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Designing a high-efficiency and high-quality expressive network architecture has always
been the most important research topic in the field of deep learning. Most of today’s net-
work design strategies focus on how to integrate features extracted from different layers,
and how to design computing units to effectively extract these features, thereby enhancing
the expressiveness of the network. This paper proposes a new network design strategy, i.e.,
to design the network architecture based on gradient path analysis. On the whole, most of
today’s mainstream network design strategies are based on feed forward path, that is, the
network architecture is designed based on the data path. In this paper, we hope to enhance
the expressive ability of the trained model by improving the network learning ability. Due
to the mechanism driving the network parameter learning is the backward propagation al-
gorithm, we design network design strategies based on back propagation path. We propose
the gradient path design strategies for the layer-level, the stage-level, and the network-level,
and the design strategies are proved to be superior and feasible from theoretical analysis and
experiments. The source code of this work is at: https://github.com/WongKinYiu/yolov7.

Keywords: network architecture design, gradient path analysis, partial residual networks,
cross stage partial networks, efficient layer aggregation networks

1. INTRODUCTION

Deep Neural Networks (DNNs) are now widely used on a variety of devices to solve
different kinds of tasks. Millions of scientists, engineers, and researchers are involved in
deep learning-related work. They all look forward to designing efficient, accurate, low-
cost solutions that can meet their needs. Therefore, how to design network architectures
suitable for their products becomes particularly important.

Since 2014, many DNNs have achieved near-human or superior performance than
humans on various tasks. For example, Google’s GoogLeNet [28] and Microsoft’s PRe-
LUNet [4] on image classification, Facebook’s Deepface [30] on face verification, and
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Fig. 1. No matter shallow or deep models, and shallower layers or deeper layers in a deep network,
they all have abilities to extract low-level or high-level features.

DeepMind’s AlphaGo [25] on the Go board, etc. Based on the beginning of the above
fields, some researchers continue to develop new architectures or algorithms that are more
advanced and can beat the above methods; other researchers focus on how to make DNN-
related technologies practical in the daily life of human beings. SqueezeNet [12] proposed
by Iandola et al. is a representative example, because it reduces the number of parameters
of AlexNet [14] by 50 times, but can maintain a comparable accuracy. MobileNet [8,9,24]
and ShuffleNet [22,35] are also good examples. The former adds the actual hardware op-
erating latency directly into the consideration of the architecture design, while the latter
uses the analysis of hardware characteristics as a reference for designing the neural net-
work architecture.

Just after the ResNet [6], ResNeXt [33], and DenseNet [10] architectures solved
the convergence problem encountered in ultra-deep network training, the design of CNN
architecture has focused on the following points: (1) feature fusion [38, 39], (2) receptive
field enhancement [40–43], (3) attention mechanism [44–47], and (4) branch selection
mechanism [2,19,48]. In other words, most studies follow the common perception of deep
networks, i.e., extract low-level features from shallow layers and high-level features from
deep layers. According to the above principles, one can use them to design neural network
architectures to effectively combine different levels of features in data path (feed forward
path.) However, is such a design strategy necessarily correct? We thus analyze the concept
described in [16, 36], and these articles have a through discussion on the difference in
feature expression between shallow and deep model using different objectives and loss
layers. From Fig. 1, we found that by adjusting the configuration of objectives and loss
layers, we can control the features learned by each layer (shallow or deep). That is to
say, what kind of features the weight learns is mainly based on what kind of information
we use to teach it, rather than the combination of those layers that the input comes from.
Based on this concept, we redefine network design strategies.

Since we propose that the network architecture can be designed with the concept
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Fig. 2. Two main network design strategies: (a) Data path design strategy; and (b) Gradient path
design strategy.

that an objective function can guide neural network to learn information, we must first
understand how the objective function affects the update of network weights. At present,
the main weight update method is the backpropagation algorithm, which uses partial dif-
ferentiation to generate gradients, and then updates the weights by gradient decent. This
algorithm propagates gradient information to the shallow layers following the chain rule,
and repeats such steps until the weights of all layers are updated. In other words, the
information that an objective function teaches is propagated between layers in the form
of gradients. In this paper, we propose that by analyzing the gradient generated through
the guidance of objective function, we can design the network architecture by the gradient
paths when executing the backpropagation process. We design the network architecture
for three different levels. They are respectively layer-level design, stage-level design, and
network-level design, which are described below:

1. Layer-level design: At this level we design gradient flow shunting strategies and
use them to confirm the validity of the hypothesis. We adjust the number of lay-
ers and calculate the channel ratio of residual connection, and then design Partial
Residual Network (PRN), as described in Section 3.1.

