
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 143-158 (2017)
DOI: 10.6688/JISE.2017.33.1.9

143

ScaDiGraph: A MapReduce-Based Method
for Solving Graph Problems

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

Information and Communication Technology Research Center
Tehran, 1599616313 Iran

E-mail: {Barkhordari; Niamanesh}@ictrc.ac.ir

Graph data contain a large volume of information, which must be analysed. A

method is required that can quickly process the information in distributed and scalable
architectures. Single node methods are not suitable because they cannot process large
amounts of information on their processors and memories. Problems encountered in dis-
tributed environments must also be addressed. These include graph division problems,
algorithm division problems, exchange states among hardware nodes, and network traffic.
In this paper, a scalable and distributable MapReduce-based method, ScaDiGraph, is
proposed that makes hardware nodes independent. With this method, each hardware node
can process a subgraph without any information from the other nodes. ScaDiGraph con-
verts iterative graph problems, such as the All Pairs Shortest Path (APSP), pattern
matching, and loop detection, into non-iterative problems and makes them suitable for
the MapReduce architecture. In the present paper, ScaDiGraph is used to solve APSP,
loop detection, and pattern matching problems, and the results are compared with those
obtained with other MapReduce- and non-MapReduce-based methods. The results show
that when applying ScaDiGraph on graph data, which causes simultaneous algorithm
execution on each node, the execution time decreases in comparison with the prominent
existing methods.

Keywords: graph, big data, MapReduce, APSP, loop detection, pattern matching

1. INTRODUCTION

Today, because of the high rate of information generated, innovative methods are
necessary for information management. To process a large volume of information, scala-
ble and distributable methods are used. In these methods, a large problem is broken down
into smaller problems, and each problem is processed by a single node. Each node pro-
cesses information and generates output. Finally, a node collects the outputs and gener-
ates the results. One of the most popular methods in this area is MapReduce [24]. How-
ever, it is not always possible to divide a problem into smaller problems and solve them
separately. Moreover, data and computational relationships among the generated sub-
problems make it impractical to use MapReduce-like methods to solve problems in this
way. Some problems are iterative. With such problems, it is necessary to continue pro-
cessing until a predefined threshold or predetermined number of iterations is reached.
Graph computation is one the most important types of iterative problems. The growth in
graph data and the need to analyze the data means that methods are needed that can rap-
idly solve graph problems. Simple graph division cannot be used to solve graph problems
because it requires information on all the nodes and edges.

There are many methods for solving graph problems over distributed nodes, but

Received August 29, 2015; revised January 14 & April 5 & June 21, 2016; accepted July 17, 2016.
Communicated by Jan-Jan Wu.

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

144

these methods usually suffer from the following problems:

 Graph division problems: This problem relates to how to divide graphs. Graph division
problems are important problems in distributed systems that can cause inefficiencies in
many of the proposed methods [36, 39].

 Data exchange problems: This issue is common to many of the proposed methods and
relates to the exchange of graph data structure and vertex states over a network. Net-
work latency problems and the large size of the subgraphs mean that many of the pro-
posed solutions are ineffective [17, 20, 36, 40].

 Network traffic problems: Some methods create heavy traffic on a network. Part of this
traffic is created by unwanted or uncontrolled objects. Other parts are usually the result
of messages, graph data structure, and vertex states [36, 39].

 Iteration support problems: This type of problem is associated with intermediate results
management. For some of the problems, such as graph problems, it is necessary to have
results of the current iteration as input to the next iteration. Some of the proposed
methods are not appropriate for iteration support and result in the inefficient use of
hardware. MapReduce-based solutions are usually prone to such inefficiency [40, 41].

 Message storage and processing problems: Some methods use message-passing proto-
cols. In large graphs, the messages sent by other nodes must be considered because
each node must store and process a large number of messages. In many of the proposed
methods, some of the nodes remain idle while waiting to process the messages from
other nodes, which results in hardware inefficiencies [36, 39].

 Data locality problems: In this type of problem, nodes do not have all the information
that they need. Therefore, their processes are dependent on data from other nodes [17,
20, 36, 39-41]. To the best of our knowledge, all the methods proposed thus far have
data locality problems.

In this paper, ScaDiGraph, as a MapReduce based method, is proposed to solve

graph problems, such as the All Pairs Shortest Path (APSP), loop detection and pattern
matching. The ScaDiGraph method divides a graph into subgraphs, and metadata on
these subgraphs are then stored. Each hardware node solves a subgraph problem, and the
results of the hardware nodes are combined according to the graph division metadata.
The proposed method utilizes MapReduce scalability.

Importantly, unlike other proposed methods for graph problems, with the proposed
solution, no data (e.g., graph data, graph states, messages) must be exchanged among the
hardware nodes. Each node can separately solve a subgraph problem and transmit the
results to the next layer of a Mapper(s). Another important feature of ScaDiGraph is that
it converts iterative graph problems over hardware nodes to iterative problems on each
node that can be solved separately, which enables them to be solved by MapReduce ar-
chitectures.

The structure of this paper is as follows. Section 2 investigates the preliminaries of
MapReduce and graph problems. In Section 3, the related work is discussed. Section 4
focuses on the proposed method. Section 5 presents the evaluation of the proposed
method. Sections 6 and 7 provide the conclusions and the discussion, respectively.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 145

2. PRELIMINARIES

In this part, MapReduce and solutions to graph problem methods are discussed.

2.1 MapReduce

In this section, studies related to MapReduce design are discussed. According to

[19], a decomposable algorithm, partitionable data, and a sufficiently small data partition
are the main characteristics required for the effective use of MapReduce. In [6], classic
MapReduce was optimized to decrease the data transformation load. In the method de-
scribed in [6], having a shared area for the information was considered. This type of de-
sign is suitable for solving problems, such as the k-nn and top k queries. In [16], MPI
(message passing interface) was used for message passing in a MapReduce structure. The
goal of that paper was to decrease the amount of data transferred in the MapReduce net-
work. In [21], a method was developed for tackling the workloads in hierarchical
MapReduce architectures. HadUP was presented in [22]. HadUP is a modified version of
Hadoop and uses a deduplication-based snapshot differential algorithm (D-SD) and up-
date propagation. Haloop [11] is another type of MapReduce structure suitable for itera-
tive problems. iMapreduce [9] also supports iterative processes. In [2], HDFS (Hadoop
file system) was substituted with a concurrency-optimized data storage layer based on the
BlobSeer data management service. In [4], a model was presented to estimate the I/O
behaviour of MapReduce applications. In [3], optimization over the MapReduce structure
was divided into five groups. Fig. 1 shows these groups.

