
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 1109-1120 (2013)

1109

On the Min-Max 2-Cluster Editing Problem

LI-HSUAN CHEN1, MAW-SHANG CHANG2, CHUN-CHIEH WANG1

AND BANG YE WU1,*
1Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, 621 Taiwan

2Department of Computer Science and Information Engineering
Hungkung University
Taichung, 433 Taiwan

In this paper, we study the problem Min-Max 2-Cluster Editing which asks for a

modification of a given graph into two maximal cliques by inserting or deleting edges
such that the maximum number k of the editing edges incident to any vertex is mini-
mized. We show the NP-hardness of the problem and present a polynomial-time algo-
rithm when k < n/4, in which n is number of vertices. In addition, we design a 2-ap-
proximation algorithm and a branching algorithm for finding an optimal solution. By
experiments on random graphs, we show that the exact algorithm is much more efficient
than a trivial one.

Keywords: algorithm, clustering editing, graph modification problem, NP-hard, approxi-
mation algorithm

1. INTRODUCTION

Graph clustering is an important issue in computer science and finds many applica-
tions, especially in bioinformatics and machine learning. A cluster graph is an undirected
graph consisting of disjoint maximal cliques. The maximal cliques in a cluster graph are
also called clusters. Basically, the goal is to find a way to modify a given graph into a
cluster graph. However, there are several versions of related problems, such as Consen-
sus Clustering, Correlation Clustering and Cluster Editing. In the following, we shall
only mention some of them.

Consensus Clustering: The problem is also known in the literature as the median parti-
tion problem. In [1], it was proposed to an application in bioinformatics. The minimiza-
tion version is known to be Max-SNP-hard even with just three input clusterings, while
the maximization version admits a PTAS [2]. A variant in which the number of clusters
is fixed has also been studied [3].

Correlation Clustering: The problem (on complete signed graphs) was formulated and
studied in [4], in which the authors presented a PTAS for the maximization version and a
constant factor approximation algorithm for the minimization version. Ailon et al. [5]
showed some approximation results for the minimization version, including the un-
weighted case and the weighted case with some interesting assumptions on weights. For

Received February 20, 2013; accepted April 19, 2013.
Communicated by Ruay-Shiung Chang and Sheng-Lung Peng.
* Corresponding author, E-mail: bangye@ccu.edu.tw.

admin
打字機文字
DOI:10.1688/JISE.2013.29.6.3

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1110

p ≥ 2, p-Correlation Clustering is a variant in which the number of clusters is required to
be upper bounded by p. Giotis and Guruswami showed that both the minimization and
the maximization versions of p-Correlation Clustering admit PTAS for the unweighted
case [6]. The maximization 2-Correlation Clustering problem is also known as Balanced
Subgraph which comes from the application in social network analysis [7, 8].

Cluster Editing: The problem looks for the minimum number of edge insertions and
deletions to modify the input graph to a cluster graph [9]. Cluster Editing is closely re-
lated to graph clustering and arises in bioinformatics [10]. For an integer p, a cluster
graph is a p-cluster graph if the number of clusters is at most p, and an important variant
is p-Cluster Editing which modify the input graph to a p-cluster graph.

Balancing Sign Graph: A complete signed graph is a simple undirected graph with ei-
ther a positive edge or a negative edge between each pair of vertices. On the social net-
work analysis, sign graphs are often used to describe the ‘like’ or ‘dislike’ relationship
amount a group of people [8]. As a representation of a social network, the sign graphs
with a cycle of odd number of negative edges are considered unstable or unbalanced.
Therefore, there arises the problem: balancing signed graph, which is to change the sign
of the minimum number of edges such that there is no cycle with odd number of negative
edges. Due to a theorem from Harary [7], it is known that balancing a complete signed
graph is identical to solve the 2-Cluster Editing problem.

In this paper we study a natural variant, named Min-Max 2-Cluster Editing, of Clus-
ter Editing. While Cluster Editing minimizes the total number of editing edges, for Min-
Max Cluster Editing we hope that the number of inserting and deleting edges incident to
any vertex is small. The decision version is called max-k-editable which determines if a
graph can be modified into a 2-cluster graph in such a way that the number of editing
edges incident to each vertex is at most k.