2. Stage-level design: We add hardware characteristics to speed up inference on the
network. We maximize gradient combinations while minimizing hardware compu-
tational cost, and thus design Cross Stage Partial Network (CSPNet), as described
in Section 3.2.

3. Network-level design: We add the consideration of gradient propagation efficiency
to balance the leaning ability of the network. When we design the network architec-
ture, we also consider the gradient propagation path length as a whole, and therefore
design Efficient Layer Aggregation Network (ELAN), as described in Section 3.3.

The contributions of this work are summarized as follows: (1) we first design net-
work design strategies based on gradient path analysis; (2) we use analysis of gradient
timestamp and gradient source to show and prove how gradient path effect network learn-
ing ability; and (3) the network designed by the proposed network-level designed strategy
achieves state-of-the-art real-time object detection and instance segmentation results.
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2. RELATED WORK

2.1 Network Design Strategies

In this paper we divide network design strategies into two kinds: (1) data path design
strategies, and (2) gradient path design strategies, as shown in Fig. 2. Data path design
strategy mainly focuses on designing feature extraction, feature selection, and feature
fusion operations to extract features with specific properties. These features can help sub-
sequent layers to further obtain better properties for conducting more advanced analysis.
The purpose of applying gradient path design strategies is to analyze the source and com-
position of the gradients, and how they are updated by the driving parameters. Then, one
can use the results of the above analysis to design the network architecture. The design
concept is to hope that the final parameter utilization rate is higher, and thereby achieve
the best learning effect.

Next, we will discuss the advantages and disadvantages of the data path design strat-
egy and the gradient path design strategy, respectively. There are three advantages of the
data path design strategy: (1) can extract features with specific physical meaning. For
example, use asymmetric computational units to extract features with different receptive
fields [1, 5, 21]; (2) can automatically select suitable operation units with parameterized
models for different inputs. For example, using kernel selection to handle inputs with dif-
ferent properties [2, 19]; and (3) the learned features can be reused directly. For example,
feature pyramid networks can directly utilize features extracted from different layers for
more accurate predictions [20]. The data path design strategy has two shortcomings: (1)
In the process of training, it sometimes leads to unpredictable degradation of the effect,
and at this time, a more complex architecture needs to be designed to solve the problem.
For example, the pairwise relationship of non-local networks is easy to degenerate into
unary information [34]; and (2) various specially designed arithmetic units are easy to
cause difficulties in performance optimization. For example, in the ASIC design dedi-
cated to AI, if the designer wants to add an arithmetic unit, an additional set of circuits is
required.

As for the gradient path design strategy proposed in this paper, there are three ad-
vantages: (1) can effectively use network parameters. In this part, we propose that by ad-
justing the gradient propagation path, the weights of different computing units can learn
various information, and thereby achieve higher parameter utilization efficiency; (2) has
stable model learning ability. Since gradient path design strategy directly determines and
propagates information to update weights to each computing unit, the designed architec-
ture can avoid degradation during training; and (3) has efficient inference speed. The
gradient path design strategy makes parameter utilization very efficient, so the network
can achieve higher accuracy without adding additional complex architecture. Because of
the above reasons, the designed network can be lighter and simpler in architecture. The
proposed gradient path design strategy only has one shortcoming, i.e., when the gradient
update path is not a simple reversed feedforward path of the network, the difficulty of
programming will be greatly increased.
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3. METHODOLOGY

3.1 Partial Residual Networks

Design concept of Partial Residual Network (PRN) belongs to the layer-level design
strategy. In the design of PRN, the main concept is to maximize the combination of
gradients used to update the weights of each layer. There are two main factors that may
affect the combination of gradients. The first one is the source layer of the gradient. The
source layer is composed of the nodes connected the indegree edges of the gradient path.
The second factor that affects gradient combination is the time it takes for the gradient
flow to arrive at a particular layer from the loss layer through the operation of the chain
rule. One thing to be noted is that when the gradient changes during the process of the
chain rule update, the amount of loss information it covers will gradually fade as the chain
grows. We define the above time duration as the number of layers that the gradient flow
needs to travel from the loss layer to a specific layer. In PRN, we propose the following
two structures to improve ResNet:

Fig. 3. Masked residual layer; Only part of channels will go through the identity connection.