Fig. 1. MapReduce optimization techniques. Fig. 2. Graph problem solutions classification.

2.2 Methods for Solving Graph Problems

There are several methods for solving graph problems. As shown in Fig. 2, solutions

to graph problems can be divided into two categories: single node solutions and distrib-
uted solutions. Single node solutions, such as Neo4j [40], HyperGraphDB [34], FGL [27],
JDSL [28], NetworkX [29], Stanford GraphBase [30], LEDA [31], and BGL [32], are
usually not suitable for large graphs. Graphchi [37] is another single node solution for
graph problems, but it solves subgraph problems sequentially and does not support syn-
chronous task support.

In distributed solutions, there are two main categories: MapReduce-based methods
and non-MapReduce-based methods. Almost all non-MapReduce methods are based on
message passing. All the message-passing methods require space to catch the other nodes’

146

mess
too l
impo
proc
grap
paren
[39]
best
prod
doop
comm
grap
beca

for M

tex m
in an
Map

amon
decre

it is
prob
Key-
Acco
In th
medi

omit
subg
each

M

sages. In large
large. A large
ortant issues i
essing of nod
h problems; t
nt, which cou
uses HDFS [
data locality

duces network
p [42], which
mercial system
h division us

ause synchrono

According to

MapReduce, a

Message pas
metadata are u
n arbitrary me

pper must send
Local aggreg

ng Mappers a
ease informat
In-Mapper co
not known ho

blem is that al
-Value pairs.
ording to the a
his pattern, cal
iate Key-Valu
Schimmy: In

tted. Schimmy
graphs. Then,
h subgraph, the

MOHAMMADHO

e graphs, the a
e amount of m
in large graph
des. Pregl [36
these do not su
uld have an ad
[42] to solve
. Unlike large

k traffic. Trinit
h does not sup
m, and few d
ed to solve th
ous computati

3

o the classifica
as outlined in F

sing: In this p
used to solve g
essage format
d the graph str
gation: In Map
and Reducers
ion shuffling

ombining: The
ow many time
lthough Comb
Thus, many

above descript
lculations on i

ue pairs are not
n this pattern,
y sorts graph v
it uses paralle
ereby decreas

SSEIN BARKHOR

amount of spa
message proces
hs. Message p
6] and GraphL
upport online

dverse effect o
graph problem
e graphs, stat
ty [38] uses a
pport data loc

details are ava
he graph prob
ions depend o

3. RELATED

ation in [26], t
Fig. 3:

Fig. 3. Graph d

pattern, each v
graph problem
t. One of the
ructure and ve
pReduce meth
. In the local
and traffic am

e use of Comb
es a Combiner
biners decrease

objects are c
tions, the In-M
input records
t emitted until
, unnecessary
vertices using
el merge join
ing the netwo

RDARI AND MAH

ace needed to
ssing and incr

passing somet
Lab [35] are o
e queries. In [3
on the graph s
ms. This file
tes must be e
a file system s
cality for gra
ailable about
blems is not
on the division

D STUDIES

there are five

design patterns.

vertex using a
ms. The result

main problem
ertex states to
hods, a large a

aggregation p
mong Mappers
biners in practi
r is used or ev
e the network
constructed an
Mapper combi
are performed
 all the input r

y shuffling am
g a vertex key

for parallel e
ork traffic.

HDI NIAMANESH

solve graph p
reased networ
times prevents
offline platfor
36], graph div
solution probl
system does

exchanged in
similar to that
aph problems.
the used met
clear. This is

n in the graphs

S

groups of grap

a local graph
ts are sent to n
ms with this p
neighbour ver

amount of info
pattern, Comb
s and Reducer
ice is problem
ven whether i

k traffic, they
nd deconstruc
ning design p

d on the Mapp
records are pro

mong Mappers
and then divi

execution. It u

H

problems coul
rk traffic are o
s the synchron
rms used to s
vision is not tr
ems. PowerG
not guarantee
subgraphs, w
employed by
 Trinity is al
hods. In [38]
a major prob

s.

ph design patt

structure and
neighbour ver
pattern is that
rtices.
ormation is mo
biners are use
s.

matic. For exam
it is used. Ano
do not reduce
ted unnecessa
attern is propo
per side, and in
ocessed.
s and Reduce
des the graph

uses a Reduce

ld be
other
nous
solve
rans-

Graph
e the

which
y Ha-
lso a
, the
blem

terns

ver-
rtices
at the

oved
ed to

mple,
other
e the
arily.
osed.
inter-

ers is
h into
er for

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 147

Range partitioning: In this pattern, a graph is divided into subgraphs with an equal
number of vertices. Each Mapper processes the related subgraphs separately. The hash
function is usually used for graph division. However, vertices and their related neigh-
bours might not be included in a block. In practice, the properties of graphs are used to
achieve effective partitions.

In [1], a method for executing a query over a distributed graph is proposed. Map-
Reduce is employed in [5] to solve graph problems, such as graph transformation, sub-
graph partition, maximal clique enumeration, connected component finding, and com-
munity detection. In [7], a master worker method is used to solve graph problems of an
iterative nature. A method is proposed in [8] for converting MapReduce jobs to bulk
synchronous parallelism (BSP) programming model [10] jobs to utilize the BSO features
for the graph computations. In [12], a combination of partial synchronization and locality
enhancement is employed to alleviate synchronization overhead and achieve improved
performance. In [13], a method for implementing recursive queries on a MapReduce
structure is proposed to solve specific graph problems. The performance of MapReduce,
join-side MapReduce, and BSP in solving different graph problems is compared in [15].
The authors concluded that BSP performs better with regard to iterative problems but
that MapReduce is a better choice for enormous networks in which the structure cannot
be fitted into the local machine memory. A distributed computing model is proposed in
[17]. The model supports multi-iteration and random data access. In [18], MapReduce is
utilized to find all the instances of a given sample graph in a larger data graph. High-
level API is introduced in [20] for developing data-intensive applications for use in graph
mining. A MapReduce implementation of an incremental APSP algorithm is developed
in [23]. In [33], MapReduce is employed to solve different graph problems, such as
PageRank. There are several problems with MapReduce-based methods. In some Map-
Reduce-based methods, all or at least some parts of the graph structure must be sent
through the network, which thereby increases the network traffic. Some MapReduce-
based methods use Hadoop, which does not support best data locality for graph nodes.
MapReduce does not support iterations, which is essential for many graph algorithms.
Non-MapReduce methods have the following problems. Some non-MapReduce methods
use message passing, which increases the network traffic. When using message-passing
methods, the memory space required for processing messages must be considered. The
amount of space required could increase dramatically in large graphs. Some of the
methods use iterations. Each iteration does not finish until all the hardware nodes com-
plete their tasks. This causes hardware usage inefficiency. Some of the methods prevent
execution concurrency. No non-MapReduce methods account for data locality. To ad-
dress the problems with the current MapReduce and non-MapReduce methods, we pro-
pose ScaDiGraph, which offers the following advantages. It can divide a graph into
hardware nodes and execute an algorithm independently of individual nodes, without any
data exchanges with other nodes. The graph can be divided into subgraphs that have
equal size vertices. This division can be based on business knowledge or any arbitrary
property. It uses locality and does not send the graph structure and status of the vertices
over the network because all the required information is placed on the local hardware
node. It can efficiently utilize many weak hardware nodes to solve large graph problems
in a timely manner. Depending on the problem definition, ScaDiGraph can use distribut-
able and scalable features of MapReduce architectures to improve the algorithm execu-