Shamir et al. [9] studied the computational complexities of three edge modification
problems. Cluster Editing asks for the minimum total number of edge insertions and de-
letions, while in Cluster Deletion (respectively, Cluster Completion), only edge deletions
(respectively, insertions) are allowed. They showed that Cluster Editing is NP-hard,
Cluster Deletion is Max SNP-hard, and Cluster Completion is polynomial-time solvable.
For a constant integer p ≥ 2, p-Cluster Deletion (similarly, p-Cluster Editing) is a variant
of Cluster Deletion in which the desired solution must contain exactly p clusters. They
also showed that p-Cluster Deletion is NP-hard for any p > 2 but polynomial-time solv-
able for p = 2, and p-Cluster Editing is NP-hard for any p ≥ 2. In the literature, there are
several results on the fixed-parameter time complexities for Cluster Editing and Cluster
Deletion, for example [11-17], and the most recent result can be referred to [18]. A vari-
ant with vertex (rather than edge) deletions was considered in [19], and another variant in
which overlapping clusters are allowed was studied in [20].

Although Min-Max 2-Cluster Editing is a natural variant, there seems no study in
the literature. In this paper, we show the following results.

 Min-Max 2-Cluster Editing is NP-hard.
 If the input graph is k-editable with k < n/4, Min-Max 2-Cluster Editing can be solve in

O(n2) time.

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1111

 We design a heuristic algorithm which always reports a 2-approximation solution.
 We also present a branching algorithm for solving the problem exactly. By designing

good reduction rules, the algorithm performs much better than the trivial brute force
method. We show the performance by experiments.

The rest of the paper is organized as follows. In section 2, we give some notation

and definitions used in this paper. We show the NP-hardness in section 3 and the poly-
nomial-time solvable case is shown in section 4. The approximation algorithm is pre-
sented in section 5. The branching algorithm and experimental results are in section 6.
Finally concluding remarks are given in section 7.

2. PRELIMINARIES

The set-minus is denoted by ‘‘\’’, i.e., for two sets S and S, S \ S = {e | e  S and e 
S}. For a graph G, V(G) and E(G) denote the vertex and the edge sets, respectively. In
this paper, a graph is always undirected and simple. Two vertices u and v are neighbors
of each other if (u, v)  E. For a vertex subset U, the subgraph of G induced by U is de-
noted by G[U]. For an edge subset F, the subgraph induced by F is the graph whose edge
set is F and its vertex set contains all the endpoints of edges in F. Since there will be no
confusion from the context, we also use G[F] to denote the edge-induced subgraph.

The degree of a vertex v in a graph G, denoted by dG(v), is the number of its neigh-
bors in G. For a vertex subset U, let d(v, U) denote the number of neighbors of v in U, i.e.,
d(v, U) = |{u  U | (u, v)  E}|. Let d(v, U) = |{u  U | (u, v)  E}|. For F  V  V, we
use dF(v) to denote dH(v) in which H = (V, F). A clique is a complete subgraph. A k-
clique is a clique of k vertices. A clique is maximal if it is not properly contained in an-
other clique. A maximum clique of a graph is a clique of maximum number of vertices.
For two sets S and T, let S  T = (S \ T)∪(T \ S) denote the symmetric difference. For G =
(V, E), a set F  V  V is an editing set if G = (V, E  F) is a 2-cluster graph.

PROBLEM: Max-k Editable
INSTANCE: A graph G = (V, E) and a positive integer k.
QUESTION: Is there an editing set F such that dF(v) ≤ k for each v  V?

We say that a graph is max-k-editable, or simply k-editable, if such an editing set exists.
The optimization version will be called Min-Max 2-Cluster Editing, which finds the mi-
nimized k such that the given graph G is k-editable.

