JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 143-158 (2017)
DOI: 10.6688/JISE.2017.33.1.9

ScaDiGraph: A MapReduce-Based Method
for Solving Graph Problems

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH
Information and Communication Technology Research Center
Tehran, 1599616313 Iran
E-mail: {Barkhordari; Niamanesh}@jictrc.ac.ir

Graph data contain a large volume of information, which must be analysed. A
method is required that can quickly process the information in distributed and scalable
architectures. Single node methods are not suitable because they cannot process large
amounts of information on their processors and memories. Problems encountered in dis-
tributed environments must also be addressed. These include graph division problems,
algorithm division problems, exchange states among hardware nodes, and network traffic.
In this paper, a scalable and distributable MapReduce-based method, ScaDiGraph, is
proposed that makes hardware nodes independent. With this method, each hardware node
can process a subgraph without any information from the other nodes. ScaDiGraph con-
verts iterative graph problems, such as the All Pairs Shortest Path (APSP), pattern
matching, and loop detection, into non-iterative problems and makes them suitable for
the MapReduce architecture. In the present paper, ScaDiGraph is used to solve APSP,
loop detection, and pattern matching problems, and the results are compared with those
obtained with other MapReduce- and non-MapReduce-based methods. The results show
that when applying ScaDiGraph on graph data, which causes simultaneous algorithm
execution on each node, the execution time decreases in comparison with the prominent
existing methods.

Keywords: graph, big data, MapReduce, APSP, loop detection, pattern matching

1. INTRODUCTION

Today, because of the high rate of information generated, innovative methods are
necessary for information management. To process a large volume of information, scala-
ble and distributable methods are used. In these methods, a large problem is broken down
into smaller problems, and each problem is processed by a single node. Each node pro-
cesses information and generates output. Finally, a node collects the outputs and gener-
ates the results. One of the most popular methods in this area is MapReduce [24]. How-
ever, it is not always possible to divide a problem into smaller problems and solve them
separately. Moreover, data and computational relationships among the generated sub-
problems make it impractical to use MapReduce-like methods to solve problems in this
way. Some problems are iterative. With such problems, it is necessary to continue pro-
cessing until a predefined threshold or predetermined number of iterations is reached.
Graph computation is one the most important types of iterative problems. The growth in
graph data and the need to analyze the data means that methods are needed that can rap-
idly solve graph problems. Simple graph division cannot be used to solve graph problems
because it requires information on all the nodes and edges.

faal M 1 ~ 1 1 11 1L L 1 1

Received August 29, 2015; revised January 14 & April 5 & June 21, 2016; accepted July 17, 2016.
Communicated by Jan-Jan Wu.

143

144 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

these methods usually suffer from the following problems:

o Graph division problems: This problem relates to how to divide graphs. Graph division
problems are important problems in distributed systems that can cause inefficiencies in
many of the proposed methods [36, 39].

e Data exchange problems: This issue is common to many of the proposed methods and
relates to the exchange of graph data structure and vertex states over a network. Net-
work latency problems and the large size of the subgraphs mean that many of the pro-
posed solutions are ineffective [17, 20, 36, 40].

o Network traffic problems: Some methods create heavy traffic on a network. Part of this
traffic is created by unwanted or uncontrolled objects. Other parts are usually the result
of messages, graph data structure, and vertex states [36, 39].

o [teration support problems: This type of problem is associated with intermediate results
management. For some of the problems, such as graph problems, it is necessary to have
results of the current iteration as input to the next iteration. Some of the proposed
methods are not appropriate for iteration support and result in the inefficient use of
hardware. MapReduce-based solutions are usually prone to such inefficiency [40, 41].

e Message storage and processing problems: Some methods use message-passing proto-
cols. In large graphs, the messages sent by other nodes must be considered because
each node must store and process a large number of messages. In many of the proposed
methods, some of the nodes remain idle while waiting to process the messages from
other nodes, which results in hardware inefficiencies [36, 39].

o Data locality problems: In this type of problem, nodes do not have all the information
that they need. Therefore, their processes are dependent on data from other nodes [17,
20, 36, 39-41]. To the best of our knowledge, all the methods proposed thus far have
data locality problems.

