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Cloud computing has effectively changed the computing industry by introducing the
on-demand resources through virtualization. However, a cloud system suffers with several
challenges including low resource utilization, high power consumption, security and many
others. This paper introduces a neural network based workload forecasting model using dif-
ferential evolution. The predictive framework is evaluated on five real world data traces. The
forecast efficacy is compared with state-of-art approaches including back propagation and
linear regression along with statistical analysis. It was observed that the proposed scheme
reduced the forecast error up to 85.52% and 89.70% measured using RMSE and MAE re-
spectively. The statistical analysis also validates the superiority of the proposed predictive
framework as it received the best rank in the Friedman test analysis.

Keywords: workload forecasting, differential evolution, neural network, cloud computing,
Google cluster trace

1. INTRODUCTION

Cloud computing has become one of the most popular word in the technology world.
Today, it appears 58.6 million times on the Internet. According to MIT Technology Re-
view, the term cloud computing was first coined by a group of Compaq Computers in
1996 [1, 2]. It delivers the computing resources as a service over Internet through a web
application. A user can store his data and applications on a remote server which can be
accessed at any time from any where across the globe with the help of an Internet con-
nection. A cloud system must ensure to have on-demand self service, network access,
resource pooling, elasticity, and measured services.

Elasticity is one of the most significant properties that expand or shrink the resources
as the user demands increase or decrease over time. A cloud system ensures the elasticity
using either of the two approaches called reactive and proactive scaling. In a reactive scal-
ing method, the user has to wait for a certain amount of time before he gets the requested
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resources as the approach adds or removes the resources only after the user demand is
received. While a proactive approach estimates the user’s demand and scale the resources
in advance accordingly. Thus, a user does not need to wait to access the resources. But
the estimations must be accurate otherwise the cloud system may suffer with the resource
wastage, excess consumption of electricity and many other factors. Thus, the workload
prediction plays a vital role in improving the quality of services (QoS) and quality of
experience (QoE).

The workload prediction is being widely used for efficient resource management of
cloud resources [3]. However, the high variability in the workloads (resource demands)
introduces the complexity in workload estimation. In this paper, we introduce a neural
network based predictive framework that exploits the differential evolution learning al-
gorithm to optimize its synaptic connections. In addition, it also optimizes the length of
patterns i.e. the number of historical workload instances to forecast next value.

Further, the paper is organized as follows: Section 2 briefs the recent key contri-
bution in machine learning based forecasting schemes for cloud environment. Section 3
discusses the proposed learning based forecasting scheme followed by a discussion on
experimental results in Section 4 along with a statistical analysis. Finally a conclusive
remark is mentioned in Section 6.

2. RELATED WORK

Since, cloud server workloads can be indexed in time, the time series models can
be used to anticipate the future workload [4]. Roy et al. [5] discussed the challenges
of auto scaling in the cloud along with a forecasting approach using second order auto
regressive moving average to achieve resource auto scaling in cloud environment. Tran
et al. worked with seasonal ARIMA to show the efficacy of forecaster in long term fore-
casts [6] and produced the predictions ahead up to 168 hours. Calheiros et al. [7] and
Ardagna et al. [8] used a forecasting methodology based on ARIMA and moving aver-
age (MA) respectively in the cloud environment for improved quality of services. In first
approach, the authors analyzed the effect of forecasts and showed importance in accu-
racy to maintain the service level agreements along with user experience. On other hand,
the second method proposed a distributed solution incorporating workload prediction and
non linear optimization techniques to minimize the resource allocation cost along with a
guaranteed SLA. The ARIMA model is also explored in improving the data center’s net-
work performance by achieving efficient network bandwidth allocation [9]. An adaptive
workload prediction method is given by Liu et al. [4]. In this approach, the workload is
classified into a number of classes and one of the prediction model is assigned to predict
the expected load on the server. The authors used 0-1 integer programming for clas-
sifying the workload. In [10], the authors discovered the features and entities of auto
scaling operations by analyzing the auto scaling techniques used by leading cloud ser-
vice providers such as Amazon, Microsoft, and Google. The model permits a proactive
analysis of workload patterns and estimation of the responsiveness of the auto scaling
operations by modeling the extracted features and entities along with workload data. A
comparative study of different time series forecasting model is carried out over eight real
data traces [11]. Baldán et al. also studied and modeled the cloud data center workload
forecasting problem as time series prediction [12]. The authors used a number of machine
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learning approaches along with ARIMA and ES to predict the workload instances. The
cost reduction achieved by the proposed approach is 30% for both under and over pro-
visioning cost. An experimental study over 21 prediction models is carried out in [13].
Authors modeled an application under four realistic workload patterns, two billing pat-
terns, three types of predictive scaling. None of the model was observed to be universally
best for each workload. Predictive scaling out with scaling in produced best cost effi-
ciency and minimized the deadline miss rate of jobs. The different variants of ARMA
class such as ARIMA, SARIMA (Seasonal ARIMA), ARFIMA (Fractionally Integrated
ARIMA) with SSA (Singular Spectrum Analysis) are compared on CPU, Memory and
bandwidth data traces obtained from the Wikimedia grid [14]. The performance of an
ARIMA was found best on the network data trace while SSA outperformed other models
over CPU and Memory data traces. Since none of the approach is universally good for
all type of data traces, researchers suggested to use a combination of models. However,
The time series forecasting models are unable to capture and model the presence of high
non-linearity in cloud workloads as highlighted in [15].