148

Fig.

tion
not s
abse
tions
node

ture
a sca
conta
ScaD
smal
prob
node
prob

hard
the R
state
sepa

1. Th
M

2. Ea
3. Th

terin

Tabl
Map
to th
in th

M

4. Proposed m
architecture

time and hard
suitable for gr
nce of an exi
s. Although th
e iterations, w

Because of th
and because o
alable and dis
ained in a gra

DiGraph omit
ller pieces. Th

blems are divi
e. Second, ma
blems.

The propose
dware node sep
Reducer node
es do not need
arately. The fo

he main graph

Mapper count. T
ach Mapper ex
he results of a

No paths are

ng. Fig. 4 illus
The operator

le 1 shows the
ppers’ results.
he Reducer no
he Reducer wit

MOHAMMADHO

method
.

dware perform
raph problem
isting effectiv
his concern is

which makes gr

4.

he large amou
of the importa
stributable fra
aph. Single-no
ts iterations am
his type of div
ded into smal

any weak or m

ed method div
parately. With

e. The hardwa
d to be exchan
ollowing three

h is divided i
The same num
xecutes an alg

all Mappers pl

 omitted in th
trates the arch

r for a combin
e notations fo
When the cal

ode with the fo
th the format

Tabl

SSEIN BARKHOR

mance. Some
ms because of
ve iteration m
real, ScaDiGr
raph problems

. PROPOSE

unt of informa
ance of analys
amework for
ode solutions
mong hardwa

vision has two
ll, iterative pr
medium hardw

vides the gra
h the propose
are nodes act
nged, and the

steps describ

into subgraph
mber of nodes
gorithm on its
us the deleted

he second step
hitecture of the
ation of Mapp

or this operato
lculation is co
ormat that app
shown in Tab

Table 1. Not
No

(<x

le 2. Mapper r
format.

Source
Destination

Value

RDARI AND MAH

researchers [
the iterative n

management m
raph uses a m
s suitable for M

ED METHO

ation that can
sing graph inf
analysing the
are not adequ

are nodes by
o important me
roblems, whic
ware nodes ca

aph structure
ed architecture
t independentl
results of eac
e the propose

hs; the numbe
s can be used f

subgraph.
d edges are sen

p, which mean
e proposed m
per results is t
or. In Table 1,
omplete, each
pears in Table
ble 3.

tation for ope
otation
xy>,<zx>)

results

HDI NIAMANESH

[38] believe th
nature of the

mechanism in
method that om

MapReduce a

OD

be stored in a
formation, it is
e large amoun
uate for manag
dividing a gr
erits. First, lar

ch can be solv
an be used to

and solves p
e, all the resul
ly. In addition

ch hardware no
d method:

er of subgraph
for each Mapp

nt to the Redu

ns that the Ma
ethod.

the following:
, <xy> is the
 Mapper node

e 2. The delete

rator on map
Description

Left or Right jo

Table 3. Dele

De

V

H

hat MapReduc
problems and
MapReduce s

mits inter-hardw
architectures.

a graph data st
s essential to h
nts of informa
ging large gra
aph structure
rge graph itera
ved by a hardw

solve large g

problems on
lts are gathere
n, graph data
ode are calcul

hs depends on
per.

ucer.

appers are non

Left or Right
edge added to
e sends the re
ed edges are li

per results.

oin

eted edges for
Source
estination
Value
Visited

uce is
d the
solu-
ware

truc-
have
ation
aphs.

into
ative
ware

graph

each
ed in

a and
lated

n the

n-fil-

t join.
o the
esults
listed

rmat.

high
not u
disk
sign,
exec
part
parti
Beca
in tw
tion”

meth
matc
pairs
vario
Final

4.1 A

large
mann
smal
enab
ing e
inpu
this
the d
Each
stage
New
Redu
The

SCADIGRAP

In the Reduc
her performanc
use DBMSs.
drive (HDD)

, partitioning
cution time, w
of the table is

itioning must
ause this arran
wo tables: part
” field in the o
In this paper,

hod is applied
ching problem
s of vertices. L
ous real proble
lly, pattern ma

APSP

APSP is an a

e graph, it is
ner. However
ll graphs. As a
bles the APSP
example illust

ut graph is div
example, we
division of the
h Mapper calc
e, which is ill

w paths are ca
ucer. The resu
final results a

F

PH: A MAPREDU

cer node, a d
ce and a faste
An in-memor
. The table is
is a method in

when there is
s scanned. Wh
be applied to

ngement is no
titioning is ap

other.
ScaDiGraph i

d to the all-p
ms. APSP is a
Loop-detection
ems. In this alg
atching is an a

algorithm wit
impossible to

r, with ScaDiG
a result, a larg

P algorithm to
trates the prop
vided into two
use partitions
e graph. In th
culates APSP
lustrated in Fi
alculated with
ults following
are shown in T

Fig. 5. Input gra

UCE-BASED MET

atabase mana
er calculation
ry database is
partitioned to

n which a tab
a condition o
hen the Mapp
o the “Source”
t possible on

pplied to the “

is used to solv
pairs shortest
an algorithm t
n is another gr
gorithm, all th

algorithm that d

h O(n3), whe
o solve a prob
Graph, a large
ge O(n3) is co
 solve these g

posed method.
o subgraphs.
s that have an
his phase, eac
for its subgra

ig. 7, the dele
a  operator.
the applicatio

Table 6.

aph.