In this paper, ScaDiGraph, as a MapReduce based method, is proposed to solve
graph problems, such as the All Pairs Shortest Path (APSP), loop detection and pattern
matching. The ScaDiGraph method divides a graph into subgraphs, and metadata on
these subgraphs are then stored. Each hardware node solves a subgraph problem, and the
results of the hardware nodes are combined according to the graph division metadata.
The proposed method utilizes MapReduce scalability.

Importantly, unlike other proposed methods for graph problems, with the proposed
solution, no data (e.g., graph data, graph states, messages) must be exchanged among the
hardware nodes. Each node can separately solve a subgraph problem and transmit the
results to the next layer of a Mapper(s). Another important feature of ScaDiGraph is that
it converts iterative graph problems over hardware nodes to iterative problems on each
node that can be solved separately, which enables them to be solved by MapReduce ar-
chitectures.

The structure of this paper is as follows. Section 2 investigates the preliminaries of
MapReduce and graph problems. In Section 3, the related work is discussed. Section 4
focuses on the proposed method. Section 5 presents the evaluation of the proposed
method. Sections 6 and 7 provide the conclusions and the discussion, respectively.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 145

2. PRELIMINARIES
In this part, MapReduce and solutions to graph problem methods are discussed.
2.1 MapReduce

In this section, studies related to MapReduce design are discussed. According to
[19], a decomposable algorithm, partitionable data, and a sufficiently small data partition
are the main characteristics required for the effective use of MapReduce. In [6], classic
MapReduce was optimized to decrease the data transformation load. In the method de-
scribed in [6], having a shared area for the information was considered. This type of de-
sign is suitable for solving problems, such as the k-nn and top k queries. In [16], MPI
(message passing interface) was used for message passing in a MapReduce structure. The
goal of that paper was to decrease the amount of data transferred in the MapReduce net-
work. In [21], a method was developed for tackling the workloads in hierarchical
MapReduce architectures. HadUP was presented in [22]. HadUP is a modified version of
Hadoop and uses a deduplication-based snapshot differential algorithm (D-SD) and up-
date propagation. Haloop [11] is another type of MapReduce structure suitable for itera-
tive problems. iMapreduce [9] also supports iterative processes. In [2], HDFS (Hadoop
file system) was substituted with a concurrency-optimized data storage layer based on the
BlobSeer data management service. In [4], a model was presented to estimate the I/O
behaviour of MapReduce applications. In [3], optimization over the MapReduce structure
was divided into five groups. Fig. 1 shows these groups.

) MapReduce optimization technigues | Graph algorithms

Job scheduling & MR task distribution optimizations
I I

Fig. 1. MapReduce optimization techniques. Fig. 2. Graph problem solutions classification.

Networking & 1/0 optimizations

Continuous cascaded MR work-flows 2
g
Optimized data-queries-oriented approach

Real-time optimization

HypeGrap

2.2 Methods for Solving Graph Problems

There are several methods for solving graph problems. As shown in Fig. 2, solutions
to graph problems can be divided into two categories: single node solutions and distrib-
uted solutions. Single node solutions, such as Neo4;j [40], HyperGraphDB [34], FGL [27],
JDSL [28], NetworkX [29], Stanford GraphBase [30], LEDA [31], and BGL [32], are
usually not suitable for large graphs. Graphchi [37] is another single node solution for
graph problems, but it solves subgraph problems sequentially and does not support syn-
chronous task support.

In distributed solutions, there are two main categories: MapReduce-based methods
and non-MapReduce-based methods. Almost all non-MapReduce methods are based on
message passing. All the message-passing methods require space to catch the other nodes’

146 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

messages. In large graphs, the amount of space needed to solve graph problems could be
too large. A large amount of message processing and increased network traffic are other
important issues in large graphs. Message passing sometimes prevents the synchronous
processing of nodes. Pregl [36] and GraphLab [35] are offline platforms used to solve
graph problems; these do not support online queries. In [36], graph division is not trans-
parent, which could have an adverse effect on the graph solution problems. PowerGraph
[39] uses HDFS [42] to solve graph problems. This file system does not guarantee the
best data locality. Unlike large graphs, states must be exchanged in subgraphs, which
produces network traffic. Trinity [38] uses a file system similar to that employed by Ha-
doop [42], which does not support data locality for graph problems. Trinity is also a
commercial system, and few details are available about the used methods. In [38], the
graph division used to solve the graph problems is not clear. This is a major problem
because synchronous computations depend on the division in the graphs.