A 2-partition  = (V1, V2) of V is an unordered pair of vertex subsets V1 and V2 such
that V1∪V2 = V and V1∩V2 = Ø. Immediately, G = (V, E  F) is a 2-cluster graph if and
only if there exists a 2-partition  = (V1, V2) of V such that both G[V1] and G[V2] are
cliques, as well as (u, v)  E  F for any u  V1 and v  V2. We say that  is the feasible
2-partition if G is k-editable. At a glance, it seems that we should try to find the best ed-
iting set for Max-k Editable. But it is sometimes more convenience to find the feasible
2-partition.

Two vertices u and v are co-clustered in  if they are in the same cluster. For a 2-
partition , define the conflict between two vertices as follows.

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1112











 otherwise 0

clustered-conot are they and),(

or clustered;-co are they and),(if 1
),(Evu

Evu
vuC (1)

The relation between conflicts and editing set comes from the definitions.

Lemma 1: Suppose that G is k-editable and F is the editing set. Let G = (V, E  F) and
 be the corresponding feasible 2-partition. Then, Cπ(u, v) = 1 if and only if (u, v)  F.

For a vertex subset U, let C(v, U) = ∑uUCπ(v, u), and the conflict number of a vertex v
is C(v) = ∑uVC(v, u). Max-k Editable is equivalent to determining if there exists a 2-
partition π such that C(v) ≤ k for each v  V.

3. NP-COMPLETENESS

We shall show the NP-completeness of Max-k Editable by reducing from the 3-SAT
problem. An instance of 3-SAT consists of n variables xi, 1 ≤ i ≤ n, and m clauses Di, 1 ≤
i ≤ m, in which each clause contains exactly three literals. We make the following two
restrictions on the 3-SAT problem.

1. Assigning all variables false cannot satisfy all the clauses.
2. There is no true assignment making all literals of all clauses true.

It is not hard to see the restrictions do not affect the NP-completeness. For an instance of
the 3-SAT problem, we add additional n variables xi, n + 1 ≤ i ≤ 2n, and construct a
graph G = (V, E) as follows, in which V consists of pairwise disjoint subset M, U, and Q.
Let W > max{n, m} be a sufficiently large integer and J(i) = {j | xj  Di  xj  Di} be the
set of indexes for which variable xj is involved in clause Di.

 There is a vertex Di for each clause. Let M = {Di | 1 ≤ i ≤ m} be a clique.
 Let U be the set of 2n disjoint cliques defined as follows. For 1 ≤ i ≤ 2n, let Xi be a

clique containing 2W vertices.
 Q is a clique of 4W vertices and there is no edge linking a vertex of Q to any vertex

outside Q.
 For each clause Di, if xj  Di, then Di is connected to all vertices of Xj. If xj  Di, then

there is no edge between vertex Di and any vertex in Xj. Otherwise, for j  J(i), Di is
connected to W vertices in Xj. Note that Di is connected to W vertices in Xj for any n +
1 ≤ j ≤ 2n since neither xj nor xj is in Di.

 k = (2n + 1)W.

Definition 1: For a 2-partition  = (V1, V2), a vertex subset Y is not split by  if Y is en-
tirely in V1 or V2.  is regular if it meets the following conditions: (1) M  V1; (2) Q  V2;
and (3) Xj is not split by  for any j. For a 2-partition  not splitting any Xj, we define T[]
as a truth assignment such that xi is true if and only if Xi  V1. Let T[] be the reverse
true assignment of T[].

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1113

Since a 2-partition is an unordered pair of vertex subsets, (V1, V2) = (V2, V1) and we
shall assume M  V1 and Q  V2 when (V1, V2) is regular.

Proposition 1: Suppose that  = (V1, V2) is a regular 2-partition. The clause Di is satis-
fied by T[] if and only if C(Di) ≤ (2n + 1)W.

Proof: Since  is regular, C(Di, M) = C(Di, Q) = 0 and therefore C(Di) = C(Di, U).
For any literal yj = xj or  xj in Di, yj is true if and only if Cπ(Di, Xj) = 0, and otherwise
C(Di, Xj) = 2W. For any variable xj such that j  J(i), Cπ(Di, Xj) = W no matter which
cluster Xj belongs to. There are exactly 2n  3 such variables since Di contains three lit-
erals.

