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Forecasting consists basically of using data to predict the value of the attributes to 

promote micro- and macro-level decision making. There are many methods to do predic-
tion extending from complexity and data requirement. In this paper, we present the method 
of an autoregressive integrated moving average (ARIMA), multilayer perceptron artificial 
neural network (ANN) model and decision tree (DT) method to forecast time-series data, 
also we use different methods to measure the accuracy of the forecasting of the patient 
dying after having Ebola virus in the Republic of Liberia over the period of 25 March 2014 
to 13 April 2016. The data source is from World Health Organization (WHO).  
 
Keywords: time series, modeling, deep learning, multilayer perceptron, forecasting 
 
 

1. INTRODUCTION 
 
Predicting a future behavior is an important subject in statistical science because it is 

important in real life [1, 2], such as predicting weather conditions and temperatures, market 
and price situation, water flow, energy consumption, etc. There has been increasing interest 
in the subject of prediction [3, 4] in recent years and new methods have emerged especially 
after the development of computer science, such as deep learning ANNs. These models are 
able to learn and adapt themselves to any model and they do not need assumptions about 
the nature of the time series, and have high capabilities in processing large data, high speed 
and learning efficiency as a result of their ability to accurately answer. Thus, there is a 
need to study the traditional methods used in time series prediction as well as the method 
of NNs and compare them to find the most efficient method of prediction [5]. In this paper 
we propose the multilayer perceptron as part of the deep learning method which has used 
NN in time-series data to forecast the patient dying after having Ebola virus in the Republic 
of Liberia. 

The term NN is used in a different parameter space family of models, with the flexible 
structure, resulting from the analysis of brain functioning. Different new models specially 
under the family grew, is exposed to biological and non-biological applications. The dif-
ferent fields in which NN is applied determine the NN definitions but the single definition 
which covers variety of type models does not exist [6].  

The model assumptions and its structure for NNs need minimal demand to unders- 
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tand the general network structure. The purpose of minimization from prediction error 
(outputs) multilayer perceptron is employed as target independent variables (inputs). We 
study machine learning or deep learning in this paper as well as computer experiments 
from the elements discussed in Hastie [7]. The ANN is exposed as the more important 
methods for time series prediction, and this more detailed in [8]. The accuracy of the net-
work is dependent on the number of neurons in the network and the testing the distribution 
of the training data [9]. 

The problems of forecasting is applied to the ANNs as simple computing frameworks 
as given in [10]. ANNs are used in the processing of natural language, image recognition 
and speech recognition [11]. The networks’ capabilities are evaluated in a trading simula-
tion, where predictions of exchange rate log-returns are back tested using historical data 
[12]. 

In this paper our task is to forecast the patient dying after having Ebola virus. We 
present the method for prediction of time-series data using MLP. The time-series data (the 
patient dying after a having Ebola virus) of the Republic of Liberia over the period of the 
study is described. 

The paper is organized as follows, in Section 2, complete description of model for-
mulation, in Section 3, numerical results of real data of Ebola virus in the Republic of 
Liberia over the period of 25 March 2014 to 13 April 2016. Finally, some comment is 
discussed in Section 4.  

2. MODEL DESCRIPTION 

2.1 Multilayer Perceptron (MLP)  
 
Different family of functions are defined with the multi-layer network or perceptron. 

For the classical case single hidden layer NNs, function of a d-vector to m-vector 

g(x) = b + Wtanh(c + Vx).     (1) 

Under the points: 
 
The input d-vector  x 
The input-to-hidden weights k  d matrix  V 
The hidden unit biases k-vector  c 
The output units biases m-vector  b 
The hidden-to-output weights m h matrix  W 

 
and the function h(x) = tanh(c + Vx) defines the output of the hidden layer. Also, non-line-
arity case is defined in some network architectures and the hidden layer elements are pre-
sented as hidden units. 
 
2.2 The Back-Propagation Algorithm 

 
The distribution of multi-layer perceptron under several hidden layer. For given initial 

input h0 = x, which are denoted by hi for the ith layer. The output prediction points are 



FORECASTING BASED ON SOME STATISTICAL AND MACHINE LEARNING METHODS 1169

denoted by hK. For the k = 1, …, k  1:  

hk = tanh(bk = Wkhk-1)     (2) 

where the biases vector is given by bk and weights matrix is given by Wk, from k  1 to k. 
For a single unit i of layer k is 

hk,i = tanh(bk,i + jWk,i,jhk-1,j).     (3) 

And the output layer is given by 

p = hk = softmax(bk + hk-1).     (4) 

The loss is also, given by 

L = logpy,  (5) 

under target class y. py = P(Y = y|x), as well as conditional probability estimator of class y 
give the value of input x. 