THOD FOR SOLV

agement syste
n speed in com
s used to dec
o prevent a fu
le is partition

on the field an
pers send the r
” and “Destin
the same tabl

“Source” field

ve several larg
paths (APSP

that computes
raph problem t
he loops in a g
detects a sequ

ere n is the nu
blem that cont
 graph is divid
onverted to O
graphical prob
. In the case o
There is no l

n equal numb
ch subgraph (X
aph. The resul
eted edges are
. The results
on of the join

 Fig. 6

VING GRAPH PRO

em (DBMS) i
mparison with
rease the I/O
ll scan of the
ed by field va
nd field value
results with th
nation” fields
e, the Mapper

d in one table

e graph proble
P), loop-detec
s the shortest
that is very im

graph are extra
uence of vertice

umber of vert
tains many ve
ded into m (nu

O((n/m)3) smal
blems much f
of the graph sh
imitation on g
er of vertices
X, Y) is assig
lts are shown
 added to the
from each no
operators are

6. Divided subg

OBLEMS

s used to ach
h methods tha

time on the
table. In table

alues. In the q
e, only the rel
he Table 2 for
at the same t

r results are st
and the “Des

ems. The prop
tion, and pat
paths between

mportant in sol
acted and repo
es in a graph.

ices. Thus, w
ertices in a tim
umber of Map
ller graphs, w

faster. The fol
hown in Fig. 5
graph division
. Fig. 6 illustr

gned to a Map
in Table 4. In
Mappers’ res

ode are sent to
shown in Tab

graph.

149

hieve
at do
hard
e de-

query
lated
rmat,
time.
tored
stina-

posed
ttern-
en all
lving
orted.

with a
mely
ppers)

which
llow-
5, the
n. In
trates
pper.
n this
sults.
o the
ble 5.

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

150

APSP algorithm (Psuedo code 1) is executed on each Mapper for the subgraphs and
on the Reducer for the deleted edges. As shown in Psuedo code 1, all the paths for the
graph nodes on the Mapper are calculated, and the results are stored in the Map-
per_Edges_SRC table. Psuedo code 1 is also executed on the Reducer node for the nodes
of the deleted edges, and the results are stored in the Deleted_Edges_SRC table. Psuedo
code 2 is executed on the Reducer node for the APSP algorithm. As shown in Psuedo
code 2, the following tasks are completed:

1. Mapper_Edges_SRC is copied to Mapper_Edges_DST to create partitions on the

“Source” and “Destination” fields. Then, a local index is created on the partitions on
the “Source” or “Destination” fields. If the partition is on the “Source” field, then the
local index is created on the “Destination” field, and vice versa.

2. A while loop in the above code is repeated until there are unvisited rows in the Delet-
ed_Edges_SRC table.

3. The “join” function is repeated up to the number of Deleted_Edges_SRC’s partition
count. The “join” function joins the related partitions of Mapper_Edges_SRC and De-
leted_Edges_SRC and calculates the distances among the joined nodes.

4. After the “join” function, new edges that previously did not exist are added to Delet-
ed_Edges_SRC to execute the related calculations for the new edges.

5. Steps 3 and 4 are repeated for Deleted_Edges_SRC and Mapper_Edges_DST. Finally,
the visited rows from Deleted_Edges_SRC are deleted.

6. For the Deleted_Edges_DST table, steps 3-5 are executed with Mapper_Edges_DST
and Mapper_Edges_SRC.

7. Finally, the shortest paths for the “Source” and the “Destination” fields are selected.

4.2 Pattern Matching

To detect a pattern or a sequence of vertices, we use a modified version of the APSP
algorithm. In pattern matching, the visited vertices rather than the path costs are extracted.
For example, to find the “BCDF” sequence in the graph in Fig. 6, the graph is first di-
vided into two subgraphs, as shown in Fig. 7. Each Mapper then retrieves the paths that
have a maximum length of four edges (input string length). Table 7 shows the results
achieved with the Mappers. The deleted edges are then added to the graph, as depicted in
Fig. 8. New paths with a maximum length of four edges with the  operator are extracted.
Table 8 shows the results. In Table 8, all the paths that have a length of more than four
edges are discarded. Table 9 shows the results after the Reducer phase. The pattern-
matching algorithm (Psuedo code 3) is executed on each Mapper for the subgraphs and
on the Reducer for the deleted edges. Psuedo code 3 execution process is the same as that
for the APSP Mapper code, except that the code path among the graph nodes is calculat-
ed instead of the distance among the nodes. The maximum length of the path is equal to
the length of the Input string for pattern matching. Psuedo code 4 execution process is the
same as that for the APSP code; however, the final step extracts the rows that have
“Value” fields equal to the Input string’s length.

4.3 Loop Detection

The proposed method can be used for loop detection in a graph; the pattern-match-

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 151

ing solution can be used to detect a loop in a graph. If, in the Reducer phase, the Keys are
repeated, then we have a loop in a graph. For loop extraction, we can detect duplicate
Keys that do not have more than two common vertices in their paths. For example, to
find the loops in the graph in Fig. 6, the graph is first divided into two subgraphs, as
shown in Fig. 7. Each Mapper then extracts the paths. Table 10 presents the results of the
Mappers. The deleted edges are then added to the graph, as demonstrated in Fig. 8. New
paths with the  operator are extracted. Table 11 shows the results. Because we have du-
plicated Keys in Table 11, we could have loop(s) in the graph. For loop extraction, the
duplicated Keys are first identified. Paths that have the same Keys and less than three
common vertices are then extracted as loops. The loop-detection algorithm is executed
on each Mapper for the subgraphs and on the Reducer for the deleted edges. Psuedo code
5 execution process is the same as the pattern-matching process. The maximum length of
the path is equal to the length of the input value for the loop detection. Psuedo code 6 is
executed on the Reducer for the loop-detection algorithm. The above code-execution
process is similar to that for pattern matching; however, at the final step, paths that do not
have more than two nodes in common are extracted.

5. EVALUATION

The evaluation was divided into three parts: Implementation and evaluation of
APSP, Pattern matching and Loop detection

5.1 APSP

To evaluate the proposed method, the APSP algorithm with the proposed method

was applied to information in a social network composed of expert users. This social
network has approximately 50,000 users, and each user is displayed as a graph node. The
relationships among these users make up approximately 10,000,000 edges. Table 13
shows the specifications of the hardware nodes used for the proposed evaluation method.
Each Mapper hardware node has 1,000 graph nodes. We divided the graph into sub-
graphs that have an equal number of nodes. Table 13 shows the specifications of the
hardware nodes.

