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Graph data contain a large volume of information, which must be analysed. A 

method is required that can quickly process the information in distributed and scalable 
architectures. Single node methods are not suitable because they cannot process large 
amounts of information on their processors and memories. Problems encountered in dis-
tributed environments must also be addressed. These include graph division problems, 
algorithm division problems, exchange states among hardware nodes, and network traffic. 
In this paper, a scalable and distributable MapReduce-based method, ScaDiGraph, is 
proposed that makes hardware nodes independent. With this method, each hardware node 
can process a subgraph without any information from the other nodes. ScaDiGraph con-
verts iterative graph problems, such as the All Pairs Shortest Path (APSP), pattern 
matching, and loop detection, into non-iterative problems and makes them suitable for 
the MapReduce architecture. In the present paper, ScaDiGraph is used to solve APSP, 
loop detection, and pattern matching problems, and the results are compared with those 
obtained with other MapReduce- and non-MapReduce-based methods. The results show 
that when applying ScaDiGraph on graph data, which causes simultaneous algorithm 
execution on each node, the execution time decreases in comparison with the prominent 
existing methods.      
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1. INTRODUCTION 
 

Today, because of the high rate of information generated, innovative methods are 
necessary for information management. To process a large volume of information, scala-
ble and distributable methods are used. In these methods, a large problem is broken down 
into smaller problems, and each problem is processed by a single node. Each node pro-
cesses information and generates output. Finally, a node collects the outputs and gener-
ates the results. One of the most popular methods in this area is MapReduce [24]. How-
ever, it is not always possible to divide a problem into smaller problems and solve them 
separately. Moreover, data and computational relationships among the generated sub- 
problems make it impractical to use MapReduce-like methods to solve problems in this 
way. Some problems are iterative. With such problems, it is necessary to continue pro-
cessing until a predefined threshold or predetermined number of iterations is reached. 
Graph computation is one the most important types of iterative problems. The growth in 
graph data and the need to analyze the data means that methods are needed that can rap-
idly solve graph problems. Simple graph division cannot be used to solve graph problems 
because it requires information on all the nodes and edges.  

There are many methods for solving graph problems over distributed nodes, but 
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these methods usually suffer from the following problems: 
 

 Graph division problems: This problem relates to how to divide graphs. Graph division 
problems are important problems in distributed systems that can cause inefficiencies in 
many of the proposed methods [36, 39].  

 Data exchange problems: This issue is common to many of the proposed methods and 
relates to the exchange of graph data structure and vertex states over a network. Net-
work latency problems and the large size of the subgraphs mean that many of the pro-
posed solutions are ineffective [17, 20, 36, 40].  

 Network traffic problems: Some methods create heavy traffic on a network. Part of this 
traffic is created by unwanted or uncontrolled objects. Other parts are usually the result 
of messages, graph data structure, and vertex states [36, 39].  

 Iteration support problems: This type of problem is associated with intermediate results 
management. For some of the problems, such as graph problems, it is necessary to have 
results of the current iteration as input to the next iteration. Some of the proposed 
methods are not appropriate for iteration support and result in the inefficient use of 
hardware. MapReduce-based solutions are usually prone to such inefficiency [40, 41].  

 Message storage and processing problems: Some methods use message-passing proto-
cols. In large graphs, the messages sent by other nodes must be considered because 
each node must store and process a large number of messages. In many of the proposed 
methods, some of the nodes remain idle while waiting to process the messages from 
other nodes, which results in hardware inefficiencies [36, 39].  

 Data locality problems: In this type of problem, nodes do not have all the information 
that they need. Therefore, their processes are dependent on data from other nodes [17, 
20, 36, 39-41]. To the best of our knowledge, all the methods proposed thus far have 
data locality problems.  

 
In this paper, ScaDiGraph, as a MapReduce based method, is proposed to solve 

graph problems, such as the All Pairs Shortest Path (APSP), loop detection and pattern 
matching. The ScaDiGraph method divides a graph into subgraphs, and metadata on 
these subgraphs are then stored. Each hardware node solves a subgraph problem, and the 
results of the hardware nodes are combined according to the graph division metadata. 
The proposed method utilizes MapReduce scalability.  

