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Relative reduction is regarded as a significant problem in rough set theory, which 

needs to eliminate some attributes that are not required in information system. Demp-
ster-Shafer evidence theory is a serviceable means to explore uncertain information. This 
article establishes rough set model in incomplete interval-valued decision information 
system (IIDIS). Belief (plausibility) function is introduced for studying relative belief 
(plausibility) reduction in IIDIS. We aim to study several relative reductions based on 
evidence theory and explore relations among different relative reductions in the con-
sistent/inconsistent IIDIS via four importance degrees. Relative reduction is not only 
equivalent to relative belief reduction but also equivalent to relative plausibility reduction 
in the consistent IIDIS. In the inconsistent IIDIS, relative plausibility consistent set can 
conclude it be deemed as relative belief consistent set, not vice versa. Furthermore, the 
feasibility about presented theorems are verified by several experiments from six UCI 
data set.    
 
Keywords: evidence theory, incomplete interval-valued decision information system, 
granular computing, knowledge discovery, relative reduction, rough theory 
 
 

1. INTRODUCTION 
 

Evidence theory, presented by Dempster in 1967 [1] and extended by Shafer in 
1976 [2], is an uncertain reasoning theory. It is referred to as D-S theory belongs to arti-
ficial intelligence field and is a novel paradigm for handling uncertain information. D-S 
theory satisfies conditions that are weaker than Bayesian probability theory and has the 
ability to express “uncertainty” and “do not know” directly. As fundamental numeric 
measure, belief/plausibility function is obtained from the sum of basic probability as-
signment for measuring the values about lower/upper bound of the probability. A belief 
structure [3, 4] is constructed by an ordered pair that covers the family of all focal ele-
ments and basic probability assignment. D-S evidence theory has been expanded into 
areas of risk assessment, target recognition, comprehensive diagnosis, uncertainty rea-
soning and so on [5-7].  

Pawlak introduced rough set theory (RST) [8] that be considered as ponderable 
means so as to depict information and knowledge. After decades of development, the 
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theory has formed a correspondingly perfect theoretical system. The basic structure of 
RST is an approximation space that consists of the universe and the binary relation. As 
two exact concepts, lower and upper approximation can depict imprecise concept. The 
RST has been applied rapidly and generally to science and technology fields in recent 
years, which has lots of studying results [9-12]. The generalization of the RST has been 
researched extensively in machine learning, data analysis and granular computing [13-15] 
etc. The RST has some natural connections with D-S evidence theory in the article [16- 
18], which pointed at the corresponding relations between lower/upper approximation in 
approximation space and belief/plausibility function in belief structure. 

Usually, potential knowledge and information can be reflected in a table in RST. 
The table is a basic notion and called an information system (IS). Rows and columns re- 
present object set and attribute set, respectively. With the increase of large amounts of 
data and the actual needs, the attribute values have changed from single values to con-
tinuous values, interval numbers etc. Correspondingly, information systems [19, 20] us-
ing these values as attribute values are produced and the extension of classical infor-
mation system. Nevertheless, the phenomena of incompleteness of information, some 
attribute values of objects are missing but really subsistent, exist diffusely in realistic life. 
In general, we call that this system is an incomplete information system (IIS) [21-23]. 
The equivalence relation is applicable to the classical rough set but is not necessarily 
valid in the incomplete information systems, which limits the application of RST in prac-
tical problems. Therefore, some users define a number of binary relations are different 
from the equivalence relation to continue researching incomplete information systems for 
mining hidden knowledge and rules in data. Zhang [24] researched a way of extracting 
rule in incomplete decision tables. The writing [25] improved tolerance relationship and 
counted the core attributes by extensive tolerance relationship. Xu proposed [26] an ap-
proach for fusing multiple fuzzy incomplete information sources by utilizing a binary 
tolerance relation. 

As we all know, attribute reduction [27-30] is a significant studying issue in RST, 
which is required to delete some attributes that are not relevant or not important under 
the condition that the knowledge base is classified but the decision-making ability is un-
changed. Relative reduction is one of the attribute reductions and performed in decision 
information system. It is known that many scholars and experts have made valuable and 
useful results in this area. Sun [31] put forward a range of attribute reduction methods 
based on the transitive binary relationship in incomplete information system. Wu intro-
duced several attribute reductions [32] in incomplete decision tables via D-S theory. 
Zhang [33] explored knowledge reduction in the light of inclusion degree and evidence 
theory. Taking into accounts the ordering of attribute values, Xu [34] and Du [35] uti-
lized dominance relation in order information systems to explore attribute reductions, 
and discussed the relationships among proposed reductions. But there are few studies in 
incomplete interval-valued decision information via evidence theory. The motivation of 
this article is that make attempt to explore relative reductions in consistent/inconsistent 
IIDIS through associating with D-S theory. 

Next, Section 2 introduces some concepts concerning IIDIS and D-S theory. Based 
on the interval similarity degree, the paper gives a new definition of tolerance relation 
that is applied to the incomplete interval-valued decision table in Section 3. Section 4 
defines belief/plausibility function to compute several relative reductions in consistent 
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IIDIS and inconsistent IIDIS associated with D-S theory, and explores certain relations 
among raised relative reductions. And an algorithm is displayed for researching relative 
reductions by means of four importance degrees. Furthermore, the fifth section exhibits 
relative reductions of six data sets in consistent and in consistent IIDIS. Finally, conclu-
sion of this article and plans for next work locates in Section 6. 

2. BASIC CONCEPTS 

We chiefly retrospect indispensable fundamental notions for the next research about 
relative reductions in IIDIS and relevant knowledge of D-S theory. 

 
2.1 Preliminaries About IIDIS 

 
Detailed basic concepts and important properties will be displayed in the IIDIS [36- 

38]. 
An information system can be labeled as S = (OS, CD, DO, F). Assume CD = CA  

DA, CA ∩ DA = 0/, then DIS = (OS, CA  DA, DO, F) is referred to as a decision infor-
mation system. OS is seen as universe of discourse. Condition attribute set CA, decision 
attribute set DA are subsets of attribute set CD that shows features contained by objects 
in universe. DO = ∏ccdVc, where Vc is the domain for c  CD. Total function F: OSCD 

 DO s.t. F(x, c)  Vc while x  OS, c  CD. 
Interval number F(x, c) = [-, +], if it is an unknown value but exists in actual, then 

F(x, c) is treated as *. At this time, IIIS = (OS, CD, DO, F)(IIDIS = (OS, CADA, DO, 
F)) is an incomplete interval-valued(decision) information system. Next, whole article 
only takes account of DA = {Dc}. In the following, we introduce an example for better 
understand IIDIS. 
 
