s

Leaf maximum fill factor
R*-tree PCR*-tree 2X PCR*-tree 3X PCR*-tree 4X PCR*-tree 5X

OverflowTreatment function by increasing the leaf node size, as well as optimized parent
update and splitting mechanisms, helps to keep PCM cells usable as long as possible. The
proposed scheme also decreases the number of writes during deletion by not merging the
nodes if the minimum fill factor requirement is not met and also by updating the parent
nodes only once (as the data are removed). Based on the experimental results, the number
of writes per node in average decreased by 7 times for deletes operation.

Fig. 9. The average number of writes per node while deleting random 500,000 elements after in-
serting synthetic dataset. Logarithmic scale graph (base 10).

Based on the Figs. 8 and 9, with the increase of the leaf maximum fill factor value
the average number of writes per node increases both for insert and delete operations.
However by more increasing the leaf node size compared to intermediate node size, the
proposed scheme shows better results.

Table 2. Execution times while using the synthetic dataset for insertion, search, and de-
letion. All times shown are in seconds.

Maximum fill factor 32 64 128 256 512

R*-Tree 157.1 461.7 1869.1 8671.5 33691.2

PCR*-Tree 2X 70.9 137.5 403.2 1704.9 7842.1
Insertion PCR*-Tree 3X 53.9 89.8 197.0 733.5 3624.8

PCR*-Tree 4X 47.9 66.9 131.5 393.2 1944.7
PCR*-Tree 5X 46.5 54.6 95.8 259.7 1145.5

R*-Tree 7032.4 23302.9 26194.5 38251.8 50296.6

PCR*-Tree 2X 7372.8 17480.6 22153.4 30741.5 47578.3
Search PCR*-Tree 3X 2535.6 14995.7 24070.2 30121.5 44610.8

PCR*-Tree 4X 1786.9 13185.2 21650.7 33457.7 39008.5
PCR*-Tree 5X 1265.6 8533.7 21508.3 31580.5 36208.1

R*-Tree 6519.6 20894.5 21307.5 38519.4 56934.1

PCR*-Tree 2X 6976.6 16487.5 20614.6 28526.4 43152.1
Deletion PCR*-Tree 3X 2458.7 14241.4 22640.1 28049.9 40783.0

PCR*-Tree 4X 1705.6 12560.2 20540.9 31179.7 35839.0
PCR*-Tree 5X 1209.9 8157.9 20431.9 29564.1 33533.5

Since one of goals was to improve performance, Table 2 shows how the PCR*-tree
improves performance. The Reinsert function in OverflowTreatment is a very expensive

ELKHAN JABAROV, MYONG-SOON PARK, BYUNG-WON ON AND GYU SANG CHOI

1370

1

100

10000

32 64 128 256 512A
ve

. n
um

. o
f

w
ri

te
s

Leaf maximum fill factor
R*-tree PCR*-tree 2X PCR*-tree 3X PCR*-tree 4X PCR*-tree 5X

operation, because it checks all possible combinations to handle the procedure without a
split, which decreases performance. Furthermore, if that situation cannot be handled by
the Reinsert function, the node must be split, meaning that the time spent by the Reinsert
operation was wasted. Postponing the OverflowTreatment function by doubling the leaf
node size decreased the time spent on inserting operation. Thus, PCR*-tree improves the
Insert performance in average 9 times.

We see a similar pattern in performance improvement for both the Search and De-
lete operations, as well. It is obvious that the shorter tree height makes it is relatively
faster to reach an appropriate leaf node. As the height of PCR*-tree is decreased by dou-
bling the leaf node sizes, it also improves performance when searching and deleting. In
average the performance for search operation is decreases by 22%, and for deletion is
decreased by 27%. Only PCR*-tree 2X with 32 maximum fill factor value takes slightly
more time for search and delete operation. Our analysis shows that in a given case the
elements that need to be search or deleted was in an unlucky location (end of the node).
Moreover according to the results, the execution time for deleting 500,000 data objects
are faster than searching for that 500,000 data objects. The reason behind that is after
each deletion, the number of elements in a given tree decreases, making the next search
or delete operation faster.