We divided the graph into subgraphs that have an equal number of nodes. The nodes
can be loaded on servers in an arbitrary manner. Table 14 shows the input data format.
We divided the main graph based on the ID field, which is the primary key of the input
data. The ID field grows sequentially. Based on the maximum value of the ID field and
the number of Mappers (M), we determine the lower bound and upper bound of the IDs,
which are present on each node.

Mapper1 (0 < ID <= Max(ID)/M);Mapper2 (Max(ID)/M < ID <= 2 × Max(ID)/M);…;MapperM ((M-1) × Max(ID)/M < ID <= Max(ID))

We used Redis [25] as the In-Memory DBMS. Table 14 shows the results.

5.2 Pattern Matching

For pattern matching, we used bank transactions to detect any suspicious transaction

152

Table 4. C
e

Subgraph

X

Y

Table 5
Operator an

-
-
-
-
-
-

(<AB>,<BF
(<BC>,<CD
(<AC>,<CD
(<CD>,<DE
(<BF>,<DF
(<BF>,<EF>
(<DF>,<CD
(<AF>,<DF
(<AF>,<EF>
(<BD>,<DE
(<BD>,<DF
(<AD>,<DF
(<AD>,<DE
(<CF>,<DF
(<CF>,<EF>
(<BD>,<BF
(<CD>,<BD

Table 6
Key
AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

For k=1 to Su
 For j=1 to
 For i=1
 {

tance(node(k)
ity) && (dist
node(j)) != i

node(j))= dis
node(i)) + di
node(j));

per_Results(S
ue)

ues(node(k).
distance(node

 }
Send_Edges(Ma
Mapper_Edges_

Pu

M

Calculated APSP
each subgraph.
h Key Value

AB 2
BC 4
AC 6
DE 3
DF 7
EF 10

5. Mapper result
nd Key Key V

AB
BC
AC
DE
DF
EF

F>) AF
D>) BD
D>) AD
E>) CE
>) CF
>) BE

D>) CF
F>) AD
>) AE

E>) BE
F>) BF
F>) AF
E>) AE
>) CD
>) CE

F>) DF
D>) BC

. Reducer result
Value

2
6

10
13
3
4

12
11
19
12
11
8
3
7

10

ubgraphNodesCoun
o SubgraphNodesC
1 to SubgraphNode

If (dis-
), node(i)) != i
tance(node(i),
infinity)
 {
 distance(no
stance(node(k),
istance(node(i),

 Insert into
Source,Destinati

 Val
Name, node(j).

e(k), node(j)));
 }

apper_Results,Re
_SRC);

usedo code 1

MOHAMMADHO

P on Table

s.
Value

2
4
6
3
7

10
3

12
14
11
8

11
15
10
13
15
19
21
17
12
15
13
16

T
Op

(<A
(<B
(<A
(<C
(<B
(<B
(<D
(<A
(<A
(<B
(<B
(<A
(<A
(<C
(<C
(<D
(<C

ts. T

Fig

nt
Count
esCount

infin-

ode(k),

,

o Map-
ion,Val

-
Name,

;

educer.

For k=
 For
 F

node(i

(le

path(n
node(j

node(j

per_Re

Name,
node(j

Send_E
Mapper

SSEIN BARKHOR

 7. Extracted pa
subgraph.

Subgraph Key

X
AB
BC
AC

Y
DE
DF
EF

Table 8. Mapper
perator and Key K

- A
-
- A
-
-
-

AB>,<BF>)
BC>,<CD>) B
AC>,<CD>) A
CD>,<DE>)
BF>,<DF>) B
BF>,<EF>)
DF>,<CD>)
AF>,<DF>) A
AF>,<EF>) A
BC>,<CE>)
BD>,<DF>)
AD>,<DF>)
AD>,<DE>) A
CF>,<DF>) C
CF>,<EF>)
DB>,<BF>)
CF>,<BF>)

Table 9. Reducer
Key Va
BF BC
CD CB
DF DC
BC CD

. 7. Adding del

1 to SubgraphNodes
j=1 to SubgraphNod
For i=1 to Subgraph
 {
 If (length(
))) <= length(Inpu
ength(path(node(i),

length(InputPat

 {
 path(nod
ode(k), node(i)) +
));
 if (leng
)))<= length(Input
 {
 Inse
sults(Source,Desti

node(j). Name, pat
)));
 }
 }
 }
dges(Mapper_Result
_Edges_SRC);

Pusedo cod

RDARI AND MAH

aths on each

Value
AB
BC

ABC
DE
DF

EDF

r results.
Key Value
AB AB
BC BC
AC ABC
DE DE
DF DF
EF EDF
AF ABF
BD BCD
AD ABCD
CE CDE
BD BFD
BE BFDE
CF CDF
AD ABFD
AE -
BE BCDE
BF BCDF
AF -
AE -
CD CBFD
CE -
DF DCBF
BC CDFB

r results.
alue
CDF
BFD
CBF
DFB

leted edges.

sCount
desCount
hNodesCount

(path(node(k),
utPattern)) &&
, node(j))) <=
ttern))

de(k), node(j))=
+ path(node(i),

gth(path(node(k),
tPattern))

ert into Map-
ination,Value)
Values(node(k).

th(node(k),

ts,Reducer.

de 3

HDI NIAMANESH

Table 10. Ex
su

Subgraph

X

Y

Table 11
Operator and Ke

-
-
-
-
-
-

(<AB>,<BF>
(<BC>,<CD>
(<AC>,<CD>
(<CD>,<DE>
(<BF>,<DF>
(<BF>,<EF>)
(<DF>,<CD>
(<AF>,<DF>
(<AF>,<EF>
(<BD>,<DE>
(<BD>,<DF>
(<AD>,<DF>
(<AD>,<DE>
(<CF>,<DF>
(<CF>,<EF>)
(<BD>,<BF>
(<CF>,<BF>

Table 12.
Key
AD
AD
AE
AE
AF
AF
BC
BC
BE
BE
CE
CE
CF
CF
DF
DF

For k=1 to Subgr
 For j=1 to Su
 For i=1 to
 {
 If
node(i))) <= Inp

(length(path
I

 {

path(node(k), no
node(j));

node(j)))<= Inpu

per_Results(Sour

Name, node(j). N
node(j)));

 }
 }
Send_Edges(Mappe
Mapper_Edges_SRC

Pu

H

xtracted paths o
bgraph.