Example 1: The Table 1 is the risk investment item evaluation. There have five invest-
ment projects (OS) and six risk factors (CA). The table includes some unknown values, 
which is an IIV DIS = (OS, CA{Dc}, DO, F). Where OS = {x1, x2, …, x5}, xj show the 
jth investment project (j = 1, 2, …, 5). CA = {c1, c2, ꞏ ꞏ ꞏ, c6}, ci(i = 1, 2, …, 6) represent 
Market, Technique, Management, Environment, Prospect and Finance respectively. Dc 
exhibits investment risk. F(x, Dc)  {1, 2}. 1 denotes the investment risk is high and 2 
indicates the investment risk is low. 
 

Table 1. An IIDIS. 
OS c1 c2 c3 c4 c5 c6 Dc

x1 [3, 4]  [3, 4] [3, 4] [2, 3] [4, 5] 1
x2 [2, 4] [4, 5] [1, 3] [1, 3]  [1, 3] 2
x3 [1, 3] [1, 2]  [3, 4] [2, 3] [4, 5] 1
x4  [4, 5] [3, 5] [2, 4] [3, 5] [3, 5] 1
x5 [2, 3] [4, 5] [2, 3] [1, 2] [2, 3] [1, 3] 2

 

Definition 1: [39] Let interval number I = [-, +], then its length is denoted by (I) 
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(I) = +  -.    (1) 

When  = +, the interval I represents a single value and (I) = 0. (I) = 0 while I is 
an empty. Obviously, for P, Q be interval numbers, if P ∩ Q = E is nonempty, then (E) 
 0; otherwise, (E) = 0. 

Jaccard coefficient is a probability and used to compare the similarity and disper-
sion of the sample set, which could be indicated as intersection of sample set divided by 
their union (details below). 
 
Definition 2: Let an IIDIS = (OS, CA{Dc}, DO, F) and ck  CA, xi, xj  OS. F(xi, ck) 
= P = [-, +], F(xj, ck) = Q = [ν-, ν+], where P  , Q  , thus interval similarity degree 
in [40] concerning xi, xj under the attribute ck is 

( )
( , ) .

( )
k
ij

P Q
S P Q

P Q








    (2) 

Since (PQ) = (P) + (Q) − (P∩Q), then interval similarity degree is written as 

( )
( , )

( ) ( ) ( )
k
ij

P Q
S P Q

P Q P Q


  




  
    (3) 

where (∩) is union(intersection) operation. Obviously, Sk
ij(P, Q)  [0, 1]. If P = Q, then 

Sk
ij(P, Q) = Sk

ji(P, Q) = 1. That is the similarity degree satisfies reflexivity. Furthermore, 
Sk

ij(P, Q) = Sk
ji(P, Q), so the similarity degree satisfies symmetry. 

If there exists a xi  OS s.t. F(xi, ck) =  for ck  CA, then the attribute value is view- 
ed as missing value but it actually exists. However, the interval similarity degree is not 
applicable for this object xi. So we set Sk

ij(P, Q) = 1 for any xj  OS while F(xi, ck) = . In 
addition, the minimal interval similarity degree is defined by the following for any xi, xj 

 OS: 

min { ( , )}.
k

CA k
ij c CA ijS S P Q     (4) 

2.2 Preliminaries About D-S Theory 
 
As a mean to dispose uncertainty in RST, D-S theory is a popularization of proba-

bility theory and has a sound theoretical basis. 
 

Definition 3: [2, 41] For a universe OS, if mapping m: P (OS)  [0, 1] s.t. two formulas 
m(0/) = 0 and ∑yos m(Y) = 1 hold, then m could be called a basic probability assignment 
where m(Y) indicates belief degree. Y  OS is focal element while m(Y) > 0. Core of uni- 
verse M consists of whole focal elements. (M, m) be generally termed as belief structure. 

Related to basic probability assignment, belief measure and plausibility measure are 
derived. 
 
Definition 4: [2, 41] For a belief structure (M, m). Set functions: P(OS)  [0, 1]. Belief 
and plausibility measure be denoted by, respectively: for any X  P(OS), Y  M, then 
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( ) ( ),
Y X

BEL X m Y


      (5) 

0

( ) ( ).
X Y

PL X m Y
  

      (6) 

These two functions are termed as belief and plausibility function, which indicate 
sum of probability of set and request the set is definitely and possibly support to X, re-
spectively. On the basis of same belief structure, belief/plausibility function corresponds 
to lower/upper bound of probability and their connection can be represented by PL(X) = 
1 − BEL(Xc), Besides, BEL(X) ≤ PL(X), X  P(OS). 

3. ROUGH SET IN IIDIS 

In Pawlak rough set theory, a binary relation R is referred to as an equivalence rela-
tion on the universe, which satisfies reflexivity, symmetry as well as transitivity. A uni-
verse is partitioned into disjoint sets formed by an equivalence relation, that is equiva-
lence classes. A quotient set is the set of all equivalence classes based on the equivalence 
relation R. Where the equivalence class is [x]R = {y  OS|xRy} for x  OS. Each uncer- 
tainty concept X  OS can be represented by a pair of exact concepts [8]: lower approxi-
mation and upper approximation. 

R(X) = {xOS|[x]RX} = {[x]R|[x]RX};  (7) 

R(X) = {xOS|[x]R∩X  0/} = {[x]R|[x]R∩X  0/}.    (8) 

In this section, a novel tolerance relation can be generated in light of interval simi-
larity degree and rough set model is constructed via this relation in IIDIS. 

 
Definition 5: Given an IIDIS = (OS, CA{Dc}, DO, F), for any B  CA, xi, xj  OS. Set 
λ(0.5, 1]. A tolerance relation concerning attribute set be known as 

2{( , ) | }.B
B i j ijR x x OS S        (9) 

It can be shown that R
B is reflexive and symmetrical in the light of the minimal sim-

ilarity degree, which is a tolerance relation. The tolerance class is: 

[ ] { | ( , ) },
B

i j i j BR
x x OS x x R

       (10) 

1 2 | |/ {[ ] ,[ ] ,...,[ ] }.
B B B

B OSR R R
OS R x x x  

      (11) 

[xi]RB
 represents a cluster objects that the minimal similarity degree with reference to 

xi, xj are not less than a given threshold . OS/R
B is a cover on OS. 

As for decision attribute Dc, equivalence class [xi]Dc = {xj  OS|F(xi, Dc) = F(xj, Dc)}. 
Quotient set is called OS/Dc = {[x]Dc|x  OS} = {D1

c, D2
c, …, Dt

c}(Di
c  OS, i = 1, 2, …, 

t). Distinctly, relation RDc is an equivalence relation. Certain properties in regard to tol-
erance relation are discussed below. 
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Proposition 1: Given an IIDIS = (OS, CA{Dc}, DO, F), if each B, D  CA, x  OS. 
Then: 

(1) ( ) ( );
k kB c B cR x R x 
   

(2) If ,  then ( ) ( ).D BB D R x R x     

According to definitions of tolerance relation and corresponding tolerance classes, 
an uncertainty concept can be depicted by two exact notions. 
 