5.2 Benchmark Dataset

In this section, we show the experimental results when the benchmark dataset was
used. For search and delete operations, we used a random 20,000 objects from among the
inserted ones. The results of the benchmark dataset are quite identical to the results that
we have gained from the synthetic dataset.

Figs. 10 and 11, respectively, demonstrate the average number of writes per node
for insert and delete operations for both PCR*-tree and R*-tree. For the insert operation,
in average the number of writes per node is decreased by 30 times when the benchmark
dataset have been used. Similar to the results gained from synthetic dataset, with the in-
crease of the maximum fill factor value, the number of the number of writes increases.
Moreover according to the results, with more increase the size of the leaf nodes com-
pared to intermediate nodes, the number of writes slightly decreases.

Fig. 10. The average number of writes per node while inserting the benchmark dataset. Logarith-
mic scale graph (base 10).

PCR*-TREE: PCM-AWARE R-TREE 1371

1

100

10000

1000000

32 64 128 256 512

A
ve

. n
um

. o
f w

ri
te

s

Leaf maximum fill factor
R*-tree PCR*-tree 2X PCR*-tree 3X PCR*-tree 4X PCR*-tree 5X

According to the results (Fig. 11), PCR*-tree decreases the number of writes in case
of deletion as well, due to not merging nodes if the minimum fill factor requirement does
not meet and also due to optimized parent node update algorithm. In average case the
number of writes have been decreased by 20 times by using PCR*-tree while deletion,
when the benchmark dataset is used.

Due to reason that simulation results of the performance (execution time) show sim-
ilar patterns with the synthetic dataset, we leave this out because of space limitation in
this article.

Fig. 11. The average number of writes while deleting 20,000 elements after inserting the bench-
mark dataset. Logarithmic scale graph (base 10).

We have compared the PCR*-tree scheme with and without merging while deletion
(Table 3) in order to check how efficient is not to merge nodes that do not fulfill the
minimum fill factor requirement. The benchmark dataset have been used for the experi-
ments. The proposed PCR*-tree with 256 maximum fill factor value have been used for
the experiment. According to result no merge version of the PCR*-tree shows much bet-
ter results in case of average number of writes per node, as well as in standard deviation
of number of writes per node. Furthermore, the no merge version of PCR*-Tree im-
proves the delete performance as there is no need to re-insert the element of the node that
do not fulfill the minimum fill factor requirement. In average, the proposed no merge
version of R -Tree improves the delete performance up to 39%.

Table 3. Comparison of average number of writes per node, standard deviation of writes
per node and time spend while deletion for PCR-tree scheme with and without
merge operation (maximum fill factor value 256).

Tree Ave. Stan. Dev. Time (sec)
PCR*-tree 2X merge 3764 2082 19.95

PCR*-tree 2X no merge 708 1270 15.32
PCR*-tree 3X merge 3509 2227 13.85

PCR*-tree 3X no merge 638 1226 9.19
PCR*-tree 4X merge 3605 2119 6.80

PCR*-tree 4X no merge 528 1032 5.58
PCR*-tree 5X merge 3273 2154 7.41

PCR*-tree 5X no merge 512 1109 4.14

ELKHAN JABAROV, MYONG-SOON PARK, BYUNG-WON ON AND GYU SANG CHOI

1372

6. CONCLUSION AND FUTURE WORK

Phase change memory is a byte-addressable type of non-volatile memory. Com-
pared to other volatile and non-volatile memories, PCM is two to four times more dense
than DRAM, and it has better read latency than NAND flash memory. Even though the
write endurance of PCM is 10 times better than NAND flash memory, it is still limited to 10଺ times per PCM cell. Nowadays, many current applications use spatial data, such as
location information; for this reason, storing spatial data in memory is very important.
R-tree is a well-known data structure that can handle spatial data; we propose using its
variant, R*-tree, over PCM because it is more compact and the nodes are more populated.
However, R*-tree performs a lot of writes, and moreover, its performance is poor, espe-
cially for insertion. We propose a novel PCM-aware R*-tree algorithm called PCR*-tree.
By increasing the leaf node size, moving once while splitting, writing the split node to a
blank node, updating parent nodes one time, and disabling the minimum fill factor re-
quirement for delete operation PCR*-tree achieves a dramatic reduction in the number of
writes, and at the same time, improves performance. According to our experimental re-
sults, when we used a benchmark dataset, the proposed novel scheme in average reduces
the number of write operations to PCM node 30 times and also improves performance in
terms of processing time. These results suggest our new method outperforms existing
ones that address the PCM endurance problem.