If Di is satisfied by T[], at least one of its literals is true, and therefore C(Di, U) ≤
4W + (2n  3)W = (2n + 1)W. Conversely if C(Di, U) ≤ (2n + 1)W, at least one of its
literals is true. 

Lemma 2: If there is a truth assignment satisfying all the clauses, then G is k-editable.

Proof: We construct a regular 2-partition  = (V1, V2) as follows. For each 1 ≤ j ≤ n, Xj 
V1 if and only if xj is true. The other cliques Xj are distributed such that V1 contains ex-
actly n + 1 cliques of U. Precisely speaking, let p be the number of variables which are
assigned true, by the restriction 1 of the 3-SAT problem, p > 0. We set {Xi | n + 1 ≤ i ≤ 2n
+ 1  p}  V1 and all Xi are in V2 for i > 2n + 1  p. Note that V1 contains exactly n + 1
cliques of U besides the clique M. Also V2 contains n  1 cliques of U and the clique Q.
Therefore |V2| = (2n + 2)W and |V1| = (2n + 2)W + m.

For any vertex vV2, d(v, V2) ≤ 2nW which is the number of vertices in V2 but out-
side the clique containing v. Then C(v) = d(v, V2) + d(v, M) ≤ 2nW + m ≤ (2n + 1)W.
Similarly, for v  U ∩ V1, C(v) = d(v, U ∩ V1) + d(v, M) ≤ 2nW + m ≤ (2n + 1)W. Next
consider any vertex Di  M. Since  is regular, by Proposition 1, C(Di) ≤ (2n + 1)W. 

Next we show the other direction.

Lemma 3: If G is k-editable, then there is a truth assignment satisfying all the clauses.

Suppose that G is k-editable. By definition there exists a 2-partition  = (V1, V2) such that
C(v) ≤ k for each v  V. The key point is to show that  must be regular, and then
Lemma 3 is immediately followed from Proposition 1.

Claim: For 1 ≤ i ≤ 2n, clique Xi is not split by .

Proof: Let U+ = U∪Q. Suppose by contradiction that Xi is split. For y1  Xi ∩ V1,

C(y1, U
+) = |Xi ∩ V2| + |V1 ∩ (U+ \ Xi)|

and for y2  Xi ∩ V2,

C(y2, U

+) = |Xi ∩ V1| + |V2 ∩ (U+ \ Xi)|.

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1114

Since the sum of the right-hand sides of the above two equations is |U+| = (4n + 4)W, we
have

maxyXiCπ(y) ≥ (1/2)(Cπ(y1, U
+) + Cπ(y2, U

+)) = (2n + 2)W > k,

which is a contradiction and therefore Xi is not split. 

The next claim can be shown similarly.

Claim: Clique Q is not split by .

By the above claim, we may assume Q  V2. Next we claim the vertices of U+ are
evenly distributed.

Claim: |V1 ∩ U+| = |V2 ∩ U+| = (2n + 2)W.

Proof: By the above claims, cliques in U+ are not split. If U+ is not evenly divided, one of
them contains at least (2n + 4)W vertices. For any vertex v in this set but not in Q, since at
most 2W  1 of them are its neighbors, Cπ(v) ≥ (2n + 2)W > k, which is a contradiction. 

Claim: M  V1.

Proof: Let Mi = M∩Vi for i = 1, 2. For Di  M2,

C(Di)  C(Di, Q) + C(Di, U) + |M1| = 4W + (2n  3)W + |M1|, (2)

and the equality holds only when C(Di, Xj) = 0 for any j  J(i). That is, all the three lit-
erals are set true by T [].

If M1  Ø, we have C(Di) > k. Therefore M1 or M2 is empty. If M1 = Ø and the equa-
lity of Eq. (2) holds for each Di, then T [] satisfies all literals of all clauses. It is a con-
tradiction to our restriction 2 of the 3-SAT problem, and therefore we obtain M2 = Ø. 