Key Value
AB AB
BC BC
AC ABC
DE DE
DF DF
EF EDF

. Mapper results
ey Key Va

AB A
BC B
AC A
DE D
DF D
EF E

) AF A
>) BD B
>) AD AB
>) CE C
) CF B
) BE BF
) CF C
) AD AB
) AE AB

>) BE BC
) BF BC

>) AF AB
>) AE AB
) CD CB
) CE CB
) DF DC
) BC CD

. Reducer results
Value
ABCD
ABFD

ABCDE
ABFDE
ABCDF

ABF
BC

CDFB
BCDE
BFDE

CBFDE
CDE
BFD
CDF

DCBF
DF

raphNodesCount
ubgraphNodesCount
o SubgraphNodesCoun

(length(path(node(k
putLength) &&
(node(i), node(j))
nputLength)

 path(node(k), nod
ode(i)) + path(node

 if (length(path(n
utLength)
 {
 Insert into M
rce,Destination,Val
 Values(nod
Name, path(node(k),

 }

er_Results,Reducer.
C);

sedo code 5

on each

s.
alue
AB
BC

ABC
DE
DF

EDF
ABF
BCD
BCD

CDE
BFD
FDE

CDF
BFD

BFDE
CDE
CDF

BCDF
BCDE
BFD

BFDE
CBF
DFB

s.

nt

(k),

) <=

de(j))=
e(i),

node(k),

Map-
lue)
de(k).
,

.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 153

Pusedo code 4

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST);
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST);
Create local index on column “Destination”
for each partition on table “Map-
per_Edges_SRC”;
Create local index on column “Source” for
each partition on table “Mapper_Edges_DST”;
While (Select exists (visited) from
Deleted_Edges_SRC where visited=0){
For i= 1 to Deleted_Edges_SRC. Parti-
tionCount {
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName));
Deleted_Edges_SRC. Partition(i). visit-
ed=1;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_SRC where
visited=1; }
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount {
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName));
Deleted_Edges_DST. Partition(i). visit-
ed=1;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_DST where
visited=1; } }
Select Source, Destination, Min(Value) From
Mapper_Edges_SRC group by Source, Desti-
nation;

Pusedo code 2

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST);
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST);
Create local index on column “Destination”
for each partition on table “Map-
per_Edges_SRC”;
Create local index on column “Source” for
each partition on table “Mapper_Edges_DST”;
While (Select exists(visited) from De-
leted_Edges_SRC where visisted=0)
{For i= 1 to Deleted_Edges_SRC. Parti-
tionCount
 {Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ;
Deleted_Edges_SRC. Partition(i). visit-
ed=1;
Filter results where length(results. path)
< length(InputPattern));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ;
Filter results where length(results. path)
<length(InputPattern));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_SRC where
visited=1; }
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount
 {Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ;
Deleted_Edges_DST. Partition(i). visit-
ed=1;
Filter results where length(results.
path)<length(InputPattern));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ;
Filter results where length(results.
path)<length(InputPattern));
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_DST where
visited=1; } }
Select Source, Destination, Value From
Mapper_Edges_SRC where Value= InputPat-
tern;

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST);
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST);
Create local index on column “Destination”
for each partition on table “Map-
per_Edges_SRC”;
Create local index on column “Source” for
each partition on table “Mapper_Edges_DST”;
 While (Select exists(visited) from
Deleted_Edges_SRC where visisted=0)
{For i= 1 to Deleted_Edges_SRC. Parti-
tionCount {
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ;
Deleted_Edges_SRC. Partition(i). visit-
ed=1;
Filter results where length(results.
path)<= InputLength;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i).
PartitionName), Deleted_Edges_SRC.
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ;
Filter results where length(results.
path)<= InputLength;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_SRC where
visited=1; }
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount {
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ;
Deleted_Edges_DST. Partition(i). visit-
ed=1;
Filter results where length(results.
path)<= InputLength;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i).
PartitionName), Deleted_Edges_DST.
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ;
Filter results where length(results.
path)<= InputLength;
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC;
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_DST where
visited=1; } }
 Duplicate_Set =(Select Source, Destina-
tion, Value From Mapper_Edges_SRC having
count(concat(Source, Destination))>1)
For each concat(Source, Destination) in
Duplicate_Set
{ For i= 1 to Count(Values)-1 //Number of
paths
 For j= i+1 to Count(Values) {
 If (Inter-
sect(Value(i),Value(j))==2) Insert into
Results(Value(i),Value(j)) } }

Pusedo code 6

sequences among the customers. The customers and their transactions are considered to
be graph nodes and edges, respectively. We found patterns that have a length of ten edg-
es. This bank has approximately 130,000 customers and approximately 2,500,000 trans-
actions in three months. The results are shown in Table 16.

5.3 APSP

For loop detection, we used the bank transactions described in section 5.2 to find

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

154

loops that have a length of ten edges. The detection of loops among the customers signi-
fies fraudulent activity, such as money laundering or fake transactions aimed at falsely
increasing the turnover. The results are shown in Table 17. The detected loops were sent
to the bank’s fraud-detection office for further investigation.

5.4 Comparison of the Proposed Method with Other Methods

We applied the Pegasus, Pregel (Graph 1.0.0), and Power Graph 2.2 algorithms to
graphs on fifty servers using the specifications shown in Table 18. The total RAM
memory used for fifty nodes in ScaDiGraph is 912 GB, and the total HDD used is 10.5
TB. Fifty core i5 CPUs and a core i7 CPU are used as the processors. The total RAM
used for each of the other methods (Pegasus, Pregel, and Power Graph) is 3.2 TB, and the
total HDD used is 50 TB. Fifty core i7 CPUs are used as processors. Thus, it can be seen
that ScaDiGraph uses less hardware resources (RAM, HDD and CPU) to solve graph
problems. The results are shown in Fig. 8. The detected loops were sent to the bank’s
fraud-detection office for further investigation.

6. DISCUSSION

The proposed method works better than Pregl, Pegasus and Power graphs because
all these methods must exchange intermediate results among the hardware nodes. Ex-
changing messages among the hardware nodes has two main problems. The first problem
is that each hardware node must store messages from other hardware nodes. If we have a
large graph, then we have too many subgraphs, and therefore, we require a large amount
of memory to maintain and process the messages and we must have a message process
queue. On the other hand, message exchange among hardware nodes causes network
congestion. Both network congestion and message process queues cause the sender
hardware nodes to wait, which causes improper use of the processing power and memory
capacity. Nevertheless, in ScaDiGraph, there is no relation among the Mapper hardware
nodes. Each Mapper works with its subgraph, and therefore, data locality is completely
met. In other words, all the data necessary to execute an algorithm on the hardware node
are located on the same hardware node; therefore, we have avoided message exchange
among the hardware nodes and its consequences.