The limitation is that PCR*-tree (at the application level of the S/W stack) cannot
become aware of the “write count number” for each PCM cell. Therefore, PCR*-tree
needs to obtain from the kernel (at the operating system level or the H/W level) the write
count number. Then, PCR*-tree will be able to select memory cells with the smallest
count number while creating a new node, as well as replace the split node with the node
that has smallest number of writes. Our future work will be finding a solution for this
problem.

In this paper we propose a PCR*-tree scheme without considering the logging. As a
future work we will extend our work by applying the logging scheme.

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and
Future Planning (2013-012524) for the third author (Byung-Won On) and supported by
the Ministry of Trade, Industry and Energy (MOTIE, Korea) under Industrial Technolo-
gy Innovation Program No. 10063130 and by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2016R1A2B4007498) for the fourth author (Gyu Sang Choi).

REFERENCES

1. R. Bayer and E. McCreight, “Organization and maintenance of large ordered in-
dexes,” Software Pioneers, 2002, pp. 245-262.

2. F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. Buda, F.

PCR*-TREE: PCM-AWARE R-TREE 1373

Pellizzer, D. Chow, A. Cabrini, G. M. A. Calvi, and R. Faravelli, “A multi-level-cell
bipolar-selected phase-change memory,” in Proceedings of IEEE International
Solid-State Circuits Conference-Digest of Technical Papers, 2008, pp. 428-625,.

3. S. Chen, P. Gibbons, and S. Nath, “Rethinking database algorithms for phase change
memory,” in Proceedings of the 5th Biennial Conference on Innovative Data Sys-
tems Research, 2011, pp. 21-31.

4. P. Chi, W. C. Lee, and Y. Xie, “Making B+-tree efficient in PCM-based main
memory,” in Proceedings of ACM International Symposium on Low Power Elect-
ronics and Design, 2014, pp. 69-74.

5. G. S. Choi, B. W. On, and I. Lee, “PB+-tree: PCM-aware B+-tree,” IEEE Tran-
sactions on Knowledge and Data Engineering, Vol. 27, 2015, pp. 2466-2479.

6. H. Chung, B. H. Jeong, B. Min, Y. Choi, B. H. Cho, J. Shin, J. Kim, J. Sunwoo, J. M.
Park, Q. Wang, and Y. J. Lee, “A 58nm 1.8 v 1gb pram with 6.4 mb/s program bw,”
in Proceedings of IEEE International Solid-State Circuits Conference, 2011, pp.
500-502.

7. A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceed-
ings of ACM SIGMOD Iinternational Conference on Management of Data, Vol. 14,
1984, pp. 47-57.

8. Y. Lv, J. Li, B. Cui, and X. Chen, “Log-compact R-tree: an efficient spatial index for
SSD,” in Proceedings of International Conference on Database Systems for Adv-
anced Applications, 2011, pp. 202-213.

9. M. Pawlik and W. Macyna, “Implementation of the aggregated R-tree over flash
memory,” in Proceedings of International Conference on Database Systems for
Advanced Applications, 2012, pp. 65-72.

10. C. H. Wu, L. P. Chang, and T. W. Kuo, “An efficient R-tree implementation over
flash-memory storage systems,” in Proceedings of the 11th ACM International Sym-
posium on Advances in Geographic Information Systems, 2003, pp. 17-24.

11. N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an efficient
and robust access method for points and rectangles,” in Proceedings of ACM SIG-
MOD Record, Vol. 19, 1990, pp. 322-331.

12. P. Jin, X. Xie, N. Wang, and L. Yue, “Optimizing R-tree for flash memory,” Expert
Systems with Applications, Vol. 42, 2015, pp. 4676-4686.

13. L. Li, P. Jin, C. Yang, Z. Wu, and L. Yue, “Optimizing B+-tree for PCM-based
hybrid memory,” in Proceeding of International Conference on Extending Database
Technology, 2016, pp. 662-663.