Lemma 3 is shown by the above claims and the next theorem follows from Lemmas
2 and 3.

Theorem 1 Min-Max 2-Cluster Editing is NP-complete.

4. POLYNOMIAL-TIME SOLVABLE CASE

In this section we show how to solve the problem when k < n/4. Here and after we
shall let G = (V, E) be the input graph and n = |V|.

We define an operation “moving vertices” on 2-partitions as follows. Let  = (V1, V2)
be a 2-partition of V. Another 2-partition  is obtained by moving a vertex u in  if  =
(V1  {u}, V2  {u}). Recall that  is the symmetric difference, and therefore

 \ { } if

{ } .
{ } if

i i
i

i i

V u u V
V u

V u u V


    

 (3)

In other words, u is moved from its original part to the other. The operation of moving a

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1115

set of vertices is defined similarly, and we denote by  = ΔU() that  is obtained by
moving a set U of vertices in . The next relation follows from definitions directly.



 


 otherwise),(

in is and of oneexactly if),(1
),(' vuC

UvuvuC
vuC




 (4)

Consequently, if  = Δ{u}(), then C(u) = n  1  C(u).
For any vertex v, the v-partition is a 2-partition  = (V1, V  V1), in which V1 = {v}

∪{u | (u, v)  E}.

Lemma 4: If G is k-editable, for any v  V there exists U  V with |U| ≤ k such that * =
ΔU(π) is feasible, in which  is the v-partition.

Proof: By the assumption, there exists a vertex 2-partition * such that C*(u)  k for
each u  V. Therefore for any v, the size of the set U defined by U = {u | C*(v, u) = 1} is
less than or equal to k. By definition, moving U in * results in the v-partition , i.e.,  =
ΔU(*). 

We shall call the set U in Lemma 4 a feasible moving set.

Lemma 5: Suppose that  is the v-partition for arbitrary v and G is k-editable with k <
n/4. For any vertex u and any feasible moving set U, if C(u) ≥ n/2, then u  U.

Proof: By Lemma 4, there exists a feasible partition * = ΔU() with |U|  k. Since k <
n/4, if C(u) ≥ n/2, we have C(u) > 2k. If u  U, moving U will reduce the conflict num-
ber of u by at most k and Cπ*(u) > (n/2)  (n/4) > k, which is a contradiction. Therefore, u
 U. 

Lemma 6: Suppose that  is the v-partition for arbitrary v and G is k-editable with k <
n/4. For any vertex u and any feasible moving set U, if C(u) < n/2, u  U.

Proof: By Lemma 4, there exists a feasible partition * = ΔU() with |U|  k. By the as-
sumption k < n/4, if u  U and  = Δ{u}(), C (u) = n  1  C(u) ≥ n/2. Moving the
other |U|  1 vertices will still have Cπ*(u) ≥ (n/2)  |U| + 1 > k, which is a contradiction,
therefore, u  U. 

Theorem 2 If G is k-editable and k < n/4, the problem Min-Max 2-Cluster Editing can
be solved in O(n2) time.

Proof: Starting from the v-partition  for an arbitrary vertex v, we compute U = {u | C(u)
≥ n/2}. Then we move U to obtain  = ΔU(), and compute k = maxuV C(u). It is triv-
ial that all the steps can be done in O(n2) time.

If G is k-editable with k < n/4, by the above two lemmas, each vertex either must be

moved or cannot be moved. Therefore  is the only possible feasible 2-partition. If k <
n/4, we obtain the minimized k; and otherwise there is no feasible solution with k < n/4. 

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1116

5. AN APPROXIMATION ALGORITHM

Consider the greedy algorithm which beginning from an arbitrary partition , re-
peatedly moves the vertex u with the maximum conflict number until all the vertices
have conflict number at most n/2.

Lemma 7: The greedy algorithm stops within n2 iterations and takes O(n3) time.

Proof: Consider the total conflict number over all vertices. The result follows from two
facts. First the total conflict number strictly decreases after each iteration. Second, the
initial total conflict number is at most n(n  1). The time complexity follows from each
iteration takes O(n) time to update the conflict numbers and find the vertex to move. 