3. RELATED STUDIES

According to the classification in [26], there are five groups of graph design patterns
for MapReduce, as outlined in Fig. 3:

Message Passing

Local Aggregation

Graph design patterns In-Mapper Combining

Schimmy

Range Partitioning

Fig. 3. Graph desgn patterns.

Message passing: In this pattern, each vertex using a local graph structure and ver-
tex metadata are used to solve graph problems. The results are sent to neighbour vertices
in an arbitrary message format. One of the main problems with this pattern is that the
Mapper must send the graph structure and vertex states to neighbour vertices.

Local aggregation: In MapReduce methods, a large amount of information is moved
among Mappers and Reducers. In the local aggregation pattern, Combiners are used to
decrease information shuffling and traffic among Mappers and Reducers.

In-Mapper combining: The use of Combiners in practice is problematic. For example,
it is not known how many times a Combiner is used or even whether it is used. Another
problem is that although Combiners decrease the network traffic, they do not reduce the
Key-Value pairs. Thus, many objects are constructed and deconstructed unnecessarily.
According to the above descriptions, the In-Mapper combining design pattern is proposed.
In this pattern, calculations on input records are performed on the Mapper side, and inter-
mediate Key-Value pairs are not emitted until all the input records are processed.

Schimmy: In this pattern, unnecessary shuffling among Mappers and Reducers is
omitted. Schimmy sorts graph vertices using a vertex key and then divides the graph into
subgraphs. Then, it uses parallel merge join for parallel execution. It uses a Reducer for
each subgraph, thereby decreasing the network traffic.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 147

Range partitioning: In this pattern, a graph is divided into subgraphs with an equal
number of vertices. Each Mapper processes the related subgraphs separately. The hash
function is usually used for graph division. However, vertices and their related neigh-
bours might not be included in a block. In practice, the properties of graphs are used to
achieve effective partitions.

In [1], a method for executing a query over a distributed graph is proposed. Map-
Reduce is employed in [5] to solve graph problems, such as graph transformation, sub-
graph partition, maximal clique enumeration, connected component finding, and com-
munity detection. In [7], a master worker method is used to solve graph problems of an
iterative nature. A method is proposed in [8] for converting MapReduce jobs to bulk
synchronous parallelism (BSP) programming model [10] jobs to utilize the BSO features
for the graph computations. In [12], a combination of partial synchronization and locality
enhancement is employed to alleviate synchronization overhead and achieve improved
performance. In [13], a method for implementing recursive queries on a MapReduce
structure is proposed to solve specific graph problems. The performance of MapReduce,
join-side MapReduce, and BSP in solving different graph problems is compared in [15].
The authors concluded that BSP performs better with regard to iterative problems but
that MapReduce is a better choice for enormous networks in which the structure cannot
be fitted into the local machine memory. A distributed computing model is proposed in
[17]. The model supports multi-iteration and random data access. In [18], MapReduce is
utilized to find all the instances of a given sample graph in a larger data graph. High-
level API is introduced in [20] for developing data-intensive applications for use in graph
mining. A MapReduce implementation of an incremental APSP algorithm is developed
in [23]. In [33], MapReduce is employed to solve different graph problems, such as
PageRank. There are several problems with MapReduce-based methods. In some Map-
Reduce-based methods, all or at least some parts of the graph structure must be sent
through the network, which thereby increases the network traffic. Some MapReduce-
based methods use Hadoop, which does not support best data locality for graph nodes.
MapReduce does not support iterations, which is essential for many graph algorithms.
Non-MapReduce methods have the following problems. Some non-MapReduce methods
use message passing, which increases the network traffic. When using message-passing
methods, the memory space required for processing messages must be considered. The
amount of space required could increase dramatically in large graphs. Some of the
methods use iterations. Each iteration does not finish until all the hardware nodes com-
plete their tasks. This causes hardware usage inefficiency. Some of the methods prevent
execution concurrency. No non-MapReduce methods account for data locality. To ad-
dress the problems with the current MapReduce and non-MapReduce methods, we pro-
pose ScaDiGraph, which offers the following advantages. It can divide a graph into
hardware nodes and execute an algorithm independently of individual nodes, without any
data exchanges with other nodes. The graph can be divided into subgraphs that have
equal size vertices. This division can be based on business knowledge or any arbitrary
property. It uses locality and does not send the graph structure and status of the vertices
over the network because all the required information is placed on the local hardware
node. It can efficiently utilize many weak hardware nodes to solve large graph problems
in a timely manner. Depending on the problem definition, ScaDiGraph can use distribut-
able and scalable features of MapReduce architectures to improve the algorithm execu-

148 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

tion time and hardware performance. Some researchers [38] believe that MapReduce is
not suitable for graph problems because of the iterative nature of the problems and the
absence of an existing effective iteration management mechanism in MapReduce solu-
tions. Although this concern is real, ScaDiGraph uses a method that omits inter-hardware
node iterations, which makes graph problems suitable for MapReduce architectures.