Masked residual layer. In the design of ResNet [6], the output of each computa-
tional block is added together with an identity connection, and such a structure is called
residual layer. In PRN, we multiply identity connection by a binary mask and only allow
the feature map of some of the channels to be added to the output of the computational
block. We call this structure masked residual layer, and its architecture is shown in Fig. 3.
Using the mechanism of a masked residual layer allows the feature map to be divided
into two parts, in which the weights corresponding to the channels that are masked and
the weights corresponding to the channels with identity connection will significantly in-
crease the number of gradient combinations due to the aforementioned masking effect.
In addition, differences in gradient sources will simultaneously affect the overall gradient
timestamp (time note along time axis), thus making gradient combinations more abun-
dant.

Asymmetric residual layer. Under the ResNet architecture, only feature map of the
same size can be added, which is why it is a very restricted architecture. Generally, when
the calculation amount and inference speed of the optimized architecture are performed,
we are often limited by this architecture and cannot design an architecture that meets the
requirements. Under the architecture of PRN, the masked residual layer can regard the
inconsistency of the number of channels as some channels being blocked, and thus allow
feature map with different number of channels to perform masked residual operations.
We call the layer that operates in the above manner an asymmetric residual layer. An
asymmetric residual layer is designed in such a way that the network architecture is more
flexible and more able to maintain the properties of a gradient path-based model. For
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example, when we are doing feature integration, the general approach requires additional
transition layers to project different feature maps to the same dimension, and then perform
the addition operation. However, the above-mentioned operation will increase a large
number of parameters and amount of computations, and will also make the gradient path
longer, and thus affect the convergence of the network. The introduction of asymmetric
residual layer can perfectly solve similar issues.

3.2 Cross Stage Partial Networks

CSPNet is a stage-level gradient path-based network. Like PRN, CSPNet is based on
the concept of maximizing gradient combinations. The difference between CSPNet and
PRN is that the latter focuses on confirming the improvement of network learning ability
by gradient combination from theoretical perspective, while the former is additionally
designed for further architecture optimization for hardware inference speed. Therefore,
when designing CSPNet, we extend the architecture from layer-level to stage-level, and
optimize the overall architecture. CSPNet mainly has the following two structures:

Fig. 4. Cross stage partial operation; CSP operation separates feature map of the base layer into
two parts, one part will go through a computational block and the other part is then combined with
processed feature map to the next stage.

Cross stage partial operation. From the perspective of maximizing the source of
the gradient, we can easily find that the source of the gradient can be maximized when
each channel has a different gradient path. Also, from the perspective of maximizing
gradient timestamps, we know that the number of gradient timestamps can be maxi-
mized when each channel has computational blocks of different depths. Following the
above concept, we can derive an architecture designed to maximize both the gradient
source and gradient timestamp. And this architecture will be the Inception-like architec-
ture [13, 27–29] and the fractal-like architecture [15] with depth-wise convolution. Al-
though the above design can effectively improve the parameter utilization, it will greatly
reduce the parallelization ability. In addition, it will cause the model to significantly
reduce the inference speed on inference engines such as GPU and TPU. From the pre-
vious analysis, we know that dividing the channel can increase the number of gradient
sources, and making the sub-networks connected by different channels with different lay-
ers can increase the number of gradient timestamps. The cross stage partial operation
we designed can maximize the combination of gradients and increase the inference speed
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without breaking the architecture and can be parallelized. This architecture is shown in
Fig. 4. In Fig. 4, we divide a stage’s input feature map into two parts, and use this manner
to increase the number of gradient sources. The detailed procedure is as follows: we first
divide the input feature map into two parts and one of them passes through the compu-
tational block, and this computational block can be any computational block such as Res
block, ResX block, or Dense block. As for the other part, it directly crosses the entire
stage, and then integrates with the part that goes through the computational block. Since
only part of the feature map enters the computational black for operation, this kind of
design can effectively reduce the amount of parameters, operation, memory traffic, and
memory peak, allowing the system to achieve faster inference speed.

Fig. 5. Cross stage partial networks; (a) Original network; (b) CSP fusion: transition → concate-
nation → transition; (c) CSP fusion first: concatenation → transition; and (d) CSP fusion last:
transition → concatenation.

Gradient flow truncate operation. In order to make our designed network archi-
tecture more powerful, we further analyze the gradient flow used to update the CSPNet.
Since shortcut connections are often used in computational blocks, we know that the gra-
dient sources that provide the two paths are bound to overlap a lot. We know that when
a feature map passes through a kernel function, it is equivalent to a spatial projection.
Usually we can insert a transition layer at the end of both paths to truncate the duplicated
gradient flow. Through the above steps, we can make the information learned from the
two paths and adjacent stages have more obvious diversity. We designed three different
combinations of duplicate gradient flow truncate operations, as shown in Fig. 5. These
operations can be matched with different architectures, such as computational blocks and
down-sampling blocks to achieve better results.