Corollary 1 Any undirected simple graph is n/2-editable.

By Theorem 2, we can check in O(n2) time if a graph is k-editable with k < n/4, as

well as find the optimal k if the answer is yes. If the answer is no, we can find a feasible
solution for k ≤ n/2 by the greedy algorithm. Since in this case the optimal k is at least
n/4, we find a 2-approximation. Therefore we have the next result.

Theorem 3 A 2-approximation solution of Min-Max 2-Cluster Editing can be found in
O(n3) time.

6. A BRANCHING ALGORITHM AND EXPERIMENTS

In this section we present an exact algorithm for Min-Max 2-Cluster Editing. In the
following we focus on the decision version. That is, the algorithm determines if the input
graph is k-editable. To find the minimized k, we first check if there is a solution with k <
n/4. If not, we start from k = n/4 and iteratively increase k one by one to find the mini-
mum k such that G is k-editable. Since Max-k Editable looks for a feasible 2-partition, a
straightforward algorithm is to check the existence of a feasible 2-partition. But our
branch-and-bound algorithm focuses on the feasible moving set instead of the 2-partition.
In the branching algorithm, all vertices are divided into three subsets: M, M, and U,
which contain the vertices must in the moving set, must not in the moving set, and unde-
termined, respectively. Starting from a v-partition for an arbitrarily chosen vertex v and
an initial moving set M = Ø, the algorithm chooses an undetermined vertex u and recur-
sively searches the two branches: adding u into M or into M.

Similar to many branch-and-bound algorithms, the theoretical efficiency is hard to
analyze. The theoretical worst-case time complexity of our branch algorithm is O(n2B(n,
k)), in which B(n, k) is the binomial coefficient of choosing k in n objects. The algorithm
takes the advantage that the size of a feasible moving set is at most k while there are 2n-1
possible 2-partitions. However, since B(n, k) goes up to 2n when k is large, the time com-
plexity is exponential. But we may improve the practical performance by designing some
reduction rules to avoid exhaustive search. The efficiency will be shown by experimental
results.

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1117

In section 4, we have derived two rules. When k < n/4, every vertex can be deter-
mined if it needs to move to obtain a feasible partition. However, when k ≥ n/4, not all
the vertices can be determined. But we can generalize it to design reduction rules. For a
partial solution (M, U) and an initial v-partition , we can have the following two rules.
Let  = ΔM().

Lemma 8: For any u  U, if C(u) > 2k  |M|, then any feasible moving set S  M must
contain u.

Proof: By definition |S| ≤ k. Since C(u) > 2k  |M|, if u  S, moving S \ M from  will
reduce the conflict number of u by at most k  |M| and result in a conflict number at least
C(u)  (k  |M|) > k, which is a contradiction. 

Lemma 9: For any u  U, if C(u) < n  2k + |M|, then any feasible moving set S  M
cannot contain u.

Proof: Since C(u) < n  2k + |M|, if u  S, then C(u) > n  1  (n  2k + |M|) = 2k  1
 |M|, in which  = Δ{u}(). Then moving S \ (M∪{u}) in  will reduce the conflict
number of u by at most k  |M|  1 and result in a conflict number larger than 2k  1 
|M|  (k  |M|  1) = k, which is a contradiction. 

Table 1. Average running times on 20 Type-1 random graphs.
p n = 30 n = 35 n = 40 n = 50 n = 300

0.2 1.59(3.46) 13.1(48.6) > 100 > 100 > 100
0.5 1.07(1.94) 10.7(21.2) > 100 > 100 > 100
0.8 0.005(0.055) 0.0008(0.195) 0.0013(1.42) < 1(> 100) < 1(> 100)

Table 2. Average running times on 20 Type-2 random graphs with n = 40 and m = 40+kl.
l k = 10 k = 12 k = 14 k = 16 k = 18
2 0.0005(0.001) 0.0009(0.002) 0.0010(0.002) 0.0013(0.003) 0.3922(3.796)
5 0.0005(0.001) 0.0007(0.002) 0.0010(0.002) 0.0016(0.004) 16.0351(54.998)