The best execution time for ScaDiGraph occurs when we have an isolated subgraph
on each Mapper (thus, there is no deleted edge and no calculation on the Reducer node).
Fig. 9 shows the best case. The worst execution time occurs when all the nodes on each
Mapper have no relation with other nodes and all the relations among the nodes are add-
ed at the deleted edges. In such cases, ScaDiGraph cannot improve the execution time,
and all the calculations must be performed on the Reducer node. Fig. 10 shows the worst
case. We used two techniques to solve the graph problems separately on each hardware
node. First, we unified the data format on each hardware node. Second, we changed the
algorithm in such a way that each node can solve its problem in a solitary way. We have
used this technique to solve problems in other fields, such as data mining [40] and data-
bases [41], and this technique has achieved lower execution times than other prominent
existing methods.

Table
Mapper
virtual

hardware
nodes

Reducer
hardware

nodes

Table
for A

tribu
to so
caus
prob
prev

to so

SCADIGRAP

13. Hardware n

e

CPU Intel
(6M

HDD
RAM

e
CPU Intel

(8M
HDD
RAM

e 15. ScaDiGrap
APSP.

Stage name Ti
Mapper
Reducer

Fig. 9. ScaD

The large am
utable informa
olve large grap
e of non-cons

blems. Howev
vious iteration

In this paper,
olve graph pr

PH: A MAPREDU

ode specification
Core i5-6500T Proces

M Cache, up to 3.10 GH
10 GB
8 GB

Core i7-6700T Proces
M Cache, up to 3.60 GH

10 TB
512 GB

ph execution time

ime(minute)
14

301

Fig. 8. Com

DiGraph best ca

mount of infor
ation processin
ph problems,
sideration of d

ver, in these m
tasks have be
, we introduce
roblems, such

UCE-BASED MET

ns.
sor

Hz)

sor
Hz)

Table 14. In
format.

ID
Sour

Destina
Valu

e

Table 16. E
time for pat
matching.
Stage name T
Mapper
Reducer

mparing ScaDiG

ase.

7. CONCL

rmation in gra
ng methods. M
but some of t
data locality.
methods, the n
een completed
ed a method, S
h as APSP, p

THOD FOR SOLV

nput data

D
rce
ation
ue

Tab

Ha
nod

Execution
ttern

Time(minute)
12

284

Tabl
tion.

Graph with othe

Fig. 10

LUSIONS

aph data struc
Many scalabl
these create h
Some method
next iteration

d, which gives
ScaDiGraph,
attern matchi

VING GRAPH PRO

ble 18. Hardware

ardware
des

CPU

HDD
RAM

le 17. Execution
.

Stage name
Mapper
Reducer

er methods.

0. ScaDiGraph w

ctures requires
e methods ha

heavy traffic o
ds use iteratio

n cannot be st
 rise to hardw
which is base

ing and loop

OBLEMS

e node specificat
Intel Core i7-6700T
Processor
(8M Cache, up to 3
GHz)

10 TB
64 GB

time for loop de

Time(minute)
12

310

worst case.

s scalable and
ave been prop
on the network
ons to solve g
tarted until all

ware inefficien
ed on MapRed
detection. Sc

155

tions.
T

3.60

etec-

d dis-
posed
k be-
graph
ll the
ncy.
duce,
caDi-

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

156

Graph divides a large graph into subgraphs. Each node of the subgraph executes an algo-
rithm without the need for information about other subgraphs. By converting large graph
problems into subgraphs, the proposed method can solve graph problems in a timely
manner. Another advantage of the proposed method is that commodity hardware nodes
can be used to solve large graph problems. By converting the iterative nature of graph
problems into non-iterative problems, ScaDiGraph makes it possible to solve these prob-
lems using MapReduce methods. The method was applied to two case studies: an expert
social network for which APSP algorithms were used and a bank’s transactions for which
pattern matching and loop detection problems were solved.

REFERENCES

1. M. Sarwat, et al., “Horton: Online query execution engine for large distributed
graphs,” in Proceedings of IEEE 28th International Conference on Data Engineer-
ing, 2012, pp. 1289-1292.

2. B. Nicolae, et al., “BlobSeer: Bringing high throughput under heavy concurrency to
Hadoop map-reduce applications,” in Proceedings of IEEE International Symposium
on Parallel and Distributed Processing, 2010, pp. 1-11.

3. A. Osman, E.-R. Amr, and A. Elnaggar, “Towards real-time analytics in the cloud,”
in Proceedings of IEEE 9th World Congress on Services, 2013, pp. 428-435.

4. S. G root, “Modeling i/o interference in data intensive map-reduce applications,” in
Proceedings of IEEE/IPSJ 12th International Symposium on Applications and the
Internet, 2012, pp. 206-209.

5. S. Yang, et al., “Efficient dense structure mining using mapreduce,” in Proceedings
of IEEE International Conference on Data Mining Workshops, 2009, pp. 332-337.

6. L. Ding, et al., “Commapreduce: An improvement of mapreduce with lightweight
communication mechanisms,” in Proceedings of International Conference on Data-
base Systems for Advanced Applications, 2012, pp. 150-168.

7. R. Lichtenwalter and N. V. Chawla, “DisNet: A framework for distributed graph
computation,” in Proceedings of IEEE International Conference on Advances in So-
cial Networks Analysis and Mining, 2011, pp. 263-270.

8. L. Fegaras, “Supporting bulk synchronous parallelism in map-reduce queries,” in
Proceedings of IEEE High Performance Computing, Networking, Storage and Anal-
ysis Companion, 2012, pp. 1068-1077.

9. Y. Zhang, et al., “Imapreduce: A distributed computing framework for iterative
computation,” Journal of Grid Computing, Vol. 10, 2012, pp. 47-68.

10. L. G. Valiant, “A bridging model for parallel computation,” Communications of the
ACM, Vol. 33, 1990, pp. 103-111.

11. Y. Bu, et al., “HaLoop: efficient iterative data processing on large clusters,” in Pro-
ceedings of the VLDB Endowment, Vol. 3, 2010, pp. 285-296.

12. K. Kambatla, et al., “Asynchronous algorithms in MapReduce,” in Proceedings of
IEEE International Conference on Cluster Computing, 2010, pp. 245-254.

13. F. N. Afrati, et al., “Map-reduce extensions and recursive queries,” in Proceedings of
the 14th ACM International Conference on Extending Database Technology, 2011,
pp. 1-8.

14. Message passing interface, http://www.mpi-forum.org/.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 157

15. T. Kajdanowicz, K. Przemyslaw, and I. Wojciech, “Parallel processing of large
graphs,” Future Generation Computer Systems, Vol. 32, 2014, pp. 324-337.