3.3 Efficient Layer Aggregation Networks

Efficient Layer Aggregation Networks (ELAN) falls into the category of the gradi-
ent path designed network at the network-level. The main purpose of designing ELAN
is to solve the problem that the convergence of the deep model will gradually deteriorate
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when executing model scaling. We analyze the shortest gradient path and the longest
gradient path through each layer in the overall network, thereby designing a layer aggre-
gation architecture with efficient gradient propagation paths. ELAN is mainly composed
of VoVNet [17] combined with CSPNet, and optimizes the gradient length of the overall
network with the structure of stack in computational block. In what follows, we will
elaborate how stack in computational block works.

Fig. 6. Efficient layer aggregation networks.

Stack in computational block. When we are doing model scaling, there will be a
phenomenon, that is, when the network reaches a certain depth, if we continue to stack
computational blocks, the accuracy gain will be less and less. To make matters worse,
when the network reaches a certain critical depth, its convergence begins to deteriorate,
resulting in an overall accuracy that is worse than shallow networks. One of the best
examples is scaled-YOLOv4 [31], we see that its P7 model uses expensive parameters
and operations, but only a small amount of accuracy gain, and the same phenomenon
occurs in many popular networks. For example, ResNet-152 is about three times as com-
putationally intensive as ResNet-50, but offers less than 1% improvement in accuracy on
ImageNet [6]. When ResNet is stacked to 200 layers, its accuracy is even worse than
ResNet-152 [7]. Also, when VoVNet is stacked to 99 layers, its accuracy is even much
lower than that of VoVNet-39 [18]. From the gradient path design strategy point of view,
we speculate that the reason why the accuracy of VoVNet degenerates much faster than
ResNet is because the stacking of VoVNet is based on the one-shot aggregation (OSA)
module. We know that every OSA module contains a transition layer, so every time we
stack an OSA module, the shortest gradient path of all layers in the network increases by
one. As for ResNet, it is stacked by residual blocks, and the stacking of residual layers
will only increase the longest gradient path, and will not increase the shortest gradient
path. In order to verify the possible effects of model scaling, we did some experiments
based on YOLOR-CSP [32]. From the experimental results we found that when the stack-
ing layer reaches 80+ layers, the accuracy of CSP fusion first starts to perform better than
the normal CSPNet. At this point, the shortest gradient path of the computational block
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of each stage will be reduced by 1. As the network continues to widen and deepen, CSP
fusion last will get the highest accuracy, but at this point the shortest gradient path of
all layers will be reduced by 1. The above experimental results confirmed our previous
hypothesis. With the support of the above experiments, we designed the “stack in com-
putational block” strategy in ELAN, as shown in Fig. 6. The purpose of our design is to
avoid the problem of using too many transition layers and making the shortest gradient
path of the whole network quickly become longer. We hope that the above design strategy
allows ELAN to be successfully trained when the network is stacked deeper.

4. ANALYSIS

In this section we will analyze the proposed gradient path design strategies based on
the classical network architecture. First, we will analyze the existing network architecture
and the proposed PRN with the concept of gradient combination, and this example shows
that the network architecture that performs well does have a richer gradient combination.
Then we will analyze how the proposed CSPNet brings richer gradient combinations and
other benefits. Finally, we analyze the importance of length of gradient path by stop
gradient, and thus confirm that the proposed ELAN has a design concept advantage.

Table 1. Analysis of different networks [37].

Model Parameters Shortest gradient path Aggrgated features

PlainNet O(N) O(N) O(1)
ResNet [6] O(N) O(1) O(l)
DenseNet [10] O(N2) O(1) O(l)
Sparse ResNet [37] O(N) O(logN) O(log l)
Sparse DenseNet [37] O(N logN) O(logN) O(log l)

4.1 Analysis of Gradient Combination

General researchers often use the shortest gradient path and the number of integrated
features to measure the learning efficiency and ability of network architectures. However,
from the literature [37] we can find that these metrics are not completely related to ac-
curacy and parameter usage, as shown in Table 1. We observe the process of gradient
propagation and find that the gradient combination used to update the weights of differ-
ent layers matches the learning ability of the network well, and in this section we will
analyze the gradient combination. Gradient combinations are composed by two types of
component, namely gradient timestamp and gradient source. Next we will analyze them
separately.