A virtual machine workload prediction was proposed in [16] which uses the esti-
mated information to determine whether an application is CPU intensive and/or memory
intensive and resources are configured accordingly. An evolutionary neural network was
used for workload prediction [17]. The approach implements particle swarm optimiza-
tion, differential evolution, and covariance matrix adaptation evolutionary strategy learn-
ing algorithms and compares their performance. The concept of sliding window has been
used with neural network and linear regression for estimating the future workloads [18].
The execution time of tasks is anticipated to achieve better scheduling of tasks [19]. The
approach also extends one of the existing scheduling algorithms to enable the usage of an-
ticipated task costs for online partitioning and scheduling. Duy et al. [20] also explored
the neural network to improve the host load forecast accuracy. A dynamic environment
is used to illustrate the feasibility of the approach. Garg et al. [21] introduced a model to
address the issues of resource allocation in a datacenter that hosts different categories of
workloads. The predictive framework estimates the resource utilization of non-interactive
and transactional applications and schedules the workloads to achieve better usage of re-
sources. In addition, the profit of service providers and QoS requirements are maintained.
A number of neural network based prediction approaches have been proposed to improve
the forecast accuracy including [22-29]. Unlike any linear model, the neural network
based predictive framework are capable of modeling the nonlinearity in the workload
traces.

3. PREDICTIVE FRAMEWORK

The predictive framework is responsible to anticipate the future workload, where
workload can be defined as the number of HTTP requests on web server, computing re-
source demands and others. The workflow of proposed predictive framework is shown in
Fig. 1. First, the model extracts and aggregates the workload information that is analyzed
to optimize the length of learning window. The workload information is preprocessed and
organized as per the length of learning window to fed into model learning module. Then
the trained model’s forecast accuracy is evaluated on test data. The ratio of training and
testing data is 60:40.
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3.1 Pattern Length Optimization

The number of workload instances being analyzed highly affects the quality of fore-
casts. We define these instances as learning window of length ` or pattern length. The
proposed model develops the process of learning the optimal length of learning window.
It analyzes the workload trace and computes the autocorrelation for k time lags using
Eq. (1), where k = {1,2, . . . ,40} and T denotes the length of workload trace. The number
of lags with significant autocorrelation (sl) is identified using Eq. (2), where τρ denotes
the threshold value of significant auto correlation. The process computes the autocorre-
lation for λ = 40 time lags, where value of λ is selected based on experimental analysis.
If each instance is having significant autocorrelation, the workload trace is differentiated
using Eq. (3), where ỹ denotes the differenced workload. The same process is repeated
again to identify the optimal length. In case of differenced trace, if each time lag is having
significant autocorrelation, the λ is assigned to be the length of pattern.

ρk =
∑

T−k
t=1 (Yt − Ȳ )(Yt+k− Ȳ )

∑
T
t=1(Yt − Ȳ )2

(1)

sl =

{
k; if ρk ≥ τρ

0; otherwise
∀k (2)

ỹt = yt+1− yt (3)
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Fig. 1. Predictive framework model.

3.2 Network Optimization

The predictive framework is developed using a layered structure of an artificial neu-
ral network that contains ι− h̄−κ neurons in input, hidden and output layers respectively.
The network learns from the training data and optimizes its synaptic connection weights
using an optimization algorithm. The proposed framework considers the differential evo-
lution due to its simple and powerful optimization approach [30]. It is a population based
algorithm that uses vector difference to search for an optimal solution in the problem
space. In order to optimize the connection weights of proposed scheme, it first randomly
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initializes P vectors or solutions using Eq. (4), where lb j =−1 and ub j = 1 are the lower
and upper bounds respectively while rand is random number in the range [0, 1]. The
length of network is decided to be D = ((ι + 1)× h̄+ h̄× 1)⇒ ι(h̄+ 2) as it is fully
connected feed forward network.

Algorithm 1 : Cloud resource demand predictive model pseudocode.