Definition 6: Given an IIDIS = (OS, CA{Dc}, DO, F), for B  CA, X  OS. Lower, 
upper approximation about tolerance relation R

B are denoted by, respectively: 

( ) { | [ ] };
B

B R
R X x OS x X

        (12) 

( ) { | [ ] 0}.
B

B R
R X x OS x X

          (13) 

Furthermore, positive region is PosRB
(X) =R

B(X), negative region is NegRB
(X) = OS   

( ),BR X boundary region is ( ) ( ) ( ).
B

B BR
Bn X R X R X

    Next, some properties about ( ) BR X   

and ( )BR X  are discussed and similar with Pawlak approximation space. 
 

Theorem 1: Given an IIDIS = (OS, CA{Dc}, DO, F), for B, D  CA, Y, Z  OS. 

(1) ( ) ( ).

(2) (~ ) ~ ( ); (~ ) ~ ( ).

(3) (0) (0) 0; ( )  ( )=( ).

(4) ( ) ( ) ( ); ( ) ( ) ( ).

(5) If ,  then ( ) ( );  and ( ) (

B B

B B B B

B B B B

B B B B B B
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R Y R Y R Y R Y
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R Y Z R Y R Z R Y Z R Y R Z

Y Z R Y R Z R Y R

 

   

   

     

   

 

 

     

     
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(6) If ,  then ( ) ( );  and ( ) ( ).

(7) ( ) ( ) ( ); ( ) ( ) ( ).

B B D B

B B B B B B

Y

B D R Y R Y R Y R Y

R Y Z R Y R Z R Y Z R Z R Z

   

     

  

     

 

4. RELATIVE ATTRIBUTE REDUCTIONS IN IIDIS 

Attribute reduction is to delete some redundancy or not important attributes but re-
main certain classes unchanged. In the following, we discuss several relative reductions 
in the case of consistent IIDIS and inconsistent IIDIS, respectively. 

4.1 The Belief and Plausibility Functions in IIDIS 

Since a tolerance relation satisfies reflexivity, inspired by the definition of the mass 
function in the paper [2, 36], we introduce a mass function, belief/plausibility function in 
IIDIS. 

(Boundedness) 

(Duality) 

(Normality) 

(Multiplicativity 
and Additivity) 

(Monotonicity 1) 

(Monotonicity 2) 

(Inclusion) 
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Definition 7: Given an IIDIS = (OS, CA{Dc}, DO, F). A basic probability assignment 
with reference to attribute set B(B  CA) is depicted by a mapping mB: P(OS)  [0, 1]. It 
can be denoted by 

| ( ) |
( )

| |
B

B

f X
m X

OS
     (14) 

where fB(X) = {x|R
B(x) = X} for x  OS. X is a focal element of mB on condition that fB(X) 

 0/. Naturally, MB = {X  P(OS)|fB(X)  0/} = {R
B(x)P(OS)|xOS} is the core of OS in 

IIDIS. (MB, mB) be termed as +belief structure in IIDIS. Because mass function mB also 
makes mB(0/) = 0 and ∑XOSmB(X) = 1 hold. The proof is as follows. 
 
Proof:  
(1) When X = 0/. Obviously, mB(0/) = 0. 
(2) When X = 0/, let OS/R

B = {[x1]RB
, [x1]RB

, …, [x1]RB
}(k ≤ |OS|). There are two situations: 

(i) For any i  {1, 2, …, k}, if X⊈OS/R
B, then X  [xi]RB

, namely, X  R
B(xi). So mB(X) 

| ( )| |{ | ( ) , }| |0|
| | | | | | 0.B Bf X x R x X x OS
OS OS OS

         

(ii) If X  OS/R
B, then there must exists i  {1, 2, …, k}, s.t. X = [xi]RB

. Hence mB(X) 

   =
|{ | ( ) [ ] , }|

| ( )| |{ | ( ) , }|
| | | | | | .

B i RB B B
x R x x x OS

f X x R x X x OS
OS OS OS


   

     

If for any xl  [xi]RB
 such that [xl]RB

 = [xi]RB
, then mB(X) =

|[ ] |

| | ;
i RB

x

OS



Otherwise, mB(X) = | ( )|
| |
Bf X
OS

  
1

| | .OS  

In a word, ∑xOSmB(X) = 1. 
In conclusion, mB is a basic probability assignment. 

 
Definition 8: Given an IIDIS = (OS, CA{Dc}, DO, F). mB be treated as basic probabil-
ity assignment concerning attribute set B(B  CA). Belief, plausibility functions are de-
noted by, respectively: for X P(OS), then 

( ) ( ), / ,B B B
Y X

BLE X m Y Y OS R



      (15) 

0

( ) ( ), / ,B B B
Y X

PL X m Y Y OS R

  

       (16) 

in the above formulas, set functions BELB and PLB are mappings that convert power set 
P(OS) to real numbers in closed interval [0, 1]. 

Moreover, belief, plausibility function can also be labeled as BELB(X) = ∑YXmB(Y), 
PLB(X) = ∑Y∩X0/ mB(Y) on account of mB(Y) = 0 while Y  OS/R

B. 
The functions are connected by a property: PLB(X) = 1 − BE LB(Xc). And distinctly, 

BELB(X) ≤ PLB(X) holds X  P(OS). 
 

Theorem 2: Given an IIDIS = (OS, CA{Dc}, DO, F), if each B  CA, then 

(1) ( ) ( ( )). (2) ( ) ( ( )),B B B BBEL X P R X PL X P R X    

where 

| |
| |( ) X
OSP X  , |X| shows the cardinal number of set X. | |

| |
X

OS
indicates the probability of 

concept X. 
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Proof: We can obtain BELB(X) = ∑YXmB(Y) = ∑YX
| ( )|

| |
Bf Y
OS

=∑YX
|{ | ( ) }| |{ | ( ) }|

| | | |
B Bx OS R x Y x OS R x X

OS OS

      
| ( )|

| | ( ( ))BR X

BOS P R X


  for YOS/R
B, according to Definition 8. Similarly, ( ) ( ( ))B BPL X P R X  

also holds. 
Besides, monotonicity is the property of belief/plausibility function. That is to say 

when B  D  CA, one has 

BELB(X) ≤ BelD(X) ≤ P(X) ≤ PlD(X) ≤ PLB(X)(X  OS).    (17) 

4.2 The Relative Reductions in IIDIS 
 
In this section, we give some notions about relative reduction, relative belief/plau- 

sibility reduction in the IIDIS.  
Let IIDIS = (OS, CA{Dc}, DO, F), quotient set with regard to decision at tribute 

could be written as OS/Dc = {[x]Dc|x  OS} = {D1
c, D2

c, …, Dt
c}(Di

c  OS, i = 1, 2, …, t). 
An IIDIS is consistent if R

CARDc. In other words, let ∆CA(x) = {F(y, Dc)|(x, y) R
B}, if 

|∆CA(x)| = 1 holds for every x  OS, then IIDIS is consistent. If not, IIDIS is inconsistent. 
This paper studies the consistent and inconsistent IIDIS.  