Gradient Timestamp. Fig. 7 shows the architecture of ResNet [6], PRN, DenseNet
[10], and SparseNet [37]. Among them, we unfold the cascaded residual connection
and concatenation connection to facilitate the observation of the gradient propagation
process. In addition, the gradient flow delivery timestamps on each architecture is also
shown in Fig. 7. The gradient sequence is equivalent to a breadth first search process,
and each sequence will visit all the outdegree nodes reached by the previous round of
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Fig. 7. Gradient timestamps; (a) ResNet; (b) PRN; (c) DenseNet; and (d) SparseNet.

traverse. From Fig. 7, we can see that PRN uses the channel splitting strategy to enrich
the gradient timestamps received by the weights corresponding to different channels. As
for SparseNet, it uses sparse connections to make the timestamps received by the weight
connections corresponding to different layers more variable. Both of the above methods
can learn more diverse information with different weights, which makes our proposed
architecture more powerful.

Fig. 8. Gradient source; (a) ResNet; (b) PRN; and (c) DenseNet.

Gradient Source: Fig. 8 shows the gradient sources from ResNet [6], PRN and
DenseNet [10] at the first gradient timestamp. It can be seen from Fig. 8 that the con-
catenation connection-based architectures, such as DenseNet and SparseNet [37], belong
to the network that must be specially handled. This is because in the gradient propaga-
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tion process, if it is the gradient information propagated by the same layer at a certain
gradient timestamp, because the gradient flow has been split beforehand, it cannot be pro-
cessed like a general network. As for the residual connection-based architectures, such as
ResNet [6] and PRN, the exact same gradient information is propagated to all layers of
outdegree. Since the outdegree of PRN is only connected to some channels of other layers,
it can have a richer combination of gradients than ResNet as a whole. In addition, there
are network architectures that use other split-transform-merge strategies, such as group
convolution-based ResNeXt [33] and depth-wise convolution-based MobileNet [9], etc.,
which also increase the number of gradient sources.

In summary, through the analysis of gradient timestamp and gradient sources gener-
ated in the process of gradient backward propagation, we can clearly explain the existing
popular network architectures and the information learned by our proposed PRN and the
utilization efficiency of parameters. In ResNet, different layers share many gradients of
the same timestamp and the same gradient source, and DenseNet passes the gradient in-
formation of the same timestamp but different sources to the corresponding layers. This
part clearly explains why the concatenation connection-based DenseNet can avoid the
problem of easily learning a lot of useless information like the residual connection-based
ResNet. Our proposed PRN uses a simple masked residual layer to increase the number
of gradient combinations along time axis while maintaining the ResNet network topol-
ogy, and to divert the gradient sources, thereby increasing the variability of the gradient
sources.

4.2 Analysis of Cross Stage partial Strategy

CSPNet is designed to enhance online learning ability and speed up inference at
the same time, so we will discuss the advantages of the CSPNet strategy from these two
aspects separately. In the analysis conducted in Section 4.1, we observed that even if
the number of combinations generated by the gradient sources is the same, when the
common components received between different combinations are reduced, which makes
the gradient components more abundant, and also makes the network learn better. This
phenomenon actually occurs in the process of learning a large number of parameters for
singe-layer weights. For example, dropout [26] uses random Bernoulli masking neurons
to prevent parameters from learning co-adaptation information. From a mathematical
model point of view, dropout is to update the weights of different parts by using the gra-
dients generated by different inputs, which is equivalent to a random ensemble structure.
As for CSPNet, it directly increases the richness of the gradient combination through
the difference in time and the spatial transformation of the gradient on the gradient path.
Next, we will introduce what strategy the CSPNet uses to solve the problem of duplicated
gradient information, and how it improves resource usage.

Duplicated Gradient Information: In Section 4.1 we analyzed the number of gra-
dient combinations and the effect of diversity on the learning ability of the network. In
CSPNet, we further analyze the gradient information content received by different layers,
and design the architecture to improve the efficiency of parameter usage. From the gra-
dient combination of PRN and SparseNet, it can be found that they have a commonality
in the process of increasing the richness of gradient combination, that is, the situation of
receiving a large number of duplicated gradient information through residual connection
or dense connection is significantly reduced. We speculate that these duplicated gradi-



986 CHIEN-YAO WANG, HONG-YUAN MARK LIAO, I-HAU YEH

ents are the main reason for the large number of weights to easily learn the co-adaptation
information. As for PRN, it utilizes gradient timing differences to update the weights of
local channels. With the update process of chain rule, the above timing difference will
spread to the entire network, and then achieve a richer gradient combination. In addition,
CSPNet directly uses cross stage connection to make the two paths of the entire stage
have a great timing difference, and uses different fusion structures to reduce the dupli-
cated gradient information between stage and stage, or between computational block path
and cross stage connection path.