Importantly, unlike other proposed methods for graph problems, with the proposed 
solution, no data (e.g., graph data, graph states, messages) must be exchanged among the 
hardware nodes. Each node can separately solve a subgraph problem and transmit the 
results to the next layer of a Mapper(s). Another important feature of ScaDiGraph is that 
it converts iterative graph problems over hardware nodes to iterative problems on each 
node that can be solved separately, which enables them to be solved by MapReduce ar-
chitectures.  

The structure of this paper is as follows. Section 2 investigates the preliminaries of 
MapReduce and graph problems. In Section 3, the related work is discussed. Section 4 
focuses on the proposed method. Section 5 presents the evaluation of the proposed 
method. Sections 6 and 7 provide the conclusions and the discussion, respectively.  
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2. PRELIMINARIES 

In this part, MapReduce and solutions to graph problem methods are discussed.  
 

2.1 MapReduce 
 
In this section, studies related to MapReduce design are discussed. According to 

[19], a decomposable algorithm, partitionable data, and a sufficiently small data partition 
are the main characteristics required for the effective use of MapReduce. In [6], classic 
MapReduce was optimized to decrease the data transformation load. In the method de-
scribed in [6], having a shared area for the information was considered. This type of de-
sign is suitable for solving problems, such as the k-nn and top k queries. In [16], MPI 
(message passing interface) was used for message passing in a MapReduce structure. The 
goal of that paper was to decrease the amount of data transferred in the MapReduce net-
work. In [21], a method was developed for tackling the workloads in hierarchical 
MapReduce architectures. HadUP was presented in [22]. HadUP is a modified version of 
Hadoop and uses a deduplication-based snapshot differential algorithm (D-SD) and up-
date propagation. Haloop [11] is another type of MapReduce structure suitable for itera-
tive problems. iMapreduce [9] also supports iterative processes. In [2], HDFS (Hadoop 
file system) was substituted with a concurrency-optimized data storage layer based on the 
BlobSeer data management service. In [4], a model was presented to estimate the I/O 
behaviour of MapReduce applications. In [3], optimization over the MapReduce structure 
was divided into five groups. Fig. 1 shows these groups.  

 

     
Fig. 1. MapReduce optimization techniques.    Fig. 2. Graph problem solutions classification. 

 

2.2 Methods for Solving Graph Problems 
 
There are several methods for solving graph problems. As shown in Fig. 2, solutions 

to graph problems can be divided into two categories: single node solutions and distrib-
uted solutions. Single node solutions, such as Neo4j [40], HyperGraphDB [34], FGL [27], 
JDSL [28], NetworkX [29], Stanford GraphBase [30], LEDA [31], and BGL [32], are 
usually not suitable for large graphs. Graphchi [37] is another single node solution for 
graph problems, but it solves subgraph problems sequentially and does not support syn-
chronous task support.  

In distributed solutions, there are two main categories: MapReduce-based methods 
and non-MapReduce-based methods. Almost all non-MapReduce methods are based on 
message passing. All the message-passing methods require space to catch the other nodes’ 
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Range partitioning: In this pattern, a graph is divided into subgraphs with an equal 
number of vertices. Each Mapper processes the related subgraphs separately. The hash 
function is usually used for graph division. However, vertices and their related neigh-
bours might not be included in a block. In practice, the properties of graphs are used to 
achieve effective partitions.  