 
Definition 9: Given an IIDIS = (OS, CA{Dc}, DO, F), for each B, B  CA, where B 
B. Then 

 
(1) Suppose ∆B(x) = ∆CA(x) for x  OS, thus B could be termed as relative consistent set 

of IIDIS. Meanwhile, assume every B is not relative consistent set, hence B could be 
known as relative reduction in IIDIS. 

(2) Suppose BELB(Di
c) = BELCA(Di

c) for Di
c  OS/Dc, thus B could be termed as relative 

belief consistent set in IIDIS. At the same time, assume every B is not relative belief 
consistent set, hence B could be known as relative belief reduction in IIDIS. 

(3) Suppose PLB(Di
c) = PLCA(Di

c) for Di
c  OS/Dc, thus B could be termed as relative 

plausibility consistent set in IIDIS. At the same time, assume every B is not relative 
plausibility consistent set, hence B could be known as relative plausibility reduction 
in IIDIS. 
 
From definitions above, we can observe that relative reductions are minimal subsets 

of attribute set CA, which preserves the consistency of IIDIS. Relative belief and plausi-
bility reduction are minimal subsets that promise belief and plausibility degree un-
changed, respectively. 

Besides, R
B RDc(B  CA) holds iff B can be known as relative consistent set. In 

their words, as minimal subset promises the researching system being consistent, B can 
be regard as relative reduction and vice versa.  

 
4.2.1 The relative reductions in consistent IIDIS 

 
First of all we explore several properties with reference to relative reductions in con- 

sistent IIDIS. Here ∆CA(x) = {F(x, Dc)} for every object in universe. To better character-
ize relative belief, plausibility reduction and for convenience of following statements, 
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/ /
( ) and ( )i i

c c c c
B BD OS D D OS D

BEL X PL X
    denote the belief, plausibility sum in IIDIS, res-  

pectively. 
 
Theorem 3: Given a consistent IIDIS = (OS, CA{Dc}, DO, F) and B  CA, OS/Dc = 
{D1

c, D2
c, …, Dt

c}. Three equivalent statements are acquired: 
 
(1) ( ) , 1 ;i i

B c cR D D i t      

(2) ( ) , 1 ;i i
B c cR D D i t      

(3) B can be regarded as relative consistent set. 
 
Proof: (3)(1) Evidently, ( )i

B cR D  Di
c. x  Di

c, RDc(x) = Di
c holds. For B is relative con- 

sistent set, R
B(x)  RDc(x) = Di

c, thus x  ( )i
B cR D , that is Di

c  ( ).i
B cR D  Hence ( )i

B cR D = Di
c. 

(1)(3) Suppose there exists x  OS and R
B(x)⊈RDc(x) holds, then one has y  R

B(x) 
but y  RDc(x). That is x  Di

c and y  Di
c when F(x, Dc) = Di

c. And ( )i
B cR D = Di

c holds, we 
have x  ( ).i

B cR D  Thus, R
B(x)  Di

c, y  Di
c, there exists a contradiction. B can be regarded 

as relative consistent set. 
(3)(2) Visibly, Di

c  ( ).i
B cR D

 Moreover, x  ( ),i
B cR D

 so [x]RB
∩Di

c = 0/. There exists 
y  Di

c, s.t. y  [x]RB
. Because R

B satisfies symmetry, so x  [y]RB
, x  R

B(y). For B can be 
regarded as relative consistent set, then R

B(y)  RDc(y) = Di
c. Thus, x  Di

c. Hence ( )i
B cR D  

 Di
c. Therefore, ( )i

B cR D = Di
c. 

(2)(3) Suppose one has x  OS s.t. R
B(x) ⊈ RDc(x), hence one has y  R

B(x) but y 
RDc(x). That is x  Di

c and y  Di
c while F(x, Dc) = Di

c. And ( )i
B cR D = Di

c holds, so x  ( )i
B cR D . 

Thus, [x]RB
∩Di

c = 0/. Furthermore, it can be obtained x  [y]RB
  for R

B satisfies symmetry 
and y  [x]RB

, thus [y]RB
 ∩ Di

c  0/. Namely, y  ( )i
B cR D = Di

c, there exists a contradiction. 
Hence B can be regarded as relative consistent set. 
 
Theorem 4: Let a consistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1

c, D2
c, …, Dt

c}, 
for B  CA. Three equivalent conditions are obtained: 

(1) 

/
( ) 1;i

c c

i
B cD OS D

BEL D


   

(2) 

/
( ) 1;i

c c

i
B cD OS D

PL D


  

(3) B can be deemed as relative consistent set. 
 

Proof: (3)(1) For any Di
c, we can get R

B(Di
c) = Di

c according to the Theorem 3. Then 
| ( )| | |

| | | |/ / /
( ) 1.

i i
B c c

i i i
c c c c c c

R D Di
B c OS OSD OS D D OS D D OS D

BEL D


  
      

 

(1)(3) For CA is relative consistent set. Then 
/

( ) 1.i
c c

i
CA cD OS D

BEL D


  By Eq. (17),  

BELB(Di
c)  BELCA(Di

c) holds for any Di
c. So there have 

/ /
1 ( )i i

c c c c

i
B cD OS D D OS D

BEL D
 

     

( ) 1.i
B cBEL D   Hence 

/ /
( ) ( ) 1,i i

c c c c

i i
B c CA cD OS D D OS D

BEL D BEL D
 

    which is equivalent to  

| ( ) | = | ( ) | = | | .i i i
B c CA c cR D R D D 

 Furthermore, ( ) ( )i i i
B c CA c cR D R D D   according to Theorem 1. 

Therefore, ( ) .i i
B c cR D D   B can be regarded as relative consistent set.     

(3)(2) Its proof is similar to (3)(1). 
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Theorem 5: Let a consistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1
c, D2

c, …, Dt
c}, 

for B, B  CA, where B  B. Three equivalent assertions are gained: 
 

(1) 
/

( ) 1.i
c c

i
B cD OS D

BEL D


  Meanwhile, for every B, 
/

( ) 1i
c c

i
B cD OS D

BEL D
  holds; 

(2) 
/

( ) 1.i
c c

i
B cD OS D

PL D


  Meanwhile, for every Bi, 
/

( ) 1i
c c

i
B cD OS D

PL D
  holds; 

(3) B is a relative reduction. 
 

Proof: This Theorem can be directly and easily obtained according to Theorem 4 and 
Definition 9. 

 
Theorem 6: Let a consistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1

c, D2
c, …, Dt

c}, 
for B  CA. Three equivalent assertions are gained: 
 
(1) B can be regarded as relative reduction. 
(2) B can be regarded as relative belief reduction. 
(3) B can be regarded as relative plausibility reduction. 