10 0.0007(0.001) 0.0007(0.002) 0.0009(0.002) 0.0243(30.498) 102.0826(422.9)

In the remaining paragraphs of this section, we show the experimental results. Two
types of random graphs are used in the experiments. In a random graph of the first type,
an edge exists with an independent identical probability p. For the second type, a graph is
generated from a 2-cluster graph and an editing set F such that |F| = m and there are l
vertices with degree k in F. Two kinds of experiments were performed: efficiency of the
exact algorithm, and practical performance of the approximation algorithm.

In Table 1, we compare the execution times (in seconds) of the exact algorithm with
and without reduction rules for Type-1 data. The numbers in the parentheses are running
times without reduction rules. It is shown that using the reduction rules greatly reduces
the execution time, especially on the graphs with higher density. In the density cases p =
0.8, the optimal solutions on graphs with 300 vertices can be found within one second.
As shown in Table 2 we also performed tests on Type-2 data. Again, the numbers in the

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1118

parentheses are running times without reduction rules. The experimental results show
that when l ≤ 10, the algorithm with reduction runs very fast for n/4 < k  n/3 but the
running time gets larger when k is close to n/2. It should be noticed that the running
times are smaller in the cases with smaller l.

Table 3. Average approximation ratio times on 20 Type-1 random graphs.
p n = 30 n = 35

0.2 1.0541(1.1538) 1.0562(1.0625)
0.5 1.0813(1.1538) 1.0531(1.0625)
0.8 1(1) 1(1)

Table 4. Average (worst) approximation ratio on 20 Type-2 random graphs with n = 40
and m = 40 + kl.

p k = 15 k = 16 k = 17 k = 18
0.2 1 1 1 1.0056(1.1111)
0.5 1 1 1.0147(1.1765) 1.0611(1.1111)
0.8 1 1.0125(1.2500) 1.1235(1.1765) 1.1056(1.1111)

In the second experiment, as Tables 3 and 4, the approximation ratios are tested on
both types of graphs with vertices less than 100 and k ≤ n/3. In all the tests we performed
the approximation ratios are all within 1.3.

7. CONCLUDING REMARKS

In addition to good approximation algorithms and exact algorithms for Min-Max
2-Cluster Editing, interesting future works also include how to generalize the results of
this paper to the version that the number of cluster is more than two or the number of
clusters is not specified.

ACKNOWLEDGMENT

L.-H. Chen and M.-S. Chang were supported in part by NSC 99-2221-E-241-015-
MY3, and B.Y. Wu and C.-C. Wang were supported in part by NSC 100-2221-E-194-036-
MY3 and NSC 101-2221-E-194-025-MY3 from the National Science Council, Taiwan.

REFERENCES

1. V. Filkov and S. Skiena, “Integrating microarray data by consensus clustering,” In-
ternational Journal on Artificial Intelligence Tools, Vol. 13, 2004, pp. 863-880.

2. P. Bonizzoni, G. D. Vedova, R. Dondi, and T. Jiang, “On the approximation of cor-
relation clustering and consensus clustering,” Journal of Computer and System Sci-
ences, Vol. 74, 2008, pp. 671-696.

3. P. Bonizzoni and G. D. Vedova, R. Dondi, ‘‘A ptas for the minimum consensus

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1119

clustering problem with a fixed number of clusters,’’ in Proceedings of the 11th
Italian Conference on Theoretical Computer Science, 2009, pp. 55-58.

4. N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine Learning,
Special Issue on Clustering, Vol. 56, 2004, pp. 89-113.

5. N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information:
Ranking and clustering,” Journal of ACM, Vol. 55, 2008, pp. 1-27.

6. I. Giotis and V. Guruswami, “Correlation clustering with a fixed number of clus-
ters,” Theory Computing, Vol. 2, 2006, pp. 249-266.

