
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 1171-1194 (2013)

1171

A Practical Framework for Self-Stabilization
in Service-based Mobile Ecosystem*

JAE YOO LEE, HYUN JUNG LA+ AND SOO DONG KIM

Department of Computer Science
Soongsil University

Dongjak-Ku, Seoul, 156-743 Korea

Mobile devices are widely accepted as a convergence machine, which provides both

cell phone capability and a lightweight computing capability. However, mobile devices
have a major drawback of limited computing power and resources such as main memory
and battery life. Service-based mobile applications are emerged as an efficient solution
to overcome this limitation of mobile devices. On the other hand, with the advent of
more powerful mobile devices, mobile devices are actively participating as computer
nodes and performing enterprise functionality. In this paper, we present a practical
framework for dynamically deploying services. With the ever increasing computing
power of mobile devices, we project that mobile devices can also be used as computer
nodes deploying services. A number of benefits for deploying services on mobile de-
vices existed. In this paper, we define an ecosystem for service-based mobile computing,
and present techniques for dynamically deploying services on station nodes and mobile
nodes, which are challenging problems. By applying dynamical deployment of services
on both station and mobile nodes, the overall quality of the ecosystem can be consis-
tently maintained.

Keywords: services, mobile computing, migration, replication, self-stabilization

1. INTRODUCTION

Mobile devices are accepted as a convenient convergence machine which provides
both cell phone capability and computing capability. However, they have limited com-
puting power and resources [1, 2]. Consequently, complex applications consuming a
large amount of resource could not be deployed on them. To overcome the limitation,
service-based mobile computing is emerging [3-5]. In this computing model, services
deployed on server sides are invoked by client applications, yielding a number of bene-
fits over standalone mobile apps [4].

However, in enabling service-based enterprise mobile computing, there is a compel-
ling challenge, lack of stability and performance. In service-oriented computing, services
can be instable and reveal low performance due to unexpected high volume of service
invocations, degradation of network bandwidth, and faults on services. It becomes even
evident with mobile computing since the network bandwidth available on mobile devices
such as 3G is considerably low. To remedy these problems, we present a new eco-system
for service-based mobile computing, called Service-based Mobile Ecosystem (SME). Es-
pecially, we present a process of managing stability of services of SME in autonomous

Received December 4, 2011; revised April 4, June 4 & July 18, 2012; accepted August 16, 2012.
Communicated by Jiann-Liang Chen.
* This research was supported by Basic Science Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3004130, 2012-
R1A6A3A01018389).

+ Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2013.29.6.7

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1172

manner. If SME can dynamically measure its overall quality, identify faulty services, and
apply service migrations and replications in autonomous manner, the quality of the eco-
system can be consistently maintained, i.e. the stability of SME is maintained.

The two key elements of the self-management process are Quality Model with met-
rics to measure the overall quality of SME and techniques for Dynamic Service Deploy-
ment. An innovation attempted in our research is to utilize ever-increasing computing
power of mobile devices in providing stable quality of services. That is, we devise a new
computing model where mobile devices are utilized as both client devices and servers
deploying cloud services. Here, the dynamic remedy techniques are based on the as-
sumption that each service is a highly cohesive functional unit, and hence independently
deployable and be invoked. This is the component-as-a-service (CaaS) type in cloud
computing [6]. Other types of services such as software-as-a-service (SaaS), platform-
as-a-service (PaaS), and infrastructure-as-a-service (IaaS) is not feasible for dynamic
deployment. Beyond the cloud services, another aspect of the ‘service’ is that any func-
tional component which is designed to be reused, provides public interfaces, and exe-
cutes on the behalf of service invokers can be a service.

Currently available middleware products and frameworks for cloud computing do
not provide effective and practical schemes for autonomous manageability of services
and dynamic service deployment. Especially, dynamically deploying services on mobile
devices is not considered with current approaches and products.

In this paper, we present a practical framework for self-managed stability of ser-
vices for mobile computing. In section 2, we summarize related work, and section 3 pre-
sent the new model for self-stabilizing service-based mobile computing environment,
SME. Section 4 is to present the process for applying autonomous stability management
in SME and its instructions. Section 5 presents methods to dynamically deploy services
on station nodes and mobile nodes respectively. Section 6 presents the result of our ex-
periment for applying SME.

2. RELATED WORKS

A mobile agent is a composition of software and data which is able to migrate from
one node to another autonomously and continue its execution on the destination node [7].
Mobile agents, therefore, can be treated as a unit of services on the cloud computing en-
vironment. But, due to the characteristics of mobile agent such as Autonomy, Personality,
High Performance and Fault-tolerance [8], mobile agents are slightly different from
cloud services. Mobile agents are mainly targeted for applications distributed over wide
area network (WAN) with low bandwidth and high latency because they reduce network
load, overcome network latency, execute autonomously, and adapt dynamically [9]. By
applying the mobile agent to cloud computing, the cloud services can be migrated in a
cloud or over the inter-clouds. Therefore, services with mobile agent can effectively han-
dle quality of the services through reducing network loads.

Chen and his colleagues proposes a mobile agent-based service for cloud computing
system with high scalability, named Service as an Agent Service (SaaAS) [10]. SaaAS is
a unit of mobile agent which includes data, software, and common runtime libraries to
provide its functionality to users with high performance. However, their work only fo-

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1173

cuses on the service migration among the typical station. Moreover, their SaaAS is too
heavy to be migrated dynamically because the SaaAS contains data, software, and even
runtime libraries. Since cloud services provide complete functionalities to users and the
services are not small enough to migrate its functionality with relevant data and runtime
environment. It can cause another network overhead increasing communication cost.

Haas’s work presents an autonomic approach to network service deployment that
scales to large complex network [11]. The approach uses two-phase mechanism for effi-
cient and flexible service deployment; global-level and local-level.

Konstantinos’s approach proposes service migration to resolve the service place-
ment problem in large scale and dynamic networking environments [12]. With migration,
the cost of service provision is reduced and service facility reaches the optimal location.

Nuno’s work presents a component-based framework for mobile agents supporting
dynamic reconfiguration. Components can be added, removed and reconfigured at run
time, with minimal disruption to the application [13]. It allows building highly adaptable
mobile agent platforms. The proposed framework is targeted on JavaBeans components.

Current works mainly focus on mechanisms of deploying services dynamically, and
do not consider key issues addresses in our work including measuring quality of service
ecosystem as whole, applying stabilization actions with service migration and replication,
and deploying services even on mobile devices.