 

Proof: Firstly, for x  OS, Di
c  OS/Dc, according to Theorem 4 we find 

/
( ) 1 ( ) ( ) ( ) ( ).i

cc c

i i i
B c B c CA c B DD OS D

BEL D BEL D BEL D R x R x 


      

As a result, B  B can not be viewed as relative consistent set iff 
/

( )i
c c

i
B cD OS D

BEL D   

< 1 iff B can’t be deemed as relative belief consistent set. So (1) is equivalent to (2). 
Analogously, (1) is equivalent to (3). 
In order to compute relative belief reduction and relative plausibility reduction in 

this paper, a general algorithm is designed based on four important degrees. The general 
algorithm is shown in Algorithm 1. 

Let IIDIS = (OS, CA{Dc}, DO, F), for C  CA, cj  C, OS/Dc = {[x]Dc |xOS} 
= {D1

c, D2
c, …, Dt

c}(Di
c  OS, i = 1, 2, …, t). The inner importance degree of attribute cj in 

C is defined to research relative belief reduction: 

{ }
/ /

( , , ) ( ) ( ).
j

i i
c c c c

BEL i i
in j c C c C c c

D OS D D OS D

IM c C D BEL D BEL D
 

       (18) 

If ( , , ) 0,BEL
in j cIM c C D  then the attribute cj is indispensable in C. { | ( , ,BEL

j in jB c IM c C   

Dc) > 0} is called relative belief core. When 
/ /

( ) ( ),i i
c c c c

i i
B c C cD OS D D OS D

BEL D BEL D
 

   B  

is a relative belief reduction, which be viewed as a Judgment Rule. Otherwise, some at-
tributes should be added to the relative belief core. Hence another idea should be intro-
duced for computing relative belief reduction. 

For any cj  C − B, there defines the outer importance degree of attribute cj in B: 

{ }
/ /

( , , ) ( ) ( ).
j

i i
c c c c

BEL i i
out j c B c c B c

D OS D D OS D

IM c B D BEL D BEL D
 

       (19) 

If arg max ( ( , , )),
k

BEL
j c C B out k cc IM c B D   then cj should be added to the relative belief  

core B. Until attribute set C = B{cj} satisfies the Judgment Rule, C is a relative belief 
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reduction. 
Similarly, the relative plausibility reduction can be acquired by the inner/outer im-

portance degree: 

{ }
/ /

( , , ) ( ) ( ),
j

i i
c c c c

BEL i i
out j c B c c B c

D OS D D OS D

IM c B D BEL D BEL D
 

       (20) 

{ }
/ /

( , , ) ( ) ( ).
j

i i
c c c c

PL i i
out j c B c B c c

D OS D D OS D

IM c B D PL D PL D
 

       (21) 

Algorithm 1: The algorithm for obtaining general reduction in IIDIS  
Input: a testing system IIDIS = (OS, CA{Dc}, DO, F), where C  CA.  
Output: a general core B and reduction C in IIDIS. 
1 begin 
2 let B  0/, C  0/; /* the initialization of core B and reduction C */ 
3 compute OS/Dc = {D1

c, D2
c, …, Dt

c};  / the decision classes Di
c / 

4 for cj  CA do 
5   compute IMin(cj, CA, Dc); /* the inner importance degree of cj in CA */ 
6   if IMin(cj, CA, Dc) > 0 then 
7    B  B{cj}; 
8   end 
9 end 
10 C  B; 
11 while condition do 
12   for cj  CA − C do 
13    compute IMout(cj, C, Dc); /* the outer importance degree of cj in C */ 
14   end 
15   Selecting an attribute cj that satisfies cj = arg maxckCA-C(IMout(ck, B, Dc)); 
   C  C{cj}; 
16 end 
17 for cj  C − B do 
18   if IMin(cj, C, Dc) = 0 then 
19    C ← C − {cj}; 
20   end 
21 end 
 return: B, C. 
22 end 

 

The condition means that 
/ /

( ) ( )i i
c c c c

i i
C c CA cD OS D D OS D

BEL D BEL D
 

   for obtaining 

relative belief reduction and 
/ /

( ) ( )i i
c c c c

i i
C c CA cD OS D D OS D

PL D PL D
 

   to acquire elative  

plausibility reduction in the Algorithm 1. For sake of description, the inner and outer im- 
portance degrees are simply written as IMin(cj, E, Dc) and IMout(cj, E, Dc)(E  CA) in the 
Algorithm 1 whether relative belief reduction or relative plausibility reduction. The time 
complexity of Algorithm 1 is O(|CA|3|OS|2). And it would be reduced to O(|CA|2|OS|2) if 
condition = 0. 
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Example 2: The Table 2 comprises kernels belonging to three different varieties of 
wheat, which is selected from the data set “seeds” in Section 5. Let IIVDIS = (OS, CA  

{Dc}, DO, F). Where object set OS = {x1, x2, …, x20}, xi represents every wheat (i = 1, 
2, …, 20), condition attribute set CA = {c1, c2, …, c7}, cj(j = 1, 2, …, 7) show area, pe-
rimeter, compactness, length of kernel, width of kernel, asymmetry co-efficient and 
length of kernel groove, respectively. Dc exhibits the varieties of wheat. Decision values 
1, 2 and 3 represent Kama, Rosa and Canadian, respectively. In order to construct an 
inconsistent IIDIS in Example 3, extra decision attribute Dc is also outlined in Table 2. 

 

Table 2. An incomplete interval-valued decision information system. 
OS c1 c2 c3 c4 c5 c6 c7 Dc Dc 