Resource Usage Efficiency: Taking Darknet-53 as an example, suppose that cross
stage partial operation divides the feature map into two equal parts according to the di-
rection of the channel. At this time, the number of input channel and output channel of
residual block is halved, while the number of channels in the middle remains unchanged.
According to the above structure, the overall calculation and parameter amount of com-
putational blocks will be reduced to half of the original, and the memory peak is the sum
of the size of input feature map and output feature map, so it will be reduced to 2/3 of the
original. In addition, since the input channel and output channel of the convolution layer
in the entire computational blocks are equal, the memory access cost at this time will be
the smallest.

Table 2. Apply CSPNet on different networks.

Model FLOPs #Params Top-1

Darknet-53 [23] 18.57G 41.57M 77.2%
+ CSP 13.07G (-30%) 27.61M (-34%) 77.2% (=)

ResNet-50 [6] 9.74G 22.73M 75.8%
+ CSP 8.97G (-8%) 21.57M (-5%) 76.6% (+0.8)

ResNeXt-50 [33] 10.11G 22.19M 77.8%
+ CSP 7.93G (-22%) 20.50M (-8%) 77.9% (+0.1)

* Results are obtained on ImageNet validation set.

In summary, CSPNet successfully combines the concept of gradient combination
with the efficiency of hardware utilization so that the designed network architecture im-
proves the learning ability and inference speed at the same time. CSPNet uses only simple
channel split, cross stage connection and a small amount of extra transition layers, and
successfully completes the preset goal without changing the original network computing
units. Another benefit of the CSPNet is that it can be applied to many popular network ar-
chitectures and improve overall network efficiency in all aspects. In Table 2 we show the
excellent performance of the CSPNet applied to several popular network architectures.
Finally, because the CSPNet has lower requirements on many hardware resources, it is
suitable for high-speed inference on devices with more stringent hardware constraints.

4.3 Analysis of Length of Gradient Path

As discussed in Section 4.1, we understand that the shorter the gradient path of the
overall network does not mean the stronger the learning ability. Furthermore, even if the
length of the overall gradient combination path is fixed, we find that the learning ability



DESIGNING NETWORK DESIGN STRATEGIES THROUGH GRADIENT PATH ANALYSIS 987

of the ResNet still degrades when the stacking is very deep. However, we found that
the above problem can be used to disassemble the ResNet into shallower random sub-
networks for training during the training phase using stochastic depth [11], which can
make the ultra-deep ResNet converge to better results. The above phenomenon tells us
that when analyzing the gradient path, we can not only look at the shortest gradient path
and the longest gradient path of the overall network, but need a more detailed gradient path
analysis. In what follows, we will control the gradient path length by adjusting gradient
flow during training, and then discuss the gradient length strategy when designing the
network architecture from the results.

Fig. 9. Architectures for stop gradient ablation studies.

Stop gradient: First we explore the importance of the shortest gradient length based
on ResNet. Compared to PlainNet, each residual block in ResNet has a part of gradient
across the computational block through identity connection in addition to the gradient
passing through the computational block. Here, we perform stop gradient operations on
computational block and identity connection respectively, as shown in Fig. 9. When we
execute stop gradient on identity connection, the gradient path of the overall network will
be like PlainNet. That is to say, the longest gradient path is the same length as the shortest
gradient path, and the network depth is also the same. When we perform stop gradient
on a computational block, the shortest gradient path will go directly through all residual
connection and directly to the starting layer, and the shortest gradient path length is 1 at
this time. Since each computational block has two layers, its longest gradient path is 2.
We can use these two sets of settings to observe the benefits of residual learning itself
and the reduction of gradient path. We use object detection and instance segmentation
in Microsoft COCO dataset as the baseline model to perform ablation study on YOLOR-
CSP [32] and show the results in Table 3. Experimental results show that performing a
shortened gradient path in ResNet is indeed an important factor for better convergence of
deep networks.