3. SERVICE-BASED MOBILE COMPUTING

Mobile computing with subscription to services is emerging, however, the consen-
sus on its underlying architecture and computing model is not yet reached. Hence, we
propose a model for self-stabilizing SME. It is a computing environment where services
and mobile applications are continuously operated, monitored, and managed to maintain
normal states in autonomous manner.

SME consists of several key elements as shown in Fig. 1; Service, Station Node,
Mobile Node, Mobile Application, SME manager, and SME repository.

S1
2

S2
1

S2
2

S9
2

SNode1

S1
1

S2
4

S6
1

S9
1

S2
3

SNode2

SNode3

SME
Repository

SME
Manager

MNode1

App2

App1

MNode2

App3

S2
5

SME
Agent

SME
Agent

SME
Agent

SME
Agent

SME
Agent

S6
2

Fig. 1. Key elements of SME.

Service is a reusable unit that provides cohesive functionality to service consumers.
We distinguish types of services from instances of a service type. This is because a num-

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1174

ber of service instances can be created from one type of service, and deployed on possi-
ble different server nodes. Note that SME is not intended to address SaaS, PaaS, and IaaS
types of services. Dynamic migration of such services is not feasible due to their func-
tional granularity; hence, SME is to provide dynamic migration and replication of CaaS
type of services and other relative small-grained cohesive services. Let Ti be a type of a
service, from which a number of service instances can be created. And, let Si

p
 be a ser-

vice instance of the service type, Ti. That is, for a service type Ti, its service instances are
Si

1, Si
2, Si

3, …, Si
n
.

A node indicates a computer where services and applications are deployed. We con-
sider two types of nodes; Station Node for conventional servers, and Mobile Node for a
mobile device deploying services as well as applications. SNodei denotes a station node,
and MNodei denotes a mobile device which deploys mobile applications and services.

Mobile Applications are deployed on MNodej, and they subscribe services. Appi de-
notes a mobile application.

One of the key features of SME is the capability of self-stabilizing its ecosystem
[14]. SME Manager plays the role of coordinating all the activities in SME by initiating
the actions of monitoring the overall QoS, making a quality remedy plan, and executing
the plan in autonomous way.

SME Agent is a software agent which monitors applications, services, and service
invocations in background. And, the agent communicates with SME manager for trans-
mitting QoS data and receiving dynamic remedy requests. Hence, background-running
SME agents still have to be responsive by getting sufficient attention of processors.

Deploying SME agent on station nodes such as Windows-based node is relatively
trivial. This is the because that operating systems such as Windows, Mac OS, and Linux,
provide efficient multi-tasking and scheduling schemes, partly due to their underlying
resource-rich hardware platforms. However, implementing SME agents on mobile de-
vices reveals technical difficulties, due to the limited resources. Moreover, the multi-
tasking capability and efficiency of mobile platforms are not as much efficient as operat-
ing systems for desktop computer systems. For instance, SME agents are implemented as
the unit of ‘service’ in Android, where Android assigns higher priorities for objects of
‘activity’ type and lower priorities for objects of ‘service’ type. As the result, the SME
agent on Android platform could suffer from effective communications with the SME
manager in case of resource constraints. Implementing the SME agent as an ‘activity’
object in Android also reveals problems of high resource drains and being put in ‘sleep’
mode. In our implementation, we utilized Android Interface Definition Language (AIDL)
and Bound Service to design efficient interactions between the SME agent and SME ser-
vice components. Bound Service is utilized for binding SME service components to the
agent. As the result, the background-running agent becomes efficiently communicative.
The deployment of the agent is done manually by users like typical applications. How-
ever, users can set various parameters such as users’ preference and device-specific con-
straints through the user interface of the agent. Since the SME agent is designed to inter-
act with running applications and services rather than end users, it has a simple user in-
terface for setting the parameters.

SME manager maintains SME repository which stores configuration information of
various SME elements. After each application of autonomous management activity, the
repository is updated with the new configuration.

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1175

4. THE PROCESS AND INSTRUCTIONS

In this section, we define a process to manage stability of services in SME, and pre-
sent work instructions for the steps in the process. To support self-stabilization feature
and dynamism, our proposed process consists of five steps as shown in Fig. 2.

Measure
Overall QoS of SME

1

Determine Necessity
of Remedy Action

2

Plan
Remedy Action

3

Run
Remedy Plan

4

Change
Configuration of SME

5

Problems?

Yes

No

Fig. 2. Process for managing stability.

The proposed process can be applied in two modes; continuous and discrete modes.
With continuous mode, SME agents run in background on the nodes, monitor the ser-
vices invocation, and send quality-related measures to SME. The benefit of continuous
model is to maintain the stability in timely manner; however it could result in an exces-
sive overhead on the ecosystem. With discrete model, SME manager and agents run the
five-step process at a specified interval such as every 30 minutes or every hour. This
mode yields less overhead on the ecosystem; however the quality degradation problem
may not be remedied in timely manner.

4.1 Step 1 for Measuring Overall QoS of SME

In order to maintain consistent level of quality, it is desired to define a number of

quality attributes and its metrics. To take needed actions for self-stabilization, we need to
measure the overall quality of SME. We consider four levels to measuring quality;

 QoS of Mobile Application in Invoking Services
 QoS of Service Instance
 QoS of Service Type
 QoS of the entire SME

There have been used several quality models such as ISO/IEC 9126 [15] and Web
Service Quality Model (WSQM) [16]. Those models include quality attributes such as
response time, throughput, and availability, with metrics. The proposed SME works with
all these quality attributes. To consider various quality attributes in our quality model, we
generalize the quality model, not only focusing on a specific quality attribute.

Since the main focus of this paper is not on presenting the quality model of SME

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1176

but on presenting the overall process of self-stabilization with practical mechanisms, we
show how SME incorporates with a generic quality model by using an instance of the
generic quality model, which is about efficiency in terms of response time. Additional
quality attributes can be accommodated in the similar way.

4.1.1 QoS of mobile application

We first consider the QoS of a mobile application, Appi, in invoking service instance
of a service type, Sj

k. The QoS for this invocation, QMobileApp(Appi, Sj
k), can be differently

measured, depending on a quality attribute. For example, when you consider efficiency
in terms of response time (i.e. RT), QMobileApp(Appi, Sj

k) can be measured as:

max

max

if (,) , 0

(,) (,)
else 1

k
MobileApp i j

k k
MobileApp i j MobileApp i j

RT App S RT

Q App S RT App S

RT

 (1)

where RTMobileApp(Appi, Sj
k) is the response time when Appi invokes Sj

k, and RTmax is the
maximum possible value of response time for any service invocations and is derived
from a history log of service invocations.