4. PROPOSED METHOD

Because of the large amount of information that can be stored in a graph data struc-
ture and because of the importance of analysing graph information, it is essential to have
a scalable and distributable framework for analysing the large amounts of information
contained in a graph. Single-node solutions are not adequate for managing large graphs.
ScaDiGraph omits iterations among hardware nodes by dividing a graph structure into
smaller pieces. This type of division has two important merits. First, large graph iterative
problems are divided into small, iterative problems, which can be solved by a hardware
node. Second, many weak or medium hardware nodes can be used to solve large graph
problems.

The proposed method divides the graph structure and solves problems on each
hardware node separately. With the proposed architecture, all the results are gathered in
the Reducer node. The hardware nodes act independently. In addition, graph data and
states do not need to be exchanged, and the results of each hardware node are calculated
separately. The following three steps describe the proposed method:

1. The main graph is divided into subgraphs; the number of subgraphs depends on the
Mapper count. The same number of nodes can be used for each Mapper.

2. Each Mapper executes an algorithm on its subgraph.

3. The results of all Mappers plus the deleted edges are sent to the Reducer.

No paths are omitted in the second step, which means that the Mappers are non-fil-
tering. Fig. 4 illustrates the architecture of the proposed method.

The operator for a combination of Mapper results is the following: Left or Right join.
Table 1 shows the notations for this operator. In Table 1, <xy> is the edge added to the
Mappers’ results. When the calculation is complete, each Mapper node sends the results
to the Reducer node with the format that appears in Table 2. The deleted edges are listed
in the Reducer with the format shown in Table 3.

Table 1. Notation for operator on mapper results.
Notation Description
b (<xy>,<zx>) Left or Right join

R
|

Table 2. Mapper results Table 3. Deleted edges format.
format. Source
Source Destination
Destination Value
Value Visited

Fig. 4. Proposed method
architecture.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 149

In the Reducer node, a database management system (DBMS) is used to achieve
higher performance and a faster calculation speed in comparison with methods that do
not use DBMSs. An in-memory database is used to decrease the I/O time on the hard
disk drive (HDD). The table is partitioned to prevent a full scan of the table. In table de-
sign, partitioning is a method in which a table is partitioned by field values. In the query
execution time, when there is a condition on the field and field value, only the related
part of the table is scanned. When the Mappers send the results with the Table 2 format,
partitioning must be applied to the “Source” and “Destination” fields at the same time.
Because this arrangement is not possible on the same table, the Mapper results are stored
in two tables: partitioning is applied to the “Source” field in one table and the “Destina-
tion” field in the other.

In this paper, ScaDiGraph is used to solve several large graph problems. The proposed
method is applied to the all-pairs shortest paths (APSP), loop-detection, and pattern-
matching problems. APSP is an algorithm that computes the shortest paths between all
pairs of vertices. Loop-detection is another graph problem that is very important in solving
various real problems. In this algorithm, all the loops in a graph are extracted and reported.
Finally, pattern matching is an algorithm that detects a sequence of vertices in a graph.

4.1 APSP

APSP is an algorithm with O(n3), where n is the number of vertices. Thus, with a
large graph, it is impossible to solve a problem that contains many vertices in a timely
manner. However, with ScaDiGraph, a large graph is divided into m (number of Mappers)
small graphs. As a result, a large O(n3) is converted to O((n/m)3) smaller graphs, which
enables the APSP algorithm to solve these graphical problems much faster. The follow-
ing example illustrates the proposed method. In the case of the graph shown in Fig. 5, the
input graph is divided into two subgraphs. There is no limitation on graph division. In
this example, we use partitions that have an equal number of vertices. Fig. 6 illustrates
the division of the graph. In this phase, each subgraph (X, Y) is assigned to a Mapper.
Each Mapper calculates APSP for its subgraph. The results are shown in Table 4. In this
stage, which is illustrated in Fig. 7, the deleted edges are added to the Mappers’ results.
New paths are calculated with a ¢ operator. The results from each node are sent to the
Reducer. The results following the application of the join operators are shown in Table 5.
The final results are shown in Table 6.