Gradient path planning: From the above analysis and our experiment of model
scaling using CSP fusion in YOLOR-CSP, we re-plan the transition layer of VoVNet and
conduct experiment. We first remove the transition layer of each OSA module of the deep
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Table 3. Results of stop gradient ablation study.

Model FLOPs APbox APmask

YOLOR-CSP 159.0G 51.0% 41.1%
YOLOR-CSP + Fig. 9 (a) 159.0G 48.8% 39.5%
YOLOR-CSP + Fig. 9 (b) 159.0G 47.7% 38.7%

* Results are obtained on MS COCO validation set.

VoVNet, leaving only the transition layer of the last OSA module in each stage. We orga-
nize both the longest gradient path of the network and the shortest gradient path through
each layer in the same way as described above. At the same time, we also apply the CSP-
Net structure to the above network to further observe the versatility of CSPNet, and the
related experimental results are shown in Table 4. We clearly see that deep VoVNet has
changed from failing to converge to one that can converge well and achieve very good
accuracy.

Table 4. Apply ELAN concept on VoVNet.

Model FLOPs APbox APmask

Deep VoVNet [17] + ELAN 253.4G 53.3% 42.9%
Deep VoVNet [17] + ELAN + CSP 236.5G 53.4% 42.9%

* Deep VoVNet is a VoVNet with 99 convolutional layers.
* Results are obtained on MS COCO validation set.

In short, from the above experiments and analysis, we infer that when planning the
gradient path of the overall network, we should not only consider the shortest gradient
path, but should ensure that the shortest gradient path of each layer can effectively been
trained. As for the length of the longest gradient path of the overall network, it will be
greater than or equal to the longest gradient path of any layer. Therefore, when practicing
network-level gradient path design strategies, we need to consider the longest shortest
gradient path length for all of layers in the network, and the longest gradient path for the
overall network.

5. EXPERIMENTS

5.1 Experimental Setup

We use the Microsoft COCO dataset as the basis for performing validation on object
detection and instance segmentation. As for baseline architecture we chose residual-based
YOLOv3-SPP [23], and for baseline decoder we chose a combination of YOLOR [32] and
YOLO-v5 (r6.2) [3]. As for baseline training strategy and all methods of training hyper-
parameters, we follow the rules adopted by YOLOR [32]. We name the baseline model
trained in the above YOLOR-v3 [32]. In the following experiments, we will verify one-
by-one the effect of our proposed layer-level, stage-level, and network-level architecture
based on the gradient path design strategies. Finally, we compare the proposed method
with baseline-related methods such as YOLOR-v3 [32] and YOLO-v5 (r6.2) [3].
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Table 5. Ablation study of PRN.

Model FLOPs APbox APbox
75 APmask APmask

75

YOLOR-v3 [32] 194.6G 49.5% 53.9% 40.9% 43.1%
+ PRN 194.6G 50.0% 54.4% 41.0% 43.4%

* YOLO-v3 + PRN equals to YOLOv3-FPRN
* Results are obtained on MS COCO validation set.

5.2 Layer-Level Gradient Path Design Strategies

In the experiment of PRN, we set the number of channels shaded by the masked
residual layer to half of the original number of channels, and the results obtained in the
experiment are shown in Table 5. Since the design of PRN maintains all parameters and
topology of the entire network, only the addition operation in residual connection is re-
duced by half, so the overall calculation amount is almost unchanged. However, YOLOR-
PRN gets a significant improvement in accuracy due to the addition of the combination of
gradients that each layer uses to update the weights. Compared to YOLOR-v3, PRN im-
proves 0.5% AP on object detection, and we can also observe high quality and significant
improvement. On instance segmentation, we improved AP by 0.1% and AP75 by 0.3%.

Table 6. Ablation study of CSPNet.

Model FLOPs APbox APbox
75 APmask APmask

75

YOLOR-v3 [32] 194.6G 49.5% 53.9% 40.9% 43.1%
+ CSP 159.0G 51.0% 55.5% 41.1% 43.4%
+ CSP fusion first 158.1G 50.8% 55.3% 41.0% 43.3%
+ CSP fusion last 155.6G 50.6% 55.3% 40.9% 43.3%
+ CSP no fusion 154.8G 50.5% 55.2% 40.9% 43.2%

* YOLOR-v3 + CSP equals to YOLOR-v4-CSP [32].
* Results are obtained on MS COCO validation set.