If the measured response time exceeds RTmax, then the efficiency is set to zero rather
than a negative number. The value range of QFResponseTime is 0…1, and the higher value of
it denotes the faster response for the service invocation from the mobile app.

When you consider other quality attributes, you can utilize quality metrics intro-
duced in ISO/IEC 9126 [15] and WSQM [16] in a similar way.

4.1.2 QoS of service instance

Now, we compute the QoS of a service instance QServiceInstance(Sj
k), which is the av-

erage value of the QoS for all invocations on the service instance Sj
k during a time period

for the cycle of running the process for stabilization. It is measured as;

n

 S,APPQ
SQ

n

1i

k
jiMobileApp

k
jtanceServiceIns

 (2)

where n is the total number of invocations made on the service instance, Sj
k, from appli-

cations, and APP(i) denotes the application which initiated the ith invocation on the ser-
vice instance.

The value of QServiceInstance() represents how degree of the QoS is guaranteed from
the service instance during the time period. If its value is too low, the service instance
becomes a potential target for service migration or replication.

4.1.3 QoS of service type

By using the QoS measures on service instances, we compute the QoS of each ser-

vice type, QServiceType(Sj). It is an average QoS of the service instances of the same service

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1177

type, and computed as;

1

()

() .

n
k

ServiceInstance j
k

ServiceType j

Q S

Q S
n

 (3)

where n is the total number of service instances for a service type.

The value of QServiceType() represents how degree of the QoS is guaranteed from the
service type during the time period. If its value is too low, the service type becomes a
potential target from which more service instances can be generated and deployed.

4.1.4 QoS of the entire SME

Now, we can compute the overall QoS of the entire SME by using QoS of all service

types, QSME, and it is measured as;

1

()

,

n

ServiceType j
j

SME

Q S

Q
n

 (4)

where n is the total number of service types in the ecosystem. The value of QSME repre-
sents how degree of the QoS is guaranteed on the service-based mobile ecosystem during
the time period. That is, it is the indicator of efficiency for the entire ecosystem.

4.2 Step 2 for Determining Necessity of Remedy Action

To manage quality, it is common to define threshold values for quality attributes. If

the value of a quality attributes drops below its threshold value, actions to remedy the
quality problems are taken place. For SME, we define two threshold functions;

 Thresholdhigh(x) for the high-bound threshold value of x, which can be the ecosystem as

a whole, i.e. SME, or a service type, Si.
 Thresholdlow(x) for the low-bound threshold value of x.

To be practical, we assume that different service types may have different sets of

two threshold values, Thresholdhigh(Si) and Thresholdlow(Sj). With the threshold functions,
we define three possible states for a given element x;

 Normal state: The efficiency of x is in normal range, and hence no remedying action is

required.
 Poor state: The efficiency of x drops below the Thresholdlow(), and hence an action to

remedy the low efficiency is expected.
 Exceeding state: The efficiency of x exceeds the Thresholdhigh(), which probably in-

dicates a waste of resources in delivering excessively high efficiency. An action to re-
lease some of the resource by removing some services instances.

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1178

Poor Normal Exceeding

Thresholdlow(x)

• QoS is poor.
• Needs remedy actions, s.a.
migration and replication

• Waste of resources
• Consider ROI.
• Reduce
resource consumption.

Thresholdhigh(x)

Fig. 8. Three states of efficiency for SME elements.

It is essential to determine the right Thresholdhigh(Si) and Thresholdhigh(Sj). Since
different services have different characteristics and are managed with different policies,
it is challenging to determine threshold values of different services in a uniform way, and
even more challenging to autonomously estimate these values. Therefore, service admin-
istrator’s intervention is required to set moderate threshold values for the service. As
shown in Fig. 2, all the monitored QoS data is accumulated in the repository. From this
accumulated QoS data, these values can be estimated without human administrator’s
intervention.

If there is no historical data, initial Thresholdhigh(Si) and Thresholdlow(Sj) are set by
human administrators with their own knowledge. And, Thresholdhigh(Si) and Threshold-
low(Sj) are updated whenever any fault is detected. That is, whenever a poor state occurs,
the value of Thresholdlow(Sj) is updated by computing the following formula:

1

() (() /
m

low ServiceType ServiceType j
j

Threshold Q Q S m

where m is the total number of fault occurrences, i.e. poor state, and QServiceType(Sj) is the
current service-level quality value when the fault occurs. Thresholdlow(QSME) is calculated
as the same way as Thresholdlow(QSME).

Thresholdhigh(Sj) is also updated whenever an exceeding occurs. The updating for-
mula is the similar to one of Thresholdlow(). The only difference is that Thresholdhigh(Sj)
concerns the cases of exceeding state.

The SME manager determines the necessity for taking remedy actions at two levels;
Quality of Ecosystem (QoEco) level and Quality of Service (QoS) level.

For QoEco-level determination, the efficiency of SME is compared to its threshold
values, and the necessity of taking remedy actions is determined with following criteria;

 If QSME < Thresholdlow(SME), i.e. being in Poor state, an action to remedy the low effi-

ciency of SME is to be planned and taken. This action is named to EnhanceQoS(SME).
 If QSME > Thresholdhigh(SME), i.e. being in Exceeding state, an action to release re-

sources used by unnecessary service instances is to be planned and taken if the re-
source consumption presents any significant issue such as excessive cost. This action is
named to ReclaimResource(SME).

 If QSME lies between two threshold values, i.e. being in Normal state, no action to man-
age services is expected.

For QoS level determination, efficiencies of service types are compared to their threshold
values, the necessity of taking remedy actions is determined with following criteria;

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1179

 If QServiceType(Si) < Thresholdlow(Si), i.e. being in Poor state, an action to remedy the low
efficiency of Si is to be planned and taken. This action is named to EnhanceQoS(Si).

 If QServiceType(Si) > Thresholdhigh(Si), i.e. being in Exceeding state, an action to release
resources used by unnecessary service instances is to be planned and taken if the re-
source consumption presents any significant issue such as excessive cost. This action is
named to ReclaimResource(Si).

 If QServiceType(Si) lies between two threshold values, i.e. being in Normal state, no action
to manage services is expected.

Hence, the result of applying step 2 can be any combination of the four types of ser-

vice management actions; EnhanceQoS(SME), ReclaimResource(SME), EnhanceQoS(Si),
and ReclaimResource(Si). Note that the resulting combination can be null.