In [1], a method for executing a query over a distributed graph is proposed. Map- 
Reduce is employed in [5] to solve graph problems, such as graph transformation, sub-
graph partition, maximal clique enumeration, connected component finding, and com-
munity detection. In [7], a master worker method is used to solve graph problems of an 
iterative nature. A method is proposed in [8] for converting MapReduce jobs to bulk 
synchronous parallelism (BSP) programming model [10] jobs to utilize the BSO features 
for the graph computations. In [12], a combination of partial synchronization and locality 
enhancement is employed to alleviate synchronization overhead and achieve improved 
performance. In [13], a method for implementing recursive queries on a MapReduce 
structure is proposed to solve specific graph problems. The performance of MapReduce, 
join-side MapReduce, and BSP in solving different graph problems is compared in [15]. 
The authors concluded that BSP performs better with regard to iterative problems but 
that MapReduce is a better choice for enormous networks in which the structure cannot 
be fitted into the local machine memory. A distributed computing model is proposed in 
[17]. The model supports multi-iteration and random data access. In [18], MapReduce is 
utilized to find all the instances of a given sample graph in a larger data graph. High- 
level API is introduced in [20] for developing data-intensive applications for use in graph 
mining. A MapReduce implementation of an incremental APSP algorithm is developed 
in [23]. In [33], MapReduce is employed to solve different graph problems, such as 
PageRank. There are several problems with MapReduce-based methods. In some Map- 
Reduce-based methods, all or at least some parts of the graph structure must be sent 
through the network, which thereby increases the network traffic. Some MapReduce- 
based methods use Hadoop, which does not support best data locality for graph nodes. 
MapReduce does not support iterations, which is essential for many graph algorithms. 
Non-MapReduce methods have the following problems. Some non-MapReduce methods 
use message passing, which increases the network traffic. When using message-passing 
methods, the memory space required for processing messages must be considered. The 
amount of space required could increase dramatically in large graphs. Some of the 
methods use iterations. Each iteration does not finish until all the hardware nodes com-
plete their tasks. This causes hardware usage inefficiency. Some of the methods prevent 
execution concurrency. No non-MapReduce methods account for data locality. To ad-
dress the problems with the current MapReduce and non-MapReduce methods, we pro-
pose ScaDiGraph, which offers the following advantages. It can divide a graph into 
hardware nodes and execute an algorithm independently of individual nodes, without any 
data exchanges with other nodes. The graph can be divided into subgraphs that have 
equal size vertices. This division can be based on business knowledge or any arbitrary 
property. It uses locality and does not send the graph structure and status of the vertices 
over the network because all the required information is placed on the local hardware 
node. It can efficiently utilize many weak hardware nodes to solve large graph problems 
in a timely manner. Depending on the problem definition, ScaDiGraph can use distribut-
able and scalable features of MapReduce architectures to improve the algorithm execu-
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APSP algorithm (Psuedo code 1) is executed on each Mapper for the subgraphs and 
on the Reducer for the deleted edges. As shown in Psuedo code 1, all the paths for the 
graph nodes on the Mapper are calculated, and the results are stored in the Map-
per_Edges_SRC table. Psuedo code 1 is also executed on the Reducer node for the nodes 
of the deleted edges, and the results are stored in the Deleted_Edges_SRC table. Psuedo 
code 2 is executed on the Reducer node for the APSP algorithm. As shown in Psuedo 
code 2, the following tasks are completed: 

 
1. Mapper_Edges_SRC is copied to Mapper_Edges_DST to create partitions on the 

“Source” and “Destination” fields. Then, a local index is created on the partitions on 
the “Source” or “Destination” fields. If the partition is on the “Source” field, then the 
local index is created on the “Destination” field, and vice versa.  

2. A while loop in the above code is repeated until there are unvisited rows in the Delet-
ed_Edges_SRC table.  

3. The “join” function is repeated up to the number of Deleted_Edges_SRC’s partition 
count. The “join” function joins the related partitions of Mapper_Edges_SRC and De-
leted_Edges_SRC and calculates the distances among the joined nodes.  

4. After the “join” function, new edges that previously did not exist are added to Delet-
ed_Edges_SRC to execute the related calculations for the new edges.  

5. Steps 3 and 4 are repeated for Deleted_Edges_SRC and Mapper_Edges_DST. Finally, 
the visited rows from Deleted_Edges_SRC are deleted.  