Fig. 5. Input graph. Fig. 6. Divided subgraph.

150 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

APSP algorithm (Psuedo code 1) is executed on each Mapper for the subgraphs and
on the Reducer for the deleted edges. As shown in Psuedo code 1, all the paths for the
graph nodes on the Mapper are calculated, and the results are stored in the Map-
per_Edges SRC table. Psuedo code 1 is also executed on the Reducer node for the nodes
of the deleted edges, and the results are stored in the Deleted Edges SRC table. Psuedo
code 2 is executed on the Reducer node for the APSP algorithm. As shown in Psuedo
code 2, the following tasks are completed:

1. Mapper Edges SRC is copied to Mapper Edges DST to create partitions on the
“Source” and “Destination” fields. Then, a local index is created on the partitions on
the “Source” or “Destination” fields. If the partition is on the “Source” field, then the
local index is created on the “Destination” field, and vice versa.

2. A while loop in the above code is repeated until there are unvisited rows in the Delet-
ed Edges SRC table.

3. The “join” function is repeated up to the number of Deleted Edges SRC’s partition
count. The “join” function joins the related partitions of Mapper Edges SRC and De-
leted Edges SRC and calculates the distances among the joined nodes.

4. After the “join” function, new edges that previously did not exist are added to Delet-
ed Edges SRC to execute the related calculations for the new edges.

5. Steps 3 and 4 are repeated for Deleted Edges SRC and Mapper Edges DST. Finally,
the visited rows from Deleted Edges SRC are deleted.

6. For the Deleted Edges DST table, steps 3-5 are executed with Mapper Edges DST
and Mapper Edges SRC.

7. Finally, the shortest paths for the “Source” and the “Destination” fields are selected.

4.2 Pattern Matching

To detect a pattern or a sequence of vertices, we use a modified version of the APSP
algorithm. In pattern matching, the visited vertices rather than the path costs are extracted.
For example, to find the “BCDF” sequence in the graph in Fig. 6, the graph is first di-
vided into two subgraphs, as shown in Fig. 7. Each Mapper then retrieves the paths that
have a maximum length of four edges (input string length). Table 7 shows the results
achieved with the Mappers. The deleted edges are then added to the graph, as depicted in
Fig. 8. New paths with a maximum length of four edges with the ¢ operator are extracted.
Table 8 shows the results. In Table 8, all the paths that have a length of more than four
edges are discarded. Table 9 shows the results after the Reducer phase. The pattern-
matching algorithm (Psuedo code 3) is executed on each Mapper for the subgraphs and
on the Reducer for the deleted edges. Psuedo code 3 execution process is the same as that
for the APSP Mapper code, except that the code path among the graph nodes is calculat-
ed instead of the distance among the nodes. The maximum length of the path is equal to
the length of the Input string for pattern matching. Psuedo code 4 execution process is the
same as that for the APSP code; however, the final step extracts the rows that have
“Value” fields equal to the Input string’s length.

4.3 Loop Detection

The proposed method can be used for loop detection in a graph; the pattern-match-

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 151

ing solution can be used to detect a loop in a graph. If, in the Reducer phase, the Keys are
repeated, then we have a loop in a graph. For loop extraction, we can detect duplicate
Keys that do not have more than two common vertices in their paths. For example, to
find the loops in the graph in Fig. 6, the graph is first divided into two subgraphs, as
shown in Fig. 7. Each Mapper then extracts the paths. Table 10 presents the results of the
Mappers. The deleted edges are then added to the graph, as demonstrated in Fig. 8. New
paths with the ¢ operator are extracted. Table 11 shows the results. Because we have du-
plicated Keys in Table 11, we could have loop(s) in the graph. For loop extraction, the
duplicated Keys are first identified. Paths that have the same Keys and less than three
common vertices are then extracted as loops. The loop-detection algorithm is executed
on each Mapper for the subgraphs and on the Reducer for the deleted edges. Psuedo code
5 execution process is the same as the pattern-matching process. The maximum length of
the path is equal to the length of the input value for the loop detection. Psuedo code 6 is
executed on the Reducer for the loop-detection algorithm. The above code-execution
process is similar to that for pattern matching; however, at the final step, paths that do not
have more than two nodes in common are extracted.