The chain in this structure is defined by 

ak = bk + Wkhk-1     (6) 

derivation is also given by 

,
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y
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The distribution of back-propagation is given  
 With the initial output node 

1.L
L

     (9) 

 For each aK,i the gradient is computed as 
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 This is repeated for each layer with k = K down to 1. 
 The wrt biases is obtained from gradient 
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,

, , , ,, ,
1, .k i

k i j k i k ik i j
k j

aL L L
W a aWb h 

  
       (12) 

 If k > 1, this propagates the gradient back into lower layer: 
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2.3 Time Series 
 
The time-series analysis is a sequence of observation on a variable on time. the most 

common model for forecasting a time series is Autoregressive Integrated Moving Average 
(ARIMA) model. This model seems as a best fitting model [13]. The forecasting model is 
constructed as following.  

 
If D = 0: Zt = Zt 
If D = 1: Zt = Zt  Zt-1    
If D = 2: Zt = Zt  2Zt-1 + Zt-2   
 
In terms of y, the general forecasting equation is: 

ŷt = + 1Zt-1 + … + pZt-p  qet-q. (14) 

To fit an ARIMA model, the first step is to determine the difference that make the 
series is stationary (and it is very important). Constructing the linear model of prediction 
 according to this analysis-passes through four basic stages: Phase I: Identification the 
model, which means to determine the rank of each of the autoregressive model AR(p) and 
the model of moving averages MA(q), as the two models comprising a model ARIMA [14, 
15]. The second phase: Estimating parameters for the model proposed in the previous step. 
The third phrase: Testing the of quality the model. The fourth phase: Forecasting, and to 
choose the best forecasting model we must examine the sample autocorrelation function, 
partial autocorrelation function plots. The bar in the plot illustrates the value of correlation 
coefficient in the given lag. The overlay curve represents confidence limits calculated at 
minus plus standard error. The slow decline of the ACF suggests that first difference may 
be adjective. When ACF declines slowly at season lags the seasonal difference it becomes 
adequate [16]. After the models have been estimated, we must select the best one that 
explains the observed the data. To choose the best ARIMA model amongst many observa-
tion which be performed, the next criteria are used, BIC (Bayesian Information criteria), 
Q statistic, S.E. of regression [17]. 

 
2.4 Decision Tree 

 
A decision tree is a decision support tool that uses a model similar to decisions and 

their likely outcomes, including event outcomes, cost of resources, and tools. This is one 
way to display an algorithm that contains only conditional controls. Decision trees are 
commonly used in machine learning. It is a streamlined structure, where each internal node 
represents a test on an attribute and each branch represents the test result. Each node rep-
resents a class label sheet (the decision taken after calculating all attributes). The paths 
from the root to the sheet represent the classification rules [18, 19]. 
 
2.5 The Accuracy Measurement 

 
Have used the symmetric mean absolute percentage error (SMAPE) [20, 21], the 

mean absolute scaled error (MASE) and the mean absolute percentage error (MAPE) to 
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measure the accuracy of the forecast. SMAPE, MASE and MAPE are given by the follow- 
ing formula [22, 23]: 

1
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3.1 Time Series  
  

Some Descriptive Metrics Data for the patient dying after having Ebola virus in the 
Republic of Liberia over the period of March 2014 to April 2016, (see Table 1) This table 
contains the mean and the standard deviation and the range of the data records. 
 

Table 1. The mean and the standard deviation and the range of the data records. 
Statistics 

  Total Cases 
Liberia 

Total Deaths 
Liberia 

N 
Valid 265 265 

Missing 0 0 

Mean 8233.89 3708.95 

Std. Deviation 3943.688 1750.824 

Range 10706 4811 

 

From Table 1 we can see that from the period of March 2014 to April 2016 the mean 
of the patient dying after a having Ebola virus is 3709 and the mean of the patient having 
Ebola virus is 8234. The Measures of association between the total death for the patient 
dying after a having Ebola virus in the Republic of Liberia and the total case of those who 
having Ebola virus in the Republic of Liberia is shown in Table 2. 

 

Table 2. The measures of association. 
 R R Squared Eta Eta Squared 

Total Cases, Liberia  WHO 
report date from 2014 to 2015 

0.854 0.729 0.921 0.848 

Total Deaths, Liberia  WHO 
report date from 2014 to 2015 

0.855 0.732 0.922 0.850 

 

This model for this data is successful in estimating parameters significance test and 
it has succeeded in residuals analysis test.  
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Time Series Plot of Total Deaths, Liberia 

 
Year 

Fig. 1. The time series plot of total death, Liberia.  
 