6. For the Deleted_Edges_DST table, steps 3-5 are executed with Mapper_Edges_DST 
and Mapper_Edges_SRC.  

7. Finally, the shortest paths for the “Source” and the “Destination” fields are selected.  

4.2 Pattern Matching  

To detect a pattern or a sequence of vertices, we use a modified version of the APSP 
algorithm. In pattern matching, the visited vertices rather than the path costs are extracted. 
For example, to find the “BCDF” sequence in the graph in Fig. 6, the graph is first di-
vided into two subgraphs, as shown in Fig. 7. Each Mapper then retrieves the paths that 
have a maximum length of four edges (input string length). Table 7 shows the results 
achieved with the Mappers. The deleted edges are then added to the graph, as depicted in 
Fig. 8. New paths with a maximum length of four edges with the  operator are extracted. 
Table 8 shows the results. In Table 8, all the paths that have a length of more than four 
edges are discarded. Table 9 shows the results after the Reducer phase. The pattern- 
matching algorithm (Psuedo code 3) is executed on each Mapper for the subgraphs and 
on the Reducer for the deleted edges. Psuedo code 3 execution process is the same as that 
for the APSP Mapper code, except that the code path among the graph nodes is calculat-
ed instead of the distance among the nodes. The maximum length of the path is equal to 
the length of the Input string for pattern matching. Psuedo code 4 execution process is the 
same as that for the APSP code; however, the final step extracts the rows that have 
“Value” fields equal to the Input string’s length.  

4.3 Loop Detection 

The proposed method can be used for loop detection in a graph; the pattern-match- 
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ing solution can be used to detect a loop in a graph. If, in the Reducer phase, the Keys are 
repeated, then we have a loop in a graph. For loop extraction, we can detect duplicate 
Keys that do not have more than two common vertices in their paths. For example, to 
find the loops in the graph in Fig. 6, the graph is first divided into two subgraphs, as 
shown in Fig. 7. Each Mapper then extracts the paths. Table 10 presents the results of the 
Mappers. The deleted edges are then added to the graph, as demonstrated in Fig. 8. New 
paths with the  operator are extracted. Table 11 shows the results. Because we have du-
plicated Keys in Table 11, we could have loop(s) in the graph. For loop extraction, the 
duplicated Keys are first identified. Paths that have the same Keys and less than three 
common vertices are then extracted as loops. The loop-detection algorithm is executed 
on each Mapper for the subgraphs and on the Reducer for the deleted edges. Psuedo code 
5 execution process is the same as the pattern-matching process. The maximum length of 
the path is equal to the length of the input value for the loop detection. Psuedo code 6 is 
executed on the Reducer for the loop-detection algorithm. The above code-execution 
process is similar to that for pattern matching; however, at the final step, paths that do not 
have more than two nodes in common are extracted. 

5. EVALUATION 

The evaluation was divided into three parts: Implementation and evaluation of 
APSP, Pattern matching and Loop detection 
 
5.1 APSP 

  
To evaluate the proposed method, the APSP algorithm with the proposed method 

was applied to information in a social network composed of expert users. This social 
network has approximately 50,000 users, and each user is displayed as a graph node. The 
relationships among these users make up approximately 10,000,000 edges. Table 13 
shows the specifications of the hardware nodes used for the proposed evaluation method. 
Each Mapper hardware node has 1,000 graph nodes. We divided the graph into sub-
graphs that have an equal number of nodes. Table 13 shows the specifications of the 
hardware nodes.  

We divided the graph into subgraphs that have an equal number of nodes. The nodes 
can be loaded on servers in an arbitrary manner. Table 14 shows the input data format. 
We divided the main graph based on the ID field, which is the primary key of the input 
data. The ID field grows sequentially. Based on the maximum value of the ID field and 
the number of Mappers (M), we determine the lower bound and upper bound of the IDs, 
which are present on each node.  

Mapper1 (0 < ID  <= Max(ID)/M);Mapper2 (Max(ID)/M  < ID <= 2 × Max(ID)/M);…;MapperM ((M-1) × Max(ID)/M < ID <= Max(ID)) 

We used Redis [25] as the In-Memory DBMS. Table 14 shows the results.  
 
5.2 Pattern Matching 
 

For pattern matching, we used bank transactions to detect any suspicious transaction  
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Pusedo code 4