Input: Y,L,P,G,Tρ ,do,PWS
Output: Ŷ

1: Identify the length of pattern (`) using autocorrelation analysis
2: ι = `, h̄ = b2`/3c,κ = 1
3: Initialize P random networks of length D (number of synaptic connections in the

network)
4: Compute the fitness of each network by evaluating them on training data
5: while termination criteria is not met do
6: for each generation G do
7: for each solution i do
8: Generate r1 6= r2 6= i ∈ (1,P) and cprand ∈ (1,P)
9: Apply DE/rand/1 mutation strategy and single point crossover

10: end for
11: Compute the fitness of each offspring network by evaluating them on training

data
12: Select P better individuals from offspring and current population for next itera-

tion
13: end for
14: end while

ηi, j = lb j + rand× (ub j− lb j) (4)

The performance of each network is evaluated on training data and a fitness value
is computed using an objective function such as minimization of forecast error. Fur-
ther, a number of solutions are generated by a process of recombination using mutation
and crossover operators. The mutation operation prevents the premature convergence by
escaping a solution from local optima. On the other hand, crossover recombines the ex-
isting solutions to explore the search space to find an optimal solution. The approach
uses DE/rand/1 mutation operator that uses the random selection of members and one
differenced vector to perturb the networks as shown in Eq. (5). The r1,r2 are the distinct
random numbers in (1, D) range and α is mutation rate in [0, 1) range. The k symbolizes
the iteration or generation number.

µ
k+1
i, j = η

k
i, j +α× (ηk

r1, j−η
k
r2, j) r1 6= r2 6= i (5)

The mutants further mate with the solutions from population to generate offspring
solutions (υ ). The predictive scheme uses the single point crossover that selects ηi and µi
for operation. Then a random number (cprand) in (1, D) range is generated that splits the
solutions into two parts and tails of both solutions are exchanged to generate the offspring
networks. The offspring solutions are evaluated on the training data and better offsprings
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replace the respective networks from the population. The selection of the population for
next iteration is carried out using the survival of the fitter between ηi and υi as shown in
Eq. (6).

η
k+1
i =

{
υk

i if f (υk
i )< f (ηk

i )

ηk
i otherwise

(6)

Further, we compute the computational time complexity of the proposed scheme step
y step. The initialization of P networks (line 3) consumes O(P×D). Since D = h̄(ι +2)
and h̄ < ι , it becomes O(P× h̄×(ι +2))⇒O(ι× h̄×P)⇒O(ι2×P). The fitness evalu-
ation of the population (line 4) needs O(m× ι2×P). The generation of random numbers
(line 8) takes O(P) as it generates three random numbers P times. The generation of
offspring solutions involve the mutation and crossover operations that consumes O(ι) to
produce one offspring and O(ι2×P) to generate P networks. Since each offspring needs
to be evaluated (line 11) for further processing, it takes O(m× ι2×P). The next step i.e.
selection (line 12) requires P comparisons that needs O(P) time complexity. The total
complexity of one iteration becomes O(m× ι2× P). For a maximum iteration (G), it
becomes O(m× ι2×P×G).

4. PREDICTION RESULTS & ANALYSIS

This section evaluates the forecast accuracy of the proposed scheme and compares it
with state-of-art learning based forecast methods. The forecasts are carried out on differ-
ent prediction window size (PWS) that defines the time interval between two consecutive
forecasts. We evaluated the forecast accuracy using root mean squared error (RMSE) (7)
and mean absolute error (MAE) (8). A machine equipped with two Intel® Xeon® E5-
2630 v4 processors. The machine contains main memory of 128 GB. We implemented
the predictive approach using MATLAB 2017a. Five different data traces are used to
evaluate the forecast accuracy including three web server traces (D1, D2, and D3) and two
traces (D4 and D5) of Google cluster trace [31, 32].

RMSE =

√
1
m

m

∑
i=1

(wi− ŵi)2 (7)

MAE =
1
m

m

∑
i=1
|wi− ŵi| (8)

4.1 Short Term Forecast Evaluation

The forecasts are evaluated on short term intervals i.e. up to 30 minutes. Tables 1
and 2 list the forecast accuracy on 1, 5, 10, 20, and 30 minutes interval using RMSE
and MAE metrics. It can be observed that the forecast for 1 minute interval received
better quality. It was also noticed that the forecast quality drops down as the forecast
interval increases up to certain value and improves again. The behavior was observed due
to fact that as the forecast interval increases beyond certain value, the quality of patterns
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improves and can be easily captured as it was not the case with lower values of prediction
intervals.