x1 [10.40, 12.71] [11.79, 14.41] [0.76, 0.93] [4.65, 5.68] [2.56, 3.13] [6.04, 7.39] [4.46, 5.45] 3 2 
x2 [10.33, 12.63] [11.75, 14.36] [0.76, 0.93] [4.66, 5.70] [2.48, 3.03] [5.29, 6.46] [4.50, 5.50] 3 1 
x3 [16.85, 20.59] [14.57, 17.81] [0.81, 0.99] [5.41, 6.61] [3.47, 4.24] [4.79, 5.86] [5.29, 6.47] 2 1 
x4 [10.11, 12.35] [11.37, 13.89] [0.80, 0.97] [4.41, 5.39] [2.59, 3.17] [2.04, 2.50] [4.23, 5.17] 1 3 
x5 [12.63, 15.43] [12.74, 15.58] [0.79, 0.97] [4.89, 5.98] [2.88, 3.52] [1.55, 1.89] [4.50, 5.50] 1 3 
x6 [15.16, 18.52] [14.10, 17.24] [0.78, 0.95] [5.40, 6.60] [3.14, 3.83] [4.21, 5.14] [5.29, 6.46] 2 1 
x7 [16.59, 20.27] [14.37, 17.57] [0.82, 1.00] [5.38, 6.58] [3.39, 4.15] [2.69, 3.28] [5.31, 6.50] 2 3 
x8 [10.21, 12.47] [11.58, 14.16] [0.77, 0.95] [4.55, 5.56] [2.56, 3.13]  [4.50, 5.50] 3 2 
x9 [13.01, 15.91] [12.92, 15.79] [0.79, 0.97] [4.85, 5.93] [3.04, 3.71] [2.52, 3.08]  1 2 
x10 [10.64, 13.00] [12.06, 14.74] [0.74, 0.91] [4.78, 5.85] [2.50, 3.05] [4.02, 4.92] [4.66, 5.70] 3 3 
x11 [14.04, 17.16] [13.60, 16.62] [0.77, 0.94] [5.25, 6.42] [2.96, 3.61] [2.45, 3.00] [5.18, 6.33] 2 3 
x12 [15.80, 19.31] [14.09, 17.23] [0.81, 0.99] [5.21, 6.37] [3.32, 4.06] [4.83, 5.90] [5.09, 6.23] 2 3 
x13 [11.99, 14.65] [12.55, 15.33] [0.78, 0.95] [4.99, 6.10] [2.77, 3.38] [6.33, 7.74] [4.90, 5.98] 3 2 
x14 [16.35, 19.99] [14.63, 17.89] [0.78, 0.95] [5.64, 6.90] [3.16, 3.86] [2.57, 3.14] [5.65, 6.90] 2 2 
x15 [13.60, 16.62] [13.09, 15.99] [0.81, 0.99] [5.02, 6.14] [3.12, 3.81] [2.82, 3.44] [4.66, 5.70] 1 1 
x16  [13.40, 16.38] [0.79, 0.97] [5.20, 6.35] [3.07, 3.75] [4.47, 5.47]  2 3 
x17 [11.30, 13.81] [12.21, 14.93] [0.77, 0.94] [4.80, 5.87] [2.67, 3.26] [3.98, 4.86] [4.66, 5.69] 3 1 
x18 [11.84, 14.48] [12.44, 15.20] [0.78, 0.95] [4.91, 6.00] [2.68, 3.27] [0.77, 0.94] [4.55, 5.56] 1 1 
x19 [12.55, 15.33] [12.75, 15.59] [0.79, 0.96] [5.03, 6.14] [2.84, 3.47]  [4.51, 5.51] 1 1 
x20 [13.84, 16.92] [13.41, 16.39] [0.78, 0.96] [5.30, 6.47] [2.94, 3.59] [4.02, 4.91] [5.22, 6.37] 2 3 

 
After calculation, OS/Dc = {D1

c, D2
c, …, D3

c}. Where D1
c = {x4, x5, x9, x15, x18, x19} and 

D2
c = {x3, x6, x7, x11, x12, x14, x16, x20}, D3

c = {x1, x2, x8, x10, x13, x17}, respectively. 
Tolerance class for every object under the condition attribute set CA with  = 0.6 is 

[xi]R
CA

 = {xi} apart from x1, x2, x5, x8, x19 in the universe OS. [x1]R
CA

 = {x1, x8}, [x2]R
CA

 = {x2, 
x8}, [x8]R

CA
 = {x1, x2, x8}, [x5]R

CA
 = [x19]R

CA
 = {x5, x19}. 

After calculation, 

/
( ) 1.i

c c

i
CA cD OS D

BEL D


  Hence IIDIS is consistent. 

Let A = CA  {cj}, (j = 1, 2, 3, 4), then
/

( ) 1.i
c c

i
A cD OS D

BEL D


    

Therefore, 

/ /
( , , ) ( ) ( ) 0.i i

c c c c

BEL i i
in j c CA c A cD OS D D OS D

IM c CA D BEL D BEL D
 

     

Let A = CA  {c5}, then
/

( ) 0.9.i
c c

i
A cD OS D

BEL D


  

Therefore, 5 / /
( , , ) ( ) ( ) 0.1 0.i i

c c c c

BEL i i
in c CA c A cD OS D D OS D

IM c CA D BEL D BEL D
 

      
Let A = CA  {c6}, then

/
( ) 0.8.i

c c

i
A cD OS D

BEL D


  

Therefore, 6 / /
( , , ) ( ) ( ) 0.2 0.i i

c c c c

BEL i i
in c CA c A cD OS D D OS D

IM c CA D BEL D BEL D
 

      

Let A = CA  {c7}, then
/

( ) 0.8.i
c c

i
A cD OS D

BEL D


  
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Therefore, 7 / /
( , , ) ( ) ( ) 0.2 0.i i

c c c c

BEL i i
in c CA c A cD OS D D OS D

IM c CA D BEL D BEL D
 

      

So relative belief core is B = {c5, c6, c7}. However 
/

( ) 0.75 1.i
c c

i
B cD OS D

BEL D


   

Let A = B{c1}, then 

/
( ) 1.i

c c

i
A cD OS D

BEL D


  

Therefore, 1 / /
( , , ) ( ) ( ) 0.25.i i

c c c c

BEL i i
out c A c B cD OS D D OS D

IM c B D BEL D BEL D
 

     

Let A = B{c2}, then 

/
( ) 1.i

c c

i
A cD OS D

BEL D


  

Therefore, 2 / /
( , , ) ( ) ( ) 0.25.i i

c c c c

BEL i i
out c A c B cD OS D D OS D

IM c B D BEL D BEL D
 

     

Let A = B{c3}, then 

/
( ) 0.75.i

c c

i
A cD OS D

BEL D


  

Therefore, 3 / /
( , , ) ( ) ( ) 0.i i

c c c c

BEL i i
out c A c B cD OS D D OS D

IM c B D BEL D BEL D
 

     

Let A = B{c4}, then 

/
( ) 1.i

c c

i
A cD OS D

BEL D


  

Therefore, 4 / /
( , , ) ( ) ( ) 0.25.i i

c c c c

BEL i i
out c A c B cD OS D D OS D

IM c B D BEL D BEL D
 

     

Since 

1{ }/
( ) 1i

c c

i
B c cD OS D

BEL D
  while A = B{c1} and 1( , , ) max

k

BEL
out c c CA BIM c B D    

( , , ),BEL
out k cIM c B D  so {c1, c5, c6, c7} is a relative belief reduction. Relative plausibility redu- 

ction {c1, c5, c6, c7} can be also acquired according to the inner/outer importance degree 
( , , ) / ( , , ).PL PL

in j c out j cIM c CA D IM c B D  

 
4.2.2 The relative reductions in inconsistent IIDIS 

 
In an inconsistent IIDIS = (OS, CA{Dc}, DO, F), there has an x s.t. |∆CA(x)|  2. 

And some objects of the same tolerance class exist distinct decision values. Let B  CA, 
as a minimal attribute subset of CA to remain the consistency for universe, B can be con-
sidered as relative reduction, vice versa. In short, |∆B(x)| = 1(x  OS). 