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST); 
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST); 
Create local index on column “Destination” 
for each partition on table “Map-
per_Edges_SRC”;          
Create local index on column “Source” for 
each partition on table “Mapper_Edges_DST”;  
While (Select exists (visited) from 
Deleted_Edges_SRC where visited=0){ 
For i= 1 to Deleted_Edges_SRC. Parti-
tionCount { 
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)); 
Deleted_Edges_SRC. Partition(i). visit-
ed=1; 
Insert join results into Mapper_Edges_SRC; 
Insert join results into Mapper_Edges_DST; 
Insert new edges into Deleted_Edges_SRC;  
Insert new edges into Deleted_Edges_DST;  
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)); 
Insert join results into Mapper_Edges_SRC; 
Insert join results into Mapper_Edges_DST; 
Insert new edges into Deleted_Edges_SRC;  
Insert new edges into Deleted_Edges_DST;  
Delete from Deleted_Edges_SRC where 
visited=1; }      
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount { 
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)); 
Deleted_Edges_DST. Partition(i). visit-
ed=1; 
Insert join results into Mapper_Edges_SRC; 
Insert join results into Mapper_Edges_DST; 
Insert new edges into Deleted_Edges_SRC;  
Insert new edges into Deleted_Edges_DST;  
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)); 
Insert join results into Mapper_Edges_SRC; 
Insert join results into Mapper_Edges_DST; 
Insert new edges into Deleted_Edges_SRC;  
Insert new edges into Deleted_Edges_DST; 
Delete from Deleted_Edges_DST where 
visited=1; } }     
Select Source, Destination, Min(Value) From 
Mapper_Edges_SRC group by Source, Desti-
nation; 

Pusedo code 2 

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST); 
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST); 
Create local index on column “Destination” 
for each partition on table “Map-
per_Edges_SRC”;          
Create local index on column “Source” for 
each partition on table “Mapper_Edges_DST”; 
While (Select exists(visited) from De-
leted_Edges_SRC where visisted=0) 
{For i= 1 to Deleted_Edges_SRC. Parti-
tionCount 
 {Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ; 
Deleted_Edges_SRC. Partition(i). visit-
ed=1; 
Filter results where length(results. path) 
< length(InputPattern)); 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ; 
Filter results where length(results. path) 
<length(InputPattern)); 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Delete from Deleted_Edges_SRC where 
visited=1; }      
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount 
 {Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ; 
Deleted_Edges_DST. Partition(i). visit-
ed=1; 
Filter results where length(results. 
path)<length(InputPattern)); 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ; 
Filter results where length(results. 
path)<length(InputPattern)); 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_DST where 
visited=1; } }  
Select Source, Destination, Value From 
Mapper_Edges_SRC where Value= InputPat-
tern; 

 

Copy_Edges(Mapper_Edges_SRC, Map-
per_Edges_DST); 
Copy_Edges(Deleted_Edges_SRC, Delet-
ed_Edges_DST); 
Create local index on column “Destination” 
for each partition on table “Map-
per_Edges_SRC”;          
Create local index on column “Source” for 
each partition on table “Mapper_Edges_DST”;
 While (Select exists(visited) from 
Deleted_Edges_SRC where visisted=0) 
{For i= 1 to Deleted_Edges_SRC. Parti-
tionCount { 
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ; 
Deleted_Edges_SRC. Partition(i). visit-
ed=1; 
Filter results where length(results. 
path)<= InputLength; 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_SRC. Partition(i). 
PartitionName),        Deleted_Edges_SRC. 
partition (Deleted_Edges_SRC. Parti-
tion(i). PartitionName)) ; 
Filter results where length(results. 
path)<= InputLength; 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Delete from Deleted_Edges_SRC where 
visited=1; }      
 For i= 1 to Deleted_Edges_DST. Parti-
tionCount { 
Join(Mapper_Edges_SRC. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ; 
Deleted_Edges_DST. Partition(i). visit-
ed=1; 
Filter results where length(results. 
path)<= InputLength; 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST; 
Join(Mapper_Edges_DST. parti-
tion(Deleted_Edges_DST. Partition(i). 
PartitionName),        Deleted_Edges_DST. 
partition (Deleted_Edges_DST. Parti-
tion(i). PartitionName)) ; 
Filter results where length(results. 
path)<= InputLength; 
Insert join results into Mapper_Edges_SRC;
Insert join results into Mapper_Edges_DST;
Insert new edges into Deleted_Edges_SRC; 
Insert new edges into Deleted_Edges_DST;
Delete from Deleted_Edges_DST where 
visited=1; } }  
 Duplicate_Set =(Select Source, Destina-
tion, Value From Mapper_Edges_SRC having 
count(concat(Source, Destination))>1) 
For each concat(Source, Destination) in 
Duplicate_Set 
{   For i= 1 to Count(Values)-1 //Number of 
paths 
    For j= i+1 to Count(Values)      { 
        If (Inter-
sect(Value(i),Value(j))==2)    Insert into 
Results(Value(i),Value(j))    }  }  

Pusedo code 6 

sequences among the customers. The customers and their transactions are considered to 
be graph nodes and edges, respectively. We found patterns that have a length of ten edg-
es. This bank has approximately 130,000 customers and approximately 2,500,000 trans-
actions in three months. The results are shown in Table 16. 
 