4.3 Step 3 for Planning Remedy Action

This step is to devise plans for the management actions identified in step 2. The

EnhanceQoS(SME) action is used for QoEco-level management, and its algorithm is
given below;

1. EnhanceQoS(SME) {
2. Identify faulty service types, setOfFaultyServiceTypes.
3. For each service type Si in the set,
4. perform EnhanceQoSServiceType(Si);
5. }

In line #2, a faulty service type is the one in poor state. In line #3, the action to en-
hance efficiency is applied to each service in the set of faulty service types, i.e. setOf-
FaultyServiceTypes. In line #4, an invocation to enhance efficiency at QoS-level is made,
of which algorithm is given below.

6. EnhanceQoSServiceType(Si) {
7. Select faulty instances of Si, setOfFaultyServiceInstances.
8. For each instance Si

j of the service type Si
9. Determine migration or replication.
10. Determine a target node, NodeID.
11. Invoke migrate() or replicate() with the parameters.
12. }

At line #7, a faulty service instance is the one determined to be in poor state by us-
ing the threshold value, Thresholdlow(Si). This is because all instances of a same service
type should be managed with the same threshold values. At line #8, either a migration or
a replication is performed for each instance of the service type Si. Line #9 is to determine
the type of action by using decision criteria. Table 1 shows some of the criteria. Identi-
fying a complete list of the criteria can be a future research task.

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1180

Table 1. Criteria for determining migration and replication.
Situations Migration Replication

EffServiceType(Si) is nearly zero.
High Standard Deviation among Instances
Low Standard Deviation among Instances
If Si

j is providing its functionalities to other
customers

If Si
j is shared.

If Si
j is used exclusively for a client.

At line #9, the target node for migration or replication is determined by considering
three criteria; whether an appropriate package is prepared in advance, whether node can
ensure high quality, and how close the target node is to a problematic node.

First, a type of candidate nodes is determined, which is either station nodes or mo-
bile nodes. To migrate or replicate a service instance, service providers need to provide
appropriate forms of service packages for different platforms in advance. By considering
the kinds of service packages offered by service providers, SME can choose the right
type of candidate nodes. That is, SME checks available package forms of the services,
for example, ‘apk’ file for Android platform, and determine the type of candidates.

Second, SME checks the current qualities of the nodes belonging to the type de-
cided in the previous step. If a node holds sufficient amount of available resources in
terms of CPU, memory, network, and so on, this is a good target node for running the
services.

Finally, among the nodes having enough resources, SME decides the nearest node
to the node having a problematic service instance. To calculate this, we adopt shortest
path algorithms such as Dijkstra’s algorithm [17].

The remedy plan generated by running the algorithm becomes a sequence of action
scripts which are in two forms;

 Migrate(Si

j, Node ID) which migrates the service instance to a target node designated
by Node ID.

 Replicate(Si, Node ID) which creates a new instance of the service type Si and dynami-
cally deploy the instance on a target node designated by Node ID.

4.4 Step 4 for Running Remedy Plan

In this step, SME manager carries out the remedy actions specified in a remedy plan.
SME manager firstly identifies SME agents which deployed on the source node and the
destination node. Then, SME manager prescribes to the SME agents what to do. After
that, the SME agents operate their tasks Fig. 4, for example, depicts two cases for service
migration and replication in a remedy plan.

As shown in Fig. 4, service migration and replication are needed to remedy quality
problems in SME. For service migration, a service instance Si

j is to migrate from SNode1
to SNode2, and another service instance Sf

h is to replicate from SNode3 to MNode1 for
service replication. Therefore, SME manager firstly identifies those source nodes and
destination nodes for service migration and replication, and notifies the information to

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1181

SME
Repository

SME
Manager

MNode1

App1

SME
Agent

Si
j

SNode1

Si
j

SME
Agent

Sf
h+1

Sf
h+1

Service Migration

Service Replication

SNode2

Si
j

SME
Agent

SNode3

SME
Agent

Sf
h

Fig. 4. Service migration and replication in a remedy plan.

the relevant SME agents respectively. Then, each SME agent prepares their task to as-
signed remedy action. For example, SME agent on SNode1 retrieves binary packages of
the service instance Si

j, and then the SME agent on the source node asks another SME
agent on the destination node to operate service migration for the service instance Si

j.
After successfully migration the service instance Si

j, the SME agent on the source node
un-deploys the target service instance from the source node and removes the binary
package file of the instance, then the SME agent finally notifies configuration changes to
the SME manager. On the other hand, for service replication, SME agent operates same
tasks except un-deploying and removing the target service instance from the source node.
In case of service replication, the target service instance still remains on the source node,
and hence the overall availability is also increased because two service instances operate
same functionality to their consumers at the same time.

4.5 Step 5 for Changing SME Configuration

This step is to reflect the changes, from which applying the remedy actions, into the

overall configuration of SME. By applying the self-stabilizing mechanism presented in
our submission, quality of service instances which is a target of replication or migration
is decreased. Therefore, individual customers who are subscribing the service have the
penalty as slow response time. This is because the self-stabilizing mechanism also occu-
pies certain amount of resources to be executed, and it has a negative impact on running
the target service. Especially, in case of service migration, all of the processing sessions
are stopped during the service migration, and those sessions are resumed after finishing
the service migration process. It gives some delay to the customers, but the time duration
for the service migration is relatively short. However, applying the self-stabilizing
mechanism consequentially improves overall quality of the service type and SME.

5. DYNAMIC SERVICE DEPLOYMENT

In this section, we present practical techniques to dynamically deploy services on
mobile nodes as well as station nodes. To enable the proposed remedy actions as service
migration and service replication, SME needs to provide techniques for transmitting a
service from the source node to the destination node and for deploying the service on the

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1182

destination node at runtime. For transmitting a service, both station and mobile nodes
take the TCP/IP protocol. However, for dynamic service deployment, station and mobile
nodes should take different ways to deploy the service at runtime because both nodes
have different operating environments. Therefore, we describe the methods to dynami-
cally deploy services on station nodes and mobile nodes respectively.

5.1 Dynamic Service Deployment on Station Nodes

5.1.1 Design

The cost for transmitting a service from a source node to a destination node is rela-
tively large, and it can cause additional network overhead. Therefore, a method to reduce
the transmission cost is required for higher efficiency. To enable this, we adopt an open-
closed principle [18] to minimize service transmission cost. And we also utilize class
loading mechanism to deploy a service at runtime on J2EE environment. Open-close
principle is to close the common part and to open variable part for customization. Ser-
vices in SME are transmittable with a support of stabilization methods, and SME agents
deploy the services dynamically. Hence, we define five key elements to enable service
dynamic deployment as shown in Fig. 5.