 
Fig. 2. A relation for the model predicted for the patient dying after a having Ebola virus in the Re-
public of Liberia. 
 

Versus Order 

 
Observation Order 

Fig. 3. Residual of response. 
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Table 3. Final estimates of parameters. 
Model Description

Model Type 
Model ID Total Deaths, Liberia Model_1 ARIMA (1, 1, 16) 

 

Table 4. Modified Box-Pierce (Ljung-Box) Chi-Square statistic. 
Model Statistics

Model 
Number 
of Pre-
dictors 

Model Fit Statistics Ljung-Box Q(18) 
Stationary 
R-squred R-squred RMSE MAPE MAE MaxAPE MaxAE

Normal-
ized BIC

Statistics DF Sig. 

Total 
Deaths, 
Liberia- 
Model_1 

1 0.411 0.999 42.242 21.315 20.822 1357.581 316.231 7.888 11.561 1 0.001 

 

We use the p-value (P) to determine whether the model meets the assumption that the 
residuals are independent, that means the model fits the data. The above table shows that 
the p-value is less than 0.05 indicating significance.  

 

Time Series Plot for Deaths 
(with forecasts and their 95% confidence limits) 

 
Fig. 4. Time series plot for the patient dying after a having Ebola virus. 

 

Table 5. Forecasts from period 265. 
95% Limits

Period Forecast Lower Upper
266 4823.86 4725.38 4922.34
267 4842.21 4675.99 5008.42
268 4860.36 4647.86 5072.86
269 4878.55 4628.04 5129.06
270 4896.73 4613.29 5180.18

 

3.2 Decision Tree 

To predict the patient dying after having Ebola virus in the Republic of Liberia based 
on total cases.  
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Fig. 5. The predict values of the patient dying after a having Ebola virus in the Republic of Liberia. 

 

3.3 Neural Network  
 
After loading the data set we use Multilayer Perceptron (MLP) taking 0:00:00.02 sec-

ond to build the model. Sum of squares error for the training is 0.064 and the relative error 
0.001 and the sum of squares error for the testing is 0.026 and the relative error is 0.002.  

 

Table 6. Sum of squares, relative errors and squares error for the testing. 
Model Summary

Training 

Sum of Squares Error 0.064
Relative Error 0.001

Stopping Rule Used 
Training error ratio criterion (.001) 

achieved
Training Time 0:00:00.02

Testing 
Sum of Squares Error 0.026

Relative Error 0.002
Dependent Variable: Total Deaths, Liberia

 

Table 7. The network information. 

Input Layer 
Factors              



1 
Total Cases,  

Liberia 
Number of Units* 70 

Hidden Layer(s) 
Number of Hidden Layers 1 
Number of Units in Hidden Layer 1* 2 
Activation Function Hyperbolic tangent 

Output Layer 

Dependent Variables   


1 
Total Deaths, 

Liberia 
Number of Units 1 
Rescaling Method for Scale Dependents Standardized 
Activation Function Identity 
Error Function Sum of Squares 

* Excluding the bias unit 
 

Units in hidden Layers for the Hidden Layer the activation function is a Hyperbolic 
tangent, for the output Layer the dependent variable (Total Deaths, Liberia) used the Sig-
moid function and the Sum of Squares are used as the error Function.  
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Fig. 6. The prediction results using the proposed Neural Network. 

 

3.4 Forecasting Performance  
 
Fig. 7 shows the results of predicted values using the above methods.  

 

Ebola disease 

 
Fig. 7. The results of predicted values using the above methods. 

4. CONCLUSION 

This paper uses Box-Jenkins and decision tree models and investigates the application 
of neural network problem of prediction the patient dying after having Ebola virus in the 
Republic of Liberia where is represents a huge problem. It is clear to show that the both 
ARIMA and MLP are best models to use, according to the value of SMAPE, MASE and 
MAPE (see Table 8). It must be pointed out that the implementation of such a mechanism  

 

Table 8. The performance of the forecasting. 
 MAPE MASE sMAPE

ARIMA 0.2131 0.9312 0.0063
CART 4.3833 10.9341 0.1529
MLP 1.1128 1.6912 0.0286
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to predict the patient dying after having Ebola virus in the Republic of Liberia is extremely 
useful. Finally, there must be other studies on other countries that have the same conditions 
as Ghana, Sierra Leone. 
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