5.3 Stage-Level Gradient Path Design Strategies

In the CSPNet experiment, we follow the principle of optimizing the inference speed
and set the gradient split ratio to 50%-to-50%, and we show the experimental results in
Table 6. Since only half of the channel’s feature maps will enter the computational block,
we can clearly see that YOLOR-CSP significantly reduces the amount of calculations by
22% compared to YOLOR-v3. However, with rich gradient combinations, YOLOR-CSP
significantly improves the AP by 1.5% on the object detection. Compared to YOLOR-v3,
the combination of YOLOR and CSPNet (YOLOR-CSP) added more high-quality results.
We further compare gradient flow truncate operations for reducing repeated gradient in-
formation, and we clearly see that the strategy of YOLOR-CSP does learn better than
CSP fusion first and CSP fusion last. It is worth mentioning that no matter what fusion
strategy is adopted, the CSP-based architecture has a much lower computational load than
YOLOR-v3 and an accuracy far better than YOLOR-v3.
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Table 7. Ablation study of ELAN.

Model FLOPs APbox APbox
75 APmask APmask

75

YOLOR-v3 [32] 194.6G 49.5% 53.9% 40.9% 43.1%
+ ELAN-{1,1}s 126.4G 50.2% 54.5% 40.6% 42.9%
+ ELAN-{2,1}s 143.2G 51.4% 55.8% 41.5% 43.7%
+ ELAN-{2,2}s 164.0G 51.8% 56.5% 41.6% 43.3%

* {a,b}s means stack in computational blocks a and b times on backbone and neck, respectively.
* Results are obtained on MS COCO validation set.

5.4 Network-Level Gradient Path Design Strategies

In the ELAN experiment, we test the stacking times of computational blocks in back-
bone and neck respectively, and we show the results in Table 7. From this table, we can
clearly see that ELAN can still improve the performance of object detection by 0.7%
AP under 35% less amount of computation than YOLOR-v3. In ELAN, we can flex-
ibly set the number of stacks to make a trade-off between accuracy and computation.
From the experimental results listed in Table 7, we can see that under the stack setting
of {2,1}s, YOLOR-ELAN can significantly improve the performance of object detection
and instance segmentation by 1.9% AP and 0.6% AP, respectively, under the condition of
reducing the amount of computation by 26%.

Table 8. Comparison with baseline methods.

Model FLOPs #Params APbox APmask

YOLO-v5l (r6.2) [3] 147.7G 47.9M 49.1% 40.0%
YOLO-v5x (r6.2) [3] 265.7G 88.8M 50.9% 41.4%
YOLOR-v3 [32] 194.6G 64.3M 49.5% 40.9%
YOLOR-PRN 194.6G 64.3M 50.0% 41.0%
YOLOR-CSP 159.0G 54.3M 51.0% 41.1%
YOLOR-ELAN 143.2G 34.5M 51.4% 41.5%
YOLOR-ELAN-AF 172.6G 45.9M 53.0% 43.3%

* AF means anchor-free.
* Results are obtained on MS COCO validation set.

5.5 Comparison

Finally, we comprehensively compare the three proposed methods, that is, YOLOR-
PRN designed by layer-level design strategies, YOLOR-CSP designed by stage-level de-
sign strategies, and YOLOR-ELAN designed by network-level design strategies, with
baseline YOLOR-v3 and YOLOv5 (r6.2), and the results are shown in Table 8. From
the table, we see that the model designed based on gradient path design strategy outper-
forms the baseline-based methods in all aspects. In addition, regardless of the amount of
computation, the amount of parameters and the accuracy, the YOLOR-ELAN designed
by network-level design strategy can obtain the most outstanding performance in an all-
round way. From the results we confirm that based on the gradient path analysis, we are
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able to devise better network architecture design strategies. If compared with general data
path-based strategies, the architecture designed by data path strategy usually requires ad-
ditional parameter or computational cost to achieve better accuracy. In contrast, the three
proposed architectures based on gradient path design strategy can significantly improve
the overall performance.

6. CONCLUSIONS

In this paper we propose a strategy for designing network architectures with gradi-
ent paths. We propose three different gradient path design strategies and these strategies
confirm that no matter designing from layer-level, stage-level, or network-level, it can ef-
fectively and comprehensively improve the network architecture to achieve great learning
ability. Compared with data path-based design strategies, data path-based strategy often
needs to design additional computing units and complex topology to achieve better learn-
ing results. As for gradient path design strategies, it can completely rely on the existing
computing units, and re-planning through a simple gradient path can reduce the amount
of parameters, computing, hardware resources, and improve the inference speed and net-
work learning effect simultaneously. In this paper we redefine the strategy for designing
a network and create an effective and concise architectural design rule.
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