«component»

Transmittable Service

«WSDL»

Service Interface

Service Body

Realize

«component»

SME Agent

«abstract»

Service Interface

Adaptor

Communication
Stubs

Transmittable
Services

Service
Package

Fig. 5. Key elements for enabling service dynamic deployment.

Since SME agents and services interact with each other to perform dynamic service
deployment, the elements are distributed into two participants. Abstract service interface,
adaptor, and communication stubs are located in the SME agent and service interface
and service body are located in the transmittable service. The elements in SME agent are
not changed for the different types of services, i.e. common elements. They deploy vari-
ous services on the station nodes by using class loading mechanism. On the other hand,
the elements in the transmittable services are variable elements. That is, implementations
of the elements depend on the types of services. The transmittable service is imple-
mented with the same way of implementing conventional services, i.e. transparently.

Service interface is an interface specification of a transmitted service in WSDL [19],
and it describes endpoint address, binding information, operations, messages, and types
of parameters for the service. Service body is a set of implementations to realize the ser-
vice functionality. Service invocations from service consumers are operated within the
service body. Since services are provided as a black-box form, such as binary Java class
or WAR package, and common elements of the services are not needed to be transmitted,

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1183

SME transmits only the variable elements to reduce the transmitting cost.
Abstract service interface is an interface exposed to the service consumers, which

enables the service consumers to invoke dynamically deployed services. The interface is
dynamically bound to the transmitted service interface. Adaptor is an intermediate object
which inherits the abstract service interface and binds operations to an actual instance of
a service body. To create an instance from the service body, the adaptor utilizes Class
Loader APIs which are also available in Java and C++. The adaptor invokes the commu-
nication stubs to provide networking capability to the service. Communication stub pro-
vides networking capability for services deployed on the same station node.

5.1.2 Implementation

We now present our implementation of dynamic service deployment on station node.
SME agent receives a request for deploying a service from SME manager, and the SME
agent performs the actual deployment.

Implementation of the manager and the SME agent largely depends on the runtime
environment. Some application servers such as J2EE provide facilities for deploying ser-
vices and components. However, there is no standard on the methods and its interfaces.
Hence, we decide to avoid using these proprietary mechanisms. Rather, we utilize a class
loading mechanism in Java since it is available on any Java-compliant environment.

The SME agent defines an operation, transmitSVC(File svcPackage), that receives a
package file which consists of a service interface and body of the service as shown in Fig.
5. The input parameter of the operation is a basic java object as a String object. However,
actual data type which the SME agent receives is a stream data type, because the com-
munication between two SME agents uses a socket protocol. Therefore, the SME agent
converts the received data into a class file as shown in Table 2.

Table 2. Implementation for converting data into class file.
1
2
3
4
5

6
7
8
9
10
11
12

public void setClassFile(TransmittedSVC svc){
 ...
 try {
 buffer = svc.BODY.read(); // Storing binary file into a buffer
 outFile = new DataOutputStream(new FileOutputStream("FILE
Information for storing Class file")); // Making a Class file for dynamic
deployment
 for (int i = 0; i < buffer.length; i++){
 outFile.write(buffer);
 }
 } catch (Exception e) {
 // Exception handling
 }
}

At line #4, the SME agent reads a service body and stores it to a buffer when the
SME agent received a service. The SME agent set a name of the class file in which the

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1184

service is stored, at line #5. The name of class file is retrieved from the service interface.
If the name of class file and the service name are different, a binding problem occurs.

After converting the received data into a class file, the SME agent deploys the ser-
vice which is received on the station node by using the class file. Table 3 shows a code
segment of dynamic service deployment.

Table 3. Implementation for initializing and running services.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

private boolean deploySVCFromClass(){
 Object result = null;
 try{
 // Creating a Class loader object
 CustomClassLoader loader = new CustomClassLoader();
 // Loading a service class
 Class<?> clazz = loader.loadClass(svc.NAME);
 // Instantiate a service instance
 Object instance = clazz.newInstance();
 // Setting operations from service interface
 Class[] svcOP = new Class[] {svc.INTERFACE};
 // Deploying service
 clazz.deploy(instance, svcOP);
 Return TRUE;
 }catch(Exception e){
 // if service deployment is fail, then handle the exception
 Return false;
 }
}

The SME agent creates an instance of a class loader at line #5. By using the loader
instance, the SME agent loads the service class file and creates an instance of the service
at lines #7 and #9. The SME agent sets the service’s operations retrieving from the ser-
vice instance at line #11. Finally, the SME agent binds the service instance and opera-
tions, and deploys the service on the node at line #13. By using the SME agent, a service
can be dynamically deployed on new node without any human administrator’s work.

5.2 Dynamic Service Deployment on Mobile Nodes

5.2.1 Design

One of the noble features of SME is the ability to deploy services on mobile devices
at runtime. Service-based mobile applications require network connection. Mobile de-
vices tend to change an access point and be disconnected frequently [20], due to the mo-
bility. And, it spends more time for responding the result from service due to the narrow
network bandwidth. However, there are situations where services deployed on mobile
devices can yield a better performance than conventional deployment of services on sta-
tion nodes. For example, if a mobile node deploys a service and a number of service

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1185

consumers are placed in the same LAN area, invoking the service on the mobile node
provides better performance than invoking the service deployed on the remote node.

Deploying service needs more resource than running application because the ser-
vices are used by other devices through the network [21].

Mobile nodes access to the Internet by using low speed connection, thus, reducing
the load of service transmission is more important comparing to the station nodes.
Therefore, we adapt open-closed principle to the mobile nodes just like dynamic service
deployment on station nodes. Fig. 6 depicts a service structure for dynamic deployment
on mobile devices.

Service Body

Service
Interface

Service Loader

Variable Element

Common Element

Realize

Fig. 6. Common elements and variable elements of services on mobile nodes.

Service interface contains configuration information of the transmitted service, such
as package name, service name, operations, messages, and parameter types. This infor-
mation is used to load the right service on its memory. Service body is a set of imple-
mentations to realize functionality. Thus, service invocations from the service consumer
are operated in the Service body. Service loader is the mechanism for dynamically de-
ploying the service from the Service body. With the Service loader, new instance of the
service is constructed and loaded on the memory.