7. F. Harary, “On the notion of balance of a signed graph,” Michigan Mathematical
Journal, Vol. 2, 1953, pp. 143-146.

8. S. Wasserman and K. Faust, Social Network Analysis, Cambridge University Press,
Cambridge, 1994.

9. R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems,” Discrete
Applied Mathematics, Vol. 144, 2004, pp. 173-182.

10. T. Wittkop, J. Baumbach, F. Lobo, and S. Rahmann, “Large scale clustering of pro-
tein sequences with FORCE-a layout based heuristic for weighted cluster editing,”
BMC Bioinformatics, Vol. 8, 2007, pp. 396.

11. S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truss, “Going weighted: Param-
eterized algorithms for cluster editing,” Theoretical Computer Science, Vol. 410,
2009, pp. 5467-5480.

12. J. Chen and J. Meng, “A 2k kernel for the cluster editing problem,” in Proceedings
of International Conference on Computing and Combinatorics Conference, 2010,
Vol. 6196, 2010, pp. 459-468.

13. P. Damaschke, “Bounded-degree techniques accelerate some parameterized graph
algorithms,” in Proceedings of Workshop on Parameterized and Exact Computation,
LNCS, Vol. 5917, 2009, pp. 98-109.

14. P. Damaschke, “Fixed-parameter enumerability of cluster editing and related prob-
lems,” Theory of Computing Systems, Vol. 46, 2010, pp. 261-283.

15. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, “Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation,” Theory of Computing Systems,
Vol. 38, 2005, pp. 373-392.

16. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, “Automated generation of search
tree algorithms for hard graph modification problems,” Algorithmica, Vol. 39, 2004,
pp. 321-347.

17. J. Guo, “A more effective linear kernelization for cluster editing,” Theoretical Com-
puter Science, Vol. 410, 2009, pp. 718-726.

18. S. Böcker and P. Damaschke, “Even faster parameterized cluster deletion and cluster
editing,” Information Processing Letters, Vol. 111, 2011, pp. 717-721.

19. F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier, “Fixed-parameter algo-
rithms for cluster vertex deletion,” Theory of Computing Systems, Vol. 47, 2010, pp.
196-217.

20. M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann, “Graph-
based data clustering with overlaps,” Discrete Optimization, Vol. 8, 2011, pp. 2-17.

LI-HSUAN CHEN, MAW-SHANG CHANG, CHUN-CHIEH WANG AND BANG YE WU

1120

Li-Hsuan Chen (陳立軒) is a Ph.D. student of Computer
Science and Information Engineering in National Chung Cheng
University. He received his Master degree in physics from Na-
tional Tsing Hua University in 2009. His research focuses on
computer algorithms, graph theory, and social network analysis.

Maw-Shang Chang (張貿翔) received his B.S. degree in
electric engineering from National Cheng Kung University in 1975,
M.S. degree in information management from National Tsing Hua
University in 1983, and Ph.D. degree in computer science from
National Tsing Hua University in 1990. In 1990, he joined the De-
partment of Computer Science and Information Engineering, Na-
tional Chung Cheng University, where he became Professor in
1996. From 1996 to 2001, he was the director of library at National
Chung Cheng University. He is currently the Chairman of Com-
puter Science and Information Engineering at Hungkuang Univer-

sity. His current research interests include computer algorithms, graph theory, computa-
tional molecular biology, and library information systems.

Chun-Chieh Wang (王俊杰) received his MS degrees in
Computer Science and Information Engineering at National Chung
Cheng University in 2013.

Bang Ye Wu (吳邦一) received the B.S. degree in 1986
from the Department of Electrical Engineering at Chung Cheng
Institute of Technology. He received the M.S. and the Ph.D. de-
grees in Computer Science from National Tsing Hua University
in 1991 and 1999, respectively. In 2008, he joined the faculty of
National Chung Cheng University and is presently a Professor at
Computer Science and Information Engineering. His research

ON THE MIN-MAX 2-CLUSTER EDITING PROBLEM

1121

interests include algorithms, social network analysis, and graph theory.