 
Theorem 7: Given an inconsistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1

c, D2
c, …, 

Dt
c}, B  CA. There have 

 
(1) B can be regarded as relative belief consistent set ( ) ( )i i

B c CA cR D R D    for any Di
c(i  

{1, 2, …, t}). 
(2) B can be regarded as relative plausibility consistent set ( ) ( )i i

B c CA cR D R D   for any  

Di
c(i  {1, 2, …, t}). 

 
Proof: (1)  BELB(Di) = BELCA(Di

c) for any Di
c  OS/Dc in the light of the Definition 9. 

That is to say
| ( )|| ( )|

| | | |

ii
CA cB c R DR D

OS OS



 (i  {1, 2, …, t}), | ( ) | | ( ) | .i i
B c CA cR D R D    And B  CA, thus 

( ) ( ).i i
B c CA cR D R D  Therefore, ( ) ( )i i

B c CA cR D R D   for any Di
c  OS/Dc.   

, when ( ) ( )i i
B c CA cR D R D   for any Di

c  OS/Dc.
| ( )| | ( )|

| | | |( ) ( ).
i i

B c B cR D R Di i
B c CA cOS OSBEL D BEL D

 

    

So B can be deemed as relative belief consistent set. 
(2) Analogously, its demonstration can be acquired by the Definition 9. 

 
Theorem 8: Given an inconsistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1

c, D2
c, …, 

Dt
c}, B  CA. Thus one has 
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(1)  B can be considered as relative belief consistent set  
/

( )i
c c

i
B cD OS D

BEL D


  

/
( ).i

c c

i
CA cD OS D

BEL D
   

(2)  B can be considered as relative belief reduction  
/

( )i
c c

i
B cD OS D

BEL D


  

/
( ),i

c c

i
CA cD OS D

BEL D
 meanwhile, for any B  B,  

/
( )i

c c

i
B cD OS D

BEL D


  

/
( ).i

c c

i
CA cD OS D

BEL D
  

 
Proof: (1)  BELB(Di

c) = BELCA(Di
c) holds for Di

c(i {1, 2, …, t}) on account can be seen 
as relative belief consistent set. Hence

/
( )i

c c

i
B cD OS D

BEL D


 /
( ).i

c c

i
CA cD OS D

BEL D
  

 There have 
/

( ).i
c c

i
CA cD OS D

BEL D
 /

( ).i
c c

i
CA cD OS D

BEL D
  for any Di

c  OS/Dc. And  

for BB, BELB(Di
c)  BELB(Di

c). So 
/ /

( ) ( ).i i
c c c c

i i
B c CA cD OS D D OS D

BEL D BEL D 
   There-  

fore, 
/ /

( ) ( )i i
c c c c

i i
B c CA cD OS D D OS D

BEL D BEL D
 

   for any Di
c  OS/Dc forces BELB(Di

c) =  

BELCA(Di
c) holds. B is a relative belief consistent set. 

(2) Its demonstration could be directly obtained by (1) and Definition 9. 
 
Theorem 9: Given an inconsistent IIDIS = (OS, CA{Dc}, DO, F), OS/Dc = {D1

c, D2
c, …, 

Dt
c}, B  CA. So there have 

 
(1) B can be considered as relative plausibility consistent set 

/
( )i

c c

i
B cD OS D

PL D


   

/
( ).i

c c

i
CA cD OS D

PL D
  

(2) B can be considered as relative plausibility reduction 

/
( )i

c c

i
B cD OS D

PL D


   

/
( ),i

c c

i
CA cD OS D

PL D
 meanwhile, for any B B, 

/
( )i

c c

i
B cD OS D

PL D
  

/
( ).i

c c

i
CA cD OS D

PL D
  

Proof: Its proof has resemblance with Theorem 8. 
 
Theorem 10: Given an inconsistent IIDIS = (OS, CA{Dc}, DO, F), B  CA. B is a rela-
tive plausibility consistent set can conclude that B is a relative belief consistent set. 
 
Proof: We can gain that if [x]RB

Di
c, then [x]RC


A
Di

c from the proof of the Theorem 1 (6). 
Now, we should prove that [x]RC


A
Di

c, can derive [x]RC


A
Di

c. If [x]RC


A
Di

c, there have [x]RC


A 

Di
c  0/, and [x]RC


A
Dl

c  0/ for OS/Dc forms a partition on universe OS when Dl
c  Di

c 

(Dl
cOS/Dc). For B be a relative plausibility consistent set, one has ( )i

B cR D  ( )i
CA cR D  

for any Di
c  OS/Dc according to the Theorem 7. Thus, [x]RB

Di
c  0/ is equivalent to 

[x]RC


A
Di

c  0/ for x  OS. And we can acquire [x]RB
Di

c  0/ and [x]RB
Dl

c  0/ for Dl
c  

OS/Dc when Dl
c  Di

c. Then [x]RB
Di

c, namely, [x]RC


A
Di

c can elicit that [x]RB
Di

c holds. To 
sum up, [x]RB

 Di
c, then [x]RC


A
Di

c are equivalent for Di
c  OS/Dc. According to the The-

orem 7, B can be termed as relative belief consistent set. 
 
Example 3: (Continued from the Example 2) Let IIDIS = (OS, CA{Dc}, DO, F) based 
on the Example 2. Then decision classes are changed into D1

c = {x2, x3, x6, x15, x17, x18, 
x19}, D2

c = {x1, x8, x9, x13, x14}, and D3
c = {x4, x5, x7, x10, x11, x12, x16, x20}, which consti-

tutes set OS/Dc = {D1
c, D2

c, D3
c}. At this point, there exists an object x2 such that [x2]RC


A
⊈ 
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[x3]Dc = D1
c when  = 0.6. So this IIDIS is inconsistent. 