For example, in Android platform, each application is compiled and packaged in a
single binary “apk” file that includes all of implementation classes in .dex files, resources,
assets, and manifest file. Therefore, we come up with the idea to transmit services by
using binary form, specifically “apk” file. The “apk” file contains all functions of the
service, which is invoked by service consumers. Security issue is also considered here.
That is, transmission of binary file from station node to mobile node will be implemented
along with cryptography algorithms such as RSA and DES. After transmitting a service,
the SME agent on the receiver side automatically deploy the service on the mobile de-
vices by using the Service loader. In other words, the binary file will be automatically
installed as an application on mobile nodes.

5.2.2 Implementation

We present our implementation of dynamic service deployment on mobile node.

SME agent receives an “apk” file of the deployed service from another SME agent and
performs the actual deployment. In our implementation, we utilize the class loading
mechanism Android since it is available on any Android-compliant environment.

After SME agent receives the “apk” file, it saves the file to the physical storage such
as SD card and installs it. Table 4 shows a code segment of installing apk file.

Firstly, we get the location of apk file on SD card at line #2. From line #4 to line #6,
we call an activity with suitable intent to install that apk file at mobile node.

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1186

Table 4. Implementation for Installing APK file.
1
2

3
4
5

6

// Get location of apk file
String fileName = Environment.getExternalStorageDirectory() + "/" +
message.filename;
// Start specific activity for install apk
Intent intent1 = new Intent(Intent.ACTION_VIEW);
intent1.setDataAndType(Uri.fromFile(new File(fileName)),
"application/vnd.android.package-archive");
startActivity(intent1);

Table 5. Implementation for Loading a Class in APK file.
1

2
3

4
5
6
7
8
9
10

Public DynamicLoader(Context context, String packageName, String
classPath) {
 // Load package
 dalvik.system.PathClassLoader myClassLoader = new
 dalvik.system.PathClassLoader(getSourceDir(context, packageName),
 ClassLoader.getSystemClassLoader());
 try {
 // Load class
 handler = Class.forName(classPath, true, myClassLoader);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
}

Table 5 shows a code segment for loading a class in “apk” file.
At line #3, the method PathClassLoader of class devik.system gets the location of

apk file in mobile device after installation. After getting the package path, we can now
load the class object by calling method Class.forName at line #6.

Table 6 shows an implementation for creating an instance of class.

Table 6. Implementation for creating an instance.
1
2
3
4
5
6
7
8
9

10
11

public Object newInstance(Object... args) {
 try {
 if (args != null) {
 // Make instance using constructor
 Constructor<?>[] constructors = handler.getDeclaredConstructors();
 for (Constructor<?> constructor : constructors) {
 if (args.length =
 constructor.getParameterTypes().length) {
 Constructor<?> con =
 handler.getDeclaredConstructor(constructor.getParameterTypes());
 return con.newInstance(args);
 }

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1187

12
13
14
15
16
17

 else
 // Make instance for default
 return handler.newInstance();
 }
 return null;
 }

The new instance of class could be created by one of two ways, with constructor has
parameters or constructor has no parameter. From line #8 to line #10, we check whether
constructor has parameters or not. If yes, we use function getParameterTypes at line #9
to get the types of parameters and create a new instance at line #10. Otherwise, we call
constructor with no parameter at line #14.

Table 7 shows an implementation for invoke functions of class.

Table 7. Implementation for invoking functions.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

public Object invoke(Object aClass, String methodName, Object... args){
 try {
 Class<?>[] classes = null;
 // Get parameters all methods
 for(Method method:handler.getDeclaredMethods()) {
 if(method.getName().equals(methodName))
 classes = method.getParameterTypes();
 }
 Method m = handler.getDeclaredMethod(methodName, classes);
 if(args != null)
 // Returns the result of dynamically invoking this method.
 return m.invoke(aClass, args);
 else
 return m.invoke(aClass);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
}

At line #5, we use a loop to find all of methods of the class. Afterwards, getParam-
eterTypes function at line #7 is for getting the types of parameters in each method. At
lines #12 and #14, invoke method invokes methods by one in two ways, methods which
has parameters and which has no parameter.

6. EXPERIMENTS AND ASSESSMENT

In this section, we present experiments with the proposed framework. The purpose
of the experiments is to show that the remedy process of SME can successfully handle

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1188

faulty services and maintain a consistent level of service qualities.

6.1 Experiment Setting and Scenarios

We implemented two services; S1 and S2. The service S1 provides network intensive
functionality, whereas the service S2 provides computation intensive functionality. We
have a server node which deploys the SME Manager and SME repository. In addition,
we set up three station nodes with Windows platform and two mobile nodes with An-
droid platform, as shown in Fig. 7. The SME agent is deployed on each node. We also
implemented four Android applications which invoke the two services. The initial setup
for experiments is to deploy S1

1
 on SNode1 and S2

1 on SNode2. The SME Manager is de-
ployed on a server node along with SME Repository. The repository contains implemen-
tations of the two services, of which package sizes are 157 kb and 231 kb respectively.
Both services have a response time of 1 second, i.e. RTmax is set to 1. The threshold val-
ues for the services are set to 0.4 for ThresholdLow and 0.9 for ThresholdHigh. Mobile ap-
plications are deployed on Google Nexus One devices, which have a 1 GHz processor
and 512 MB memory, and run Android 2.2.

6.2 Occurrences of Quality Degradation

By using Poisson distribution [22], we generate service invocations for the two ser-

vices, which result in faulty situations as shown in Fig. 8.

 Fig. 7. Initial configuration of experimental environment.

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1189

176 177 178 179 180 …

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

… 52 53 54 55 …

ThresholdLow

Quality

Time (seconds)

(257, 0.49)

(316, 0.48)

(392, 0.9)

ThresholdHigh

[117, 0.28]

(121, 0.48)(153, 0.48)

[125, 0.4]

[103, 0.48]

[241, 0.5]

[117, 0.8]
S1

1

SME

S2
1

S1
1

SME

QServiceInstance(S2
1)QServiceInstance(S1

1) QSME

() Number of Service Invocations and Average Response Time for S1
1

[] Number of Service Invocations and Average Response Time for S2
1

S2
1

[192, 0.22] [219, 0.22] [176, 0.24] [286, 0.22]

[153, 0.32]

(204, 0.4) (221, 0.39)

(285, 0.42) (176, 0.44) (114, 0.42)

Fig. 8. Occurrences of faulty situations of S1

1 and S2
1.