14. M. Sarwat, M. F. Mokbel, X. Zhou, and S. Nath, “Generic and efficient framework
for search trees on flash memory storage systems,” GeoInformatica, Vol. 17, 2013,
pp. 417-448.

15. E. Tousidou, M. Vassilakopoulos, and Y. Manolopoulos, “Performance evaluation of
parallel S-trees,” Journal of Database Management, Vol. 11, 2000, p. 28.

16. R. Orlandic and B. Yu, “Scalable QSF-trees: retrieving regional objects in high-
dimensional spaces,” Journal of Database Management, Vol. 15, 2004, pp. 45-59.

17. P. Patel and D. Garg, “Comparison of advance tree data structures,” 2012. arXiv
preprint arXiv:1209.6495.

18. S. Gao, J. Xu, T. Härder, B. He, B. Choi, and H. Hu, “PCMLogging: Optimizing
transaction logging and recovery performance with PCM,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 27, 2015, pp. 3332-3346.

1374

chair
comm
netw

ELKHAN J

r of the SIG o
mittees for va

works, internet

JABAROV, MYON

Elkh
Science a
rently pur
Commun
search int

Myo
ment at K
BSc in El
MSc in E
and a Ph.
versity of
Universit
1988.2. S
Professor

on parallel pro
arious interna
t computing, p

Byu
Computer
at Univer
time resea
tal Scienc
nology fo
member i
National
research
working
nologies.

Gyu
Engineer
search st
nology (S
2009, he
rently an
tile mem
mainly f
a membe

NG-SOON PARK

han Jabarov
and Engineerin
rsuing a Ph.D

nications Engi
terests include

ong-Soon Par
Korea Univer
lectronics Eng

Electrical Engi
.D. in Electric
f Iowa in 1985
ty from 1985
Since 1988.3 h
r at Korea Un
ocessing of K
ational confer
parallel and di

ng-Won On
r Science and
rsity Park, PA
archer in Univ
ces Center, an
or almost seve
in Department
University, G
interests are a
on AI-based t

u Sang Choi r
ring from Pen
taff member a
SAIT) for Sam
e has been wi
n Associate P
ory and stora

focused on im
er of ACM and

K, BYUNG-WON O

v received M
ng from Kore

D. in the Depa
ineering, Kor
e databases an

rk is Professo
rsity in Seoul,
gineering from
ineering from
cal and Comp
5. He was an a

5 to 1987.1 a
he has been a
niversity until

KIISE (1997-2
rences. His re
istributed syst

earned his P
d Engineering,
A, USA in 20
versity of Brit

nd Advanced I
en years. Sinc
t of Statistics
Gunsan-si, Je
around Data
text mining a

received his P
nnsylvania St
at the Samsun
msung Electro
ith Yeungnam

Professor. He
age systems,

mproving the
d IEEE.

ON AND GYU SA

Sc degrees in
ea University,
artment of Com
rea University
nd data mining

or of Compute
, South Korea
m Seoul Natio

m the Universit
uter Engineer
assistant profe

and at Postech
an Assistant, A
l now. Profes

2000) and has
esearch interes
tems, and mob

Ph.D. degree
, Pennsylvani
07. Then, he
tish Columbia
Institutes of C
ce 2014, he h
and Compute

eollabuk-do, K
Mining and D

and big data m

Ph.D. in Com
tate Universit
ng Advanced
onics from 20
m University,

is now work
whereas his

performance

ANG CHOI

n both Comp
Korea. He is

mputer and R
y, Korea. His
g.

er Science dep
a. He received
onal University
ty of Utah in 1
ring from the
essor at Marqu
h from 1987.
Associate and
ssor Park was

been on prog
sts include se
bile computing

in Departmen
a State Unive
worked as a

a, Advanced D
onvergence T

has been a fac
r Science, Ku
Korea. His re
Databases, ma
management t

puter Science
ty. He was a
Institute of T

006 to 2009. S
where he is

king on non-v
s earlier rese
of clusters. H

puter
 cur-

Radio
s re-

epart-
d his
y, an
1982,
Uni-
uette
.2 to
Full

s the
gram
ensor
g.

nt of
ersity
full-

Digi-
Tech-
culty

unsan
ecent
ainly
tech-

e and
a re-

Tech-
Since

cur-
vola-
earch
He is

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