16. H. Mohamed and M.-M. Stéphane, “MRO-MPI: MapReduce overlapping using MPI
and an optimized data exchange policy,” Parallel Computing, Vol. 39, 2013, pp.
851-866.

17. Q. Li, et al., “LI-MR: a local iteration map/reduce model and its application to mine
community structure in large-scale networks,” in Proceedings of the 11th IEEE In-
ternational Conference on Data Mining Workshops, 2011, pp. 174-179.

18. F. N. Afrati, F. Dimitris, and J. D. Ullman, “Enumerating subgraph instances using
map-reduce,” in Proceedings of the 29th IEEE International Conference on Data
Engineering, 2013, pp. 62-73.

19. F. Highland and J. Stephenson, “Fitting the problem to the paradigm: algorithm
characteristics required for effective use of MapReduce,” Procedia Computer Sci-
ence, Vol. 12, 2012, pp. 212-217.

20. W. Jiang and G. Agrawal, “Ex-mate: data intensive computing with large reduction
objects and its application to graph mining,” in Proceedings of the 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2011, pp. 475-484.

21. V. S. Martha, W. Zhao, and X. Xu, “h-MapReduce: a framework for workload bal-
ancing in MapReduce,” in Proceedings of the 27th IEEE International Conference
on Advanced Information Networking and Applications, 2013, pp. 637-644.

22. D. Lee, J.-S. Kim, and S. Maeng, “Large-scale incremental processing with MapRe-
duce,” Future Generation Computer Systems, Vol. 36, 2014, pp. 66-79.

23. S. S. Khopkar, N. Rakesh, and A. G. Nikolaev, “An efficient map-reduce algorithm
for the incremental computation of all-pairs shortest paths in social networks,” in
Proceedings of IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining, 2012, pp. 1144-1148.

24. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clus-
ters,” Communications of the ACM, Vol. 51, 2008, pp. 107-113.

25. Redis In-Memory database, http://redis. io/.
26. J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in MapReduce,”

in Proceedings of the 8th ACM Workshop on Mining and Learning with Graphs,
2010, pp. 78-85.

27. M. Erwig, “Inductive graphs and functional graph algorithms,” Journal of Function-
al Programming, Vol. 11, 2001, pp. 467-492.

28. M. T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java, John
Wiley & Sons, 2008.

29. J. L. Gross and J. Yellen, Graph Theory and its Applications, Chapman and Hall/
CRC, 2005.

30. D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing,
Vol. 37, Addison-Wesley, NY, 1993.

31. K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform of combinatorial and
geometric computing, 1999,” http://dx. doi.org/10, 1007/3-540-63165-8 161: 7-16.

32. A. Lumsdaine, L. Q. Lee, and J. G. Siek, The Boost Graph Library: User Guide and
Reference Manual, Addison-Wesley, MA, 2002.

33. U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining
system implementation and observations,” in Proceedings of the 9th IEEE Interna-

158

t
34. H

P
m

35. Y
m
7

36. G

37. A
o
t

38. B
c
o

39. J
r
D

40. M
a

41. M
a
w

M

tional Confere
H. Higaki, et
Proceedings o
munications S
Y. Low, et al
mining in the
716-727.
G. Malewicz,
ings of ACM
135-146.
A. Kyrola, G
on just a PC,”
tems Design a
B. Shao, H. W
cloud,” in Pro
of Data, 2013
J. E. Gonzale
ral graphs,” P
Design and Im
M. Barkhord
association ru
Conference on
M. Barkhorda
able MapRed
works,” Big D

MOHAMMADHO

ence on Data
al., “Checkpo
of the 16th An

Societies, Driv
l., “Distribute
e cloud,” in P

 et al., “Prege
SIGMOD Inte

. Blelloch, an
” Presented a
and Implemen
Wang, and Y
oceedings of A

3, pp. 505-516
z, et al., “Pow

Presented as p
mplementation
ari and M. N
ule mining m
n Electronic C
ari and M. Ni
duce-based m
Data Research

Mo
grees in
He is cu
Commu
interests
data min

Ma
Enginee
of Univ
the Info
ter, Iran
puting, b

SSEIN BARKHOR

Mining, 2009
oint and rollba
nnual Joint C
ing the Inform

ed GraphLab:
Proceedings of

el: a system fo
ernational Co

nd C. Guestrin
s part of the 1

ntation, 2012.
Y. Li, “Trinity
ACM SIGMOD

6.
wergraph: Dis
art of the 10th
n, 2012, pp. 17
Niamanesh, “
method,” in P
Commerce, 20
amanesh, “Sc
ethod to find

h, Vol. 2, 2015

ohammadhos
n Software En
urrently pursu
unication Tech
s include big
ning.

ahdi Niaman
ering in the D
versity Techno
ormation and
n. His research
big data.

RDARI AND MAH

9, pp. 229-238
ack in asynch

Conference of
mation Revolut

a framework
f the VLDB E

or large-scale
onference on M

n, “GraphChi:
10th USENIX

y: A distribut
OD Internation

stributed graph
h USENIX Sym
7-30.
ScadiBino: A

Proceedings of
014, p. 1.
caDiPaSi: an e
d patient simi
5, pp. 19-27.

ssein Barkho
ngineering fro
uing the Ph.D.
hnology Rese
data, busines

nesh received
Department of
ology in 2009
Communicati
h interests inc

HDI NIAMANESH

8.
hronous distrib
f the IEEE Co
tion, Vol. 3, 19

k for machine
Endowment 5,

graph process
Management o

 large-scale g
X Symposium o

ed graph eng
nal Conferenc

h-parallel com
mposium on O

An effective M
of the 16th A

effective scala
ilarity on hug

ordari receiv
om Amirkabir
. degree in th
arch Center, I

ss intelligence

his Ph.D. de
f Computer En
9. He is curren
ion Technolog
clude algorithm

H

buted systems
mputer and C
997, pp. 998-1
learning and
Vol. 8, 2012

sing,” in Proc
of Data, 2010

graph computa
on Operating

ine on a mem
e on Managem

mputation on n
Operating Sys

MapReduce-b
CM Internati

able and distri
ge healthcare

ved the M.S.
r University,
e Information
Iran. His rese

e, data wareho

gree in Comp
ngineering, Sh
ntly a Professo
gy Research C
m pervasive c

s,” in
Com-
1005.

data
2, pp.

ceed-
0, pp.

ation
Sys-

mory
ment

natu-
stems

based
ional

ribut-
net-

 de-
Iran.

n and
earch
ouse,

puter
harif
or at
Cen-
com-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