The x-axis indicates the elapsed time, and the y-axis indicates the quality of ele-
ments measured in efficiency. As shown in the figure, we observed two faults occurred
mainly due to the congestions caused by extremely a high number of service invocations
made in a short period of time. One fault occurred near the time period of 55 seconds
where the quality of S1

1
 was dropped below Thresholdlow and consequently the overall

quality, QSME, was dropped.
During the time interval between 176 and 179 seconds, the quality measures of

three elements showed a curve of degradation, but they are still above the thresholdlow.
At the moment of reaching 180 seconds, a fault occurred. After that moment, tasks of
devising a remedy plan and performing a service replication occurred, as described in
section 6.4.

6.3 Applying Service Migration and the Result

The proposed process for remedying the fault on S1

1 recommends Service Migration
using its algorithm, and the remedying process is shown in Fig. 9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

53 54 55 56 57 58 59 60

ThresholdHigh

ThresholdLow

T1 = 1.8 s T2 = 1.5 s

Quality

Time (seconds)

Occurrence of
Quality Problem

Migrating
Service

Performing
Migrated Service

(0.9)

(0.98)

(0.99)

(0.32)
QServiceInstance(S2

1)

QServiceInstance(S1
1)

QSME

()
Average Response Time
For Service Instance S1

1

S1
1

SME

S2
1

Fig. 9. Effects of applying service migration.

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1190

The QServiceInstance(S1
1
) at 55 second is 0.1, which indicates the average response time

for S1
1
 is 0.9 seconds according to the the metrics given in sections 4.1.1 and 4.1.2. By

referring the remedy planning criteria, the SME manager determines Migration() as the
remedy action. For running the selected remedy action, SME manager compares a cost to
transmit the problematic service to the candidate nodes to select the most optimal target
node. With the experiment setting and the size of service package for S1

1
, the service

transmitting cost for SNode2 and SNode3 is same as 0.15ms. However, SNode3 has better
amount of allocable resources than SNode2, because of existence of a deployed service.
Thus, SNode3 is selected for the target node, and SME manager performs a function, Mi-
gration(S1

1
, SNode3), to enhance the QServiceInstance(S1

1
). By performing the service migra-

tion, the QServiceInstance(S1
1
) is increased to 0.68, and consequently the QSME is also increased

to 0.71.
In the Fig. 9, T1 is a preparation time of performing the steps 2 and 3 in the man-

agement process, and T2 is an execution time of performing service migration. In this
case, SME manager spent 1.8 seconds to make plan for remedy actions, and also spent
1.5 seconds to select a target node and migrate the service instance S1

1
. Hence, the cost for

running the service migration is the sum of T1 and T2.
As shown in the figure, there is a proportional relationship between QSME and the

remedy process. That is, QSME is largely affected by QServiceInstance and remedy actions tak-
en on service instances. A lower QServiceInstance will lower QServiceType and eventually QSME.
An effective remedy action taken on a faulty service instance will raise QServiceType and
eventually QSME. Hence, a lower QServiceInstance decreases QSME, and the remedy process
applied on service instances increases QSME.

6.4 Applying Service Replication and the Result

In this section, we describe a remedy action of service replication applied to a ser-

vice instance, S2
1
, which reveals the quality degradation problem as shown in the right

side of the Fig. 8. By applying the remedy process, the SME manager diagnosed the
problem and recommends a service replication for the case. Fig. 10 depicts effects of
applying the remedy action.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

178 179 180 181 182 183

ThresholdLow

Quality

Time (seconds)

ThresholdHigh

T1 = 0.5 s T2 = 1.5 s

Occurrence of
Quality Problem

(0.5)

(0.48)

(0.99)

(0.26) (0.28)

App1
App2
App3

App4

App4
Replicating
Service

Performing
Replicated Service

QMobileApp(App2, S2
1)

QMobileApp(App1, S1
1)

QMobileApp(App3, S1
1)

QMobileApp(App4, S2
1)

QMobileApp(App4, S2
2)x

()
Average Response Time
For instances of S2

Fig. 10. Effects of applying service replication.

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1191

In the figure, S2
1
 was subscribed by App2 and App4, but service invocations from

App4 near the time period of 180 second result in a low quality which is below Thresh-
oldLow. And, Replication() is selected as the remedy method, the SME manager performs
Replication(S2

1
, SNode3) to enhance the QApp(App4, S2

1
). As the result, the quality of App4

to invoke the service type S2 is increased, because App4 directly can invoke S2
2
 which is

now available on a local mobile node.
To determine a stabilizing scheme to be performed, SME manager firstly analyzes a

level of quality where a quality problem occurs. SME considers two types of quality lev-
els as QoS-level and QoEco-level described in the section 4.2. For instances, the first
faulty situation in the experiment shows a problem at the QoEco-level, whereas the other
shows a problem at the QoS-level. Based on the level of quality, SME manager makes a
plan of remedy actions through the algorithm in the section 4.3.

In summary, managing service-based applications with SME can ensure the consis-
tent level of quality in an autonomous manner. However, there is side effect in running
application on SME, i.e. performance penalty since SME performs pre-defined manage-
ment tasks. However, as shown in Figs. 9 and 10, this amount of time required for self-
stabilizing management is not that significant, compared to quality gain such as faster
response time after service migration or service replication.

6.5 Comparison between Different Stabilizing Schemes

In this section, we present a comparison between two stabilizing schemes to show

the effectiveness of performing the selected scheme then performing the other scheme.
To enable this, we modify the step 3 of the stabilizing process to select the other stabi-
lizing scheme within the same condition of faulty situation. Due to the modified step 3,
we can compare the performance results between Service Migration and Service Replica-
tion for the same situation as shown in Table 8.

Table 8. Comparison results for two situations.
Average Amount of Quality Enhancement

Faulty Situations Quality Levels
Service Migration Service Replication

QoS-level 0.5 0.15
Situation #1

QoEco-level 0.2 0.09
QoS-level 0.05 0.31

Situation #2
QoEco-level 0.025 0.23

The situation #1 is the first example of the experiment in the previous section. The
situation is that QServiceInstance(S1

1
) is lower than threshold value due to the lack of resources

of node itself. Therefore, performing both two types of stabilizing schemes shows the
considerable amount of quality enhancement for QoS-level and QoEco-level. However,
in case of service replication, the original service instance still provides lower level of
quality because of the actual problem is still remained. Due to the reason, performing
service replication at the situation #1 provides lower amount of quality enhancement,
though the replicated service instance provide an acceptable level of quality to its con-
sumers. In case of the situation #2, the problem is that MNode2 connected to SNode2

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1192

through the wireless network which has the high congestion. Therefore, only QMobi-

lApp(App4, S2
1
) is lower than threshold value. To solve the problem, SME manager repli-

cates the service instance S2
1
 from SNode2 to SNode1 which is located in the same network

with MNode2. In this case, a migrated service provides better quality to App4 running on
the MNode2. However, the service migration causes quality degradation for other mobile
applications.