Table 1. Short term forecast evaluation using RMSE of proposed scheme.
PWS (min) D1 D2 D3 D4 D5

1 3.14E-1 1.19E-1 2.41E-1 2.82E+2 3.53E+2
5 7.15E-2 2.20E-1 4.39E-1 1.66E+2 1.84E+2
10 5.98E-2 2.81E-1 2.37E-1 1.62E+3 1.29E+3
20 1.28E-1 1.87E-1 2.63E-1 3.08E+3 2.45E+3
30 6.16E-2 1.33E-1 3.97E-1 8.13E+2 9.91E+2

Table 2. Short term forecast evaluation using MAE of proposed scheme.
PWS (min) D1 D2 D3 D4 D5

1 2.13E-1 8.87E-2 1.82E-1 1.69E+2 1.82E+2
5 5.03E-2 1.85E-1 4.08E-1 1.07E+2 9.79E+1

10 4.60E-2 2.31E-1 2.07E-1 9.34E+2 7.37E+2
20 9.42E-2 1.50E-1 2.29E-1 1.87E+3 1.48E+3
30 4.34E-2 1.09E-1 3.36E-1 5.75E+2 6.40E+2

4.2 Long Term Forecast Evaluation

Similarly, a study on long term forecast i.e. beyond 30 minutes is carried out. Ta-
bles 3 and 4 list the forecast accuracy on 40, 50, and 60 minutes interval using RMSE
and MAE metrics. Based on the forecast accuracy, it is clear that no trend is detected.
However, in most of the cases the forecast accuracy drops down for 60 minute prediction
interval that may be due to availability of less amount of training samples.

Table 3. Long term forecast evaluation of proposed scheme based on RMSE.
PWS (min) D1 D2 D3 D4 D5

40 1.18E-1 2.29E-1 5.35E-1 5.73E+3 4.64E+3
50 7.15E-2 2.86E-1 4.83E-1 7.03E+3 5.62E+3
60 1.22E-1 2.43E-1 5.83E-1 5.82E+3 5.25E+3

Table 4. Long term forecast evaluation of proposed scheme based on MAE.
PWS (min) D1 D2 D3 D4 D5

40 8.73E-2 1.96E-1 4.48E-1 3.71E+3 2.93E+3
50 5.44E-2 2.34E-1 4.05E-1 4.63E+3 3.65E+3
60 9.29E-2 2.06E-1 4.99E-1 5.36E+3 4.66E+3
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Fig. 2. Accuracy comparison using five different data traces.
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 Fig. 2. (Cont’d) Accuracy comparison using five different data traces.

5. COMPARATIVE & STATISTICAL ANALYSIS

This section compares the performance of the proposed scheme with two state-of-
art learning algorithms based prediction schemes. The proposed predictive framework is
trained using back propagation and linear regression learning algorithms and performance
of each model is measured and compared as shown in Fig. 3, where P, B, and L represents
the proposed scheme, back propagation, and linear regression based predictive models
respectively. It can be observed that the proposed model trained using differential evolu-
tion received better forecast accuracy in most of cases. For instance, the proposed model
reduces the forecast error (RMSE) up to 75.16% and 65.85% for CPU and memory data
traces over back propagation based forecasting method. Similarly, the forecast RMSE
over linear regression based method is reduced up to 35.76%, 16.28%, 85.52%, 69.00%,
and 74.34% for all five data traces respectively.

In order to observe the performance of each approach, we conducted the statistical
analysis using Friedman and Finner post-hoc method. Friedman test considers a null hy-
pothesis (H0) that assumes the equivalence of mean of the results for all approaches. It
was observed that the test rejects the H0 for RMSE and MAE based experiments. Table 5
lists the mean rank for both metrics and we observed that differential evolution based
predictive framework attained the lowest ranks that indicates the best performance among
considered algorithms. We also conducted a post-hoc test using Finner method that as-
sumes that the mean of the performance of both algorithms in each pair is same. Table 6
shows that the H0 is rejected when the performance of the proposed and linear regres-
sion (LR) is compared whereas the test accepts the H0 on comparing the performance of
proposed and back propagation (BP) based prediction models.

Table 5. Friedman test mean ranks.
Algorithm Rank (RMSE) Rank (MAE)

Proposed 1.625 1.425
Back propagation 1.800 1.650
Linear Regression 2.575 2.925
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Table 6. Post-hoc analysis using Finner test.
RMSE MAE

Statistics Adjusted p-value Result Statistics Adjusted p-value Result

Proposed vs LR 4.24853 0.00004 H0.R 6.70820 0.00000 H0.R
Proposed vs BP 0.78262 0.43385 H0.A 1.00623 0.31430 H0.A

6. CONCLUDING REMARKS

Workload prediction has been effectively used to improve the cloud resource man-
agement. In this paper we presented a resource demand forecast mechanism that learns
the network weights using differential evolution based learning scheme. The proposed
predictive scheme is evaluated on five different workload traces. The prediction results
validate the better forecasts achieved by the proposed scheme as it reduces the error from
forecasts. The convincing experimental results show that the RMSE and MAE are re-
duced up to 85.52% and 89.70% respectively. The predictive approach can be further
extended to achieve self-parameter learning and multi step forecasts.
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