5.3 APSP 

 
For loop detection, we used the bank transactions described in section 5.2 to find  
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loops that have a length of ten edges. The detection of loops among the customers signi-
fies fraudulent activity, such as money laundering or fake transactions aimed at falsely 
increasing the turnover. The results are shown in Table 17. The detected loops were sent 
to the bank’s fraud-detection office for further investigation.  
 
5.4 Comparison of the Proposed Method with Other Methods 
 

We applied the Pegasus, Pregel (Graph 1.0.0), and Power Graph 2.2 algorithms to 
graphs on fifty servers using the specifications shown in Table 18. The total RAM 
memory used for fifty nodes in ScaDiGraph is 912 GB, and the total HDD used is 10.5 
TB. Fifty core i5 CPUs and a core i7 CPU are used as the processors. The total RAM 
used for each of the other methods (Pegasus, Pregel, and Power Graph) is 3.2 TB, and the 
total HDD used is 50 TB. Fifty core i7 CPUs are used as processors. Thus, it can be seen 
that ScaDiGraph uses less hardware resources (RAM, HDD and CPU) to solve graph 
problems. The results are shown in Fig. 8. The detected loops were sent to the bank’s 
fraud-detection office for further investigation.  

6. DISCUSSION 

The proposed method works better than Pregl, Pegasus and Power graphs because 
all these methods must exchange intermediate results among the hardware nodes. Ex-
changing messages among the hardware nodes has two main problems. The first problem 
is that each hardware node must store messages from other hardware nodes. If we have a 
large graph, then we have too many subgraphs, and therefore, we require a large amount 
of memory to maintain and process the messages and we must have a message process 
queue. On the other hand, message exchange among hardware nodes causes network 
congestion. Both network congestion and message process queues cause the sender 
hardware nodes to wait, which causes improper use of the processing power and memory 
capacity. Nevertheless, in ScaDiGraph, there is no relation among the Mapper hardware 
nodes. Each Mapper works with its subgraph, and therefore, data locality is completely 
met. In other words, all the data necessary to execute an algorithm on the hardware node 
are located on the same hardware node; therefore, we have avoided message exchange 
among the hardware nodes and its consequences.  

The best execution time for ScaDiGraph occurs when we have an isolated subgraph 
on each Mapper (thus, there is no deleted edge and no calculation on the Reducer node). 
Fig. 9 shows the best case. The worst execution time occurs when all the nodes on each 
Mapper have no relation with other nodes and all the relations among the nodes are add-
ed at the deleted edges. In such cases, ScaDiGraph cannot improve the execution time, 
and all the calculations must be performed on the Reducer node. Fig. 10 shows the worst 
case. We used two techniques to solve the graph problems separately on each hardware 
node. First, we unified the data format on each hardware node. Second, we changed the 
algorithm in such a way that each node can solve its problem in a solitary way. We have 
used this technique to solve problems in other fields, such as data mining [40] and data-
bases [41], and this technique has achieved lower execution times than other prominent 
existing methods.  
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Graph divides a large graph into subgraphs. Each node of the subgraph executes an algo-
rithm without the need for information about other subgraphs. By converting large graph 
problems into subgraphs, the proposed method can solve graph problems in a timely 
manner. Another advantage of the proposed method is that commodity hardware nodes 
can be used to solve large graph problems. By converting the iterative nature of graph 
problems into non-iterative problems, ScaDiGraph makes it possible to solve these prob-
lems using MapReduce methods. The method was applied to two case studies: an expert 
social network for which APSP algorithms were used and a bank’s transactions for which 
pattern matching and loop detection problems were solved.  
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