 
Tolerance class for every object under the condition attribute set CA remains un-

changed. After calculation, 

/
( ) 1.2.i

c c

i
CA cD OS D

PL D 
 

   

Let A = CA  {cj}, (j = 2, 3), then
/

( ) 1.2.i
c c

i
A cD OS D

PL D 
     

Therefore, 

/ /
( , , ) ( ) ( ) 0.i i

c c c c

PL i i
in j c A c CA cD OS D D OS D

IM c CA D PL D PL D   
       

Let A = CA  {c1}, then
/

( ) 1.3.i
c c

i
A cD OS D

PL D 
   

Therefore, 1 / /
( , , ) ( ) ( ) 0.1 0.i i

c c c c

PL i i
in c A c CA cD OS D D OS D

IM c CA D PL D PL D   
        

Let A = CA  {c4}, then
/

( ) 1.3.i
c c

i
A cD OS D

PL D 
   

Therefore, 4 / /
( , , ) ( ) ( ) 0.1 0.i i

c c c c

PL i i
in c A c CA cD OS D D OS D

IM c CA D PL D PL D   
        

Let A = CA  {c5}, then
/

( ) 1.35.i
c c

i
A cD OS D

PL D
   

Therefore, 5 / /
( , , ) ( ) ( ) 0.15 0.i i

c c c c

PL i i
in c A c CA cD OS D D OS D

IM c CA D PL D PL D   
        

Let A = CA  {c6}, then
/

( ) 1.75.i
c c

i
A cD OS D

PL D
   

Therefore, 6 / /
( , , ) ( ) ( ) 0.55 0.i i

c c c c

PL i i
in c A c CA cD OS D D OS D

IM c CA D PL D PL D   
        

Let A = CA  {c7}, then
/

( ) 1.4.i
c c

i
A cD OS D

PL D
   

Therefore, 7 / /
( , , ) ( ) ( ) 0.2 0.i i

c c c c

PL i i
in c A c CA cD OS D D OS D

IM c CA D PL D PL D   
        

So relative plausibility core is B = {c1, c4, c5, c6, c7}. 

Furthermore,
/ /

( ) 1.2 ( ).i i
c c c c

i i
B c CA cD OS D D OS D

PL D PL D   
     Therefore, B is a relative pla- 

usibility reduction. 

5. EXPERIMENT ANALYSIS 

In this section, some experiments are performed to prove the efficiency of the pro-
posed theorems by six data sets from UCI database. That is “Blood Transfusion Service 
Center”, “Immunotherapy”, “seeds”, “Page Blocks Classification”, “Wine Quality-Red” 
and “Wine Quality-White”, which are shown in Table 3. The testing results are running 
on personal computer with processor (2.7 GHz Intel Core i5) and memory (8 GB 1867 
MHz DDR3). The platform of algorithm is Matlab2016B. 

Table 3. The testing data sets. 

Datasets Abbreviation Object Condition Attribute Decision Class 
Blood Transfusion Service Center BTSC 748 4 2 

Immunotherapy IPY 90 7 2 
Seeds SDS 210 7 3 

Page Blocks Classification PBC 5473 10 5 
Wine Quality − Red WQR 1599 11 6 

Wine Quality − White WQW 4898 11 7 
 

In fact, the attribute values of six data sets are real numbers. But what we are inves-
tigating is IIDIS. So we need utilizing multiply error precision ξ and missing rate  (  
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(0, 1)) to process the data and change the data from real numbers to interval numbers. 
Let DIS = (OS, CA{Dc}, DO, F) be a decision information system. All attribute values 
are single-valued. For any xi  OS, cj  CA, the attribute value of xi under the attribute cj 
can be written as P = F(xi, cj). The attribute value of every data set remains unchanged.  

 

 Firstly, we randomly choose |OS||CA|(ꞏ is the meaning of taking an integer 
down) attribute values and turn them into missing values in order to construct an in-
complete information system. These missing values are written as *; 

 Secondly, the interval number can be obtained by formula P = [(1  ξ)  P, (1 + ξ)  P]. 
In summary, an IIDIS is obtained. 

 
Where  = 0.04, ξ = 0.1 in consistent IIDIS and  = 0.004, ξ = 0.05 in inconsistent 

IIDIS. Let  = 0.6. Tables 4 and 5 show relative belief and plausibility reduction of con-
sistent/inconsistent IIDIS in light of the Algorithm 1. In the following, C  CA and B  C 
indicate relative belief/plausibility reduction and relative belief/plausibility core, respec-
tively. 

 
Table 4. Relative belief reduction in consistent/inconsistent IIDIS. 

Data sets Consistent(yes/no) Relative belief core Relative belief reduction 
BT SC no {1, 3, 4} {1, 3, 4} 

IPY yes {4} {2, 3, 4, 6} 
SDS no {6} {2, 5, 6, 7} 
PBC no {6} {4, 6, 7, 8, 9} 
WQR yes {3, 5, 6, 7} {2, 3, 4, 5, 6, 7, 10} 
WQW no {2, 5, 6, 7} {2, 3, 4, 5, 6, 7} 

 

Table 5. Relative plausibility reduction in consistent/inconsistent IIDIS. 
Data sets Consistent(yes/no) Relative plausibility core Relative plausibility reduction 

BT SC no {1, 3, 4} {1, 3, 4} 
IPY yes {4} {2, 3, 4, 6} 
SDS no {6} {1, 5, 6, 7} 
PBC no {6} {3, 4, 6, 7, 8} 
WQR yes {3, 5, 6, 7} {2, 3, 4, 5, 6, 7, 10} 
WQW no {2, 5, 6, 7} {2, 4, 5, 6, 7, 10} 

 

Observed from the Tables 4 and 5, we find a relative belief/plausibility core and a 
relative belief/plausibility reduction in each data set. Obviously, an attribute subset C  

CA is a relative belief reduction, which is equivalent to C is a relative plausibility reduc-
tion in consistent IIDIS. Such as data set IPY and WQR. In addition, relative belief/plau- 
sibility reduction C is also equivalent to a relative reduction according to definition 9 and 
Theorem 5. Therefore, relative reduction is not only equivalent to relative belief reduc-
tion but also equivalent to relative plausibility reduction in the consistent IIDIS. In in-
consistent IIDIS, on the one hand, relative belief/plausibility core B of data set BT SC is 
relative belief/plausibility reduction C, which indicates ( , , ) ( ,BEL PL

out j c out jIM c B D IM c B  
B, Dc) = 0 for every cj  CA  B. On the other hand, relative belief/plausibility core of 
other three data sets is a subset of relative belief/plausibility reduction. Besides, relative 
belief reduction is not equivalent to relative plausibility reduction in inconsistent IIDIS. 
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6. CONCLUSIONS 

D-S evidence theory has close connection with RST. And they are useful and sig-
nificant tools to handle with uncertainty problem. IIDIS is viewed as the extension of 
classic information system. In the paper, we primarily discuss the properties with refer-
ence to approximations by using a novel tolerance relation in IIDIS. Relative reduction, 
relative belief/plausibility reduction are defined associated with D-S theory. After re-
search, the belief (plausibility) function in belief structure is closely related to the lower 
(upper) approximation in approximate space that is formed by universe and the novel 
tolerance relation. We find that belief (plausibility) function is cardinal number of the 
lower (upper) approximation about the concept divided by the cardinality of the dis-
course. In the consistent IIDIS, relative reduction is not only equivalent to relative belief 
reduction but also equivalent to relative plausibility reduction. In the inconsistent IIDIS, 
relative plausibility consistent set can conclude it be deemed as relative belief consistent 
set. 

We only study relative reductions via evidence theory in IIDIS. Later we will fur-
ther explore other reductions (such as lower/upper approximation reduction, distribute 
reduction, partially consistent reduction and so on) approaches to deal with issues and 
look for relationships among these reductions in IIDIS. 
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