In summary, both service migration and replication can enhance the quality of ser-
vices in the faulty situations. But, some situations including physical problems like node
failures and congestions of intermediate network can cause quality degradations. There-
fore, SME divides two levels of service quality into QoS and QoEco to be able to infer
possible causes of the faulty situations. Based on the divided quality levels, SME can
determine a stabilizing scheme to be performed.

7. CONCLUSION

SME is the future ecosystem where a number of services and mobile applications
interact with a dynamic nature. Hence, there is a demand for a self-stabilizing scheme.

In this paper, we presented a practical framework for deploying services dynami-
cally on both station nodes and mobile nodes. We presented a systematic process for
managing services with dynamic migration and replication. We also proposed a quality
model for SME and its elements, and the metrics in the quality model are quantitatively
used in detecting faults and dynamically managing services.

Dynamic service migration and replication are key techniques in realizing self-sta-
bilization. We presented design and implementation of dynamic service deployment on
both station nodes and mobile nodes. The methods were devised for J2EE and Android
environments; however they can be easily adapted to new middleware and mobile OS
platforms. By utilizing dynamic service deployment, an environment for service-based
mobile computing with high level of quality can be maintained.

REFERENCES

1. B. König-Ries and F. Jena, “Challenges in mobile application development,” Infor-
mation Technology, Vol. 52, 2009, pp. 69-71.

2. G. H. Forman and J. Zahorjan, “The challenges of mobile computing,” Computer,
Vol. 27, 1994, pp. 38-47.

3. A. Ennai and S. Bose, “MobileSOA: a service oriented web 2.0 framework for con-
text-aware, lightweight and flexible mobile applications,” in Proceedings of the 12th
Enterprise Distributed Object Computing Conference Workshop, 2008, pp. 348-382.

4. R. Tergujeff, J. Haajanen, J. Leppanen, and S. Toivonen, “Mobile SOA: service ori-
entation on lightweight mobile devices,” in Proceedings of IEEE International Con-
ference on Web Services, 2007, pp. 1224-1225.

5. Y. Natchetoi, V. Kaufman, and A. Shapiro, “Service-oriented architecture for mobile
applications,” in Proceedings of the 1st International Workshop on Software Archi-
tectures and Mobility, 2008, pp. 27-32.

6. F. Gillett, Future View: The New tech Ecosystems of Cloud, Cloud Services, and

FRAMEWORK FOR SERVICE-BASED MOBILE ECOSYSTEM

1193

Cloud Computing, Forrester Research, August, 2008.
7. Mobile agent Wiki: http://en.wikipedia.org/wiki/Mobile_agent.
8. L. Ismail and D. Hagimont, “A performance evaluation of the mobile agent Para-

digm,” ACM SIGPLAN Notices, Vol. 34, 1999, pp. 306-313.
9. D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,” Communica-

tions of the ACM, Vol. 42, 1999, pp. 88-89.
10. G. Chen, J. Lu, J. Huang, and Z. Wu, “SaaAS The mobile agent based service for

cloud computing in internet environment,” in Proceedings of the 6th International
Conference on Natural Computation, 2010, pp. 2935-2939.

11. R. Haas, P. Droz, and B. Stiller, “Autonomic service deployment in networks,” IBM
Systems Journal, Vol. 42, 2003, pp. 150-164.

12. K. Oikonomou and I. Stavrakakis, “Scalable service migration in autonomic network
environments,” IEEE Journal, Vol. 28, 2010, pp. 84-94.

13. N. Santos, P. Marques, and L. Silva, “Dynamic deployment of services on mobile
agents systems”, in Proceedings of the 2nd Workshop on Reflective and Adaptive
Middleware/Workshop on QoS-enabled Component-Oriented Programming, 2003,
pp. 130-134.

14. M. Salehie and L. Tahvildari, “Self-adaptive software: landscape and research chal-
lenges,” ACM Transactions on Autonomous and Adaptive Systems, Vol. 4, Article 14,
2009.

15. ISO/IEC, ISO-IEC 9126-1 Software Engineering – Product Quality – Part 1: Quality
Model, 2001.

16. OASIS, “Chapter 3: Service level management quality,” Web Service Quality Fac-
tors Version 1.0, 2011.

17. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 8th ed., The MIT Press, MA, 2009.

18. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, USA, 1994.

19. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Un-
raveling the web services web: an introduction to SOAP, WSDL, and UDDI,” Inter-
net Computing, Vol. 6, 2002, pp. 86-93.

20. S. Chakrabarti, E. Nordmark, and D. Cohen, “Enterprise mobility,” Technical Report
of Sun Microsystems, No. SMLI TR-2006-158, 2006.

21. A. I. Wasserman, “Software engineering issues for mobile application development,”
in Proceedings of the FSE/SDP Workshop on Future of Software Engineering Re-
search, 2010, pp. 397-400.

22. S. D. Poisson, Research on the Probability of Judgments in Criminal and Civil Mat-
ters, Bachelier Publishing, 1837.

Jae Yoo Lee is a Ph.D. candidate in the Department of Com-
puter Science at Soongsil University, Seoul, Korea. He received his
bachelor’s degree from Hongik University in 2007 and master de-
gree from Soongsil University in 2009. His research interests in-
clude cloud computing and QoS management.

JAE YOO LEE, HYUN JUNG LA AND SOO DONG KIM

1194

Hyun Jung La is a Lecturer/Research Professor in the De-
partment of Computer Science at Soongsil University, Seoul,
Korea. She received her master and Ph.D. degrees from Soongsil
University in 2005 and 2011 respectively. Her research interests
include software architecture, cloud computing, and advanced
mobile computing. Dr. La has been actively engaged and played a
key role of software architect in large-scaled projects for the past
years.

Soo Dong Kim is a Professor in the department of Computer
Science at Soongsil University, Seoul, Korea. He received his B.S.
degree in Computer Science from Northeast Missouri State
University in 1984, and his Master and Ph.D. degrees from the
University of Iowa, Iowa, USA in 1988 and 1991 respectively.
His research interests include software reuse, software architec-
ture, cloud computing, and smart services. He has been providing
consulting and invited lectures to IT industry and government
organizations.