5. EVALUATION

The evaluation was divided into three parts: Implementation and evaluation of
APSP, Pattern matching and Loop detection

5.1 APSP

To evaluate the proposed method, the APSP algorithm with the proposed method
was applied to information in a social network composed of expert users. This social
network has approximately 50,000 users, and each user is displayed as a graph node. The
relationships among these users make up approximately 10,000,000 edges. Table 13
shows the specifications of the hardware nodes used for the proposed evaluation method.
Each Mapper hardware node has 1,000 graph nodes. We divided the graph into sub-
graphs that have an equal number of nodes. Table 13 shows the specifications of the
hardware nodes.

We divided the graph into subgraphs that have an equal number of nodes. The nodes
can be loaded on servers in an arbitrary manner. Table 14 shows the input data format.
We divided the main graph based on the ID field, which is the primary key of the input
data. The ID field grows sequentially. Based on the maximum value of the ID field and
the number of Mappers (M), we determine the lower bound and upper bound of the IDs,
which are present on each node.

Mapperl (0<ID <= Max(ID)/M);Mapper2 (Max(ID)/M <ID <=2 x Max(ID)/M);...;MapperM ((M-1) x Max(ID)/M < ID <= Max(ID))
We used Redis [25] as the In-Memory DBMS. Table 14 shows the results.
5.2 Pattern Matching

For pattern matching, we used bank transactions to detect any suspicious transaction

152 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

Table 4. Calculated APSP on

each subgraph.
Subgraph Key Value

X BC

Y DF

S SIHENN

Table S. Mapper results.

Table 7. Extracted paths on each

subgraph.

Subgraph Key Value

AB AB

X BC BC
AC ABC

DE DE

Y DF DF

EF EDF

Table 8. Mapper results.

Table 10. Extracted paths on each
subgraph.

Subgraph Key Value
AB AB
X BC BC
AC ABC
DE DE
Y DF DF
EF EDF

Table 11. Mapper results.

Operator and Key Key Value Operator and Key Key Value Operator and Key Key Vialue

- AB 2 - AB AB - AB AB

- BC 4 - BC BC - BC BC

- AC 6 - AC ABC - AC ABC

- DE 3 - DE DE - DE DE

- DF 7 - DF DF - DF DF

- EF 10 - EF EDF - EF EDF
(<AB>,<BF>) AF 3 (<AB>,<BF>) AF ABF (<AB>,<BF>) AF ABF
(<BC>,<CD>) BD 12 (<BC><CD>) BD BCD (<BC>,<CD>) BD BCD
(<AC><CD>) AD 14 (<AC>,<CD>) AD ABCD (<AC>,<CD>) AD ABCD
(<CD><DE>) CE 11 (<CD>,<DE>) CE CDE (<CD>,<DE>) CE CDE
(<BF>,<DF>) CF B (<BF>,<DF>) BD BFD (<BF>,<DF>) CF BFD
(<BF>,<EF>) BE 11 (<BF><EF>) BE BFDE (<BF><EF>) BE BFDE
(<DF>,<CD>) CF 15 (<DF>,<CD>) CF CDF (<DF>,<CD>) CF CDF
(<AF><DF>) AD 10 (<AF>,<DF>) AD ABFD (<AF>,<DF>) AD ABFD
(<AF><EF>) AE 13 (<AF>,<EF>) AE - (<AF><EF>) AE ABFDE
(<BD><DE>) BE 15 (<BC><CE>) BE BCDE (<BD>,<DE>) BE BCDE
(<BD><DF>) BF 19 (<BD>,<DF>) BF BCDF (<BD>,<DF>) BF BCDF
(<AD>,<DF>) AF 21 (<AD><DF>) AF - (<AD>,<DF>) AF ABCDF
(<AD>,<DE>) AE 17 (<AD><DE>) AE - (<AD><DE>) AE ABCDE
(<CF>,<DF>) CD 12 (<CF><DF>) CD CBFD (<CF><DF>) CD CBFD
(<CF>,<EF>) CE 15 (<CF><EF>) CE - (<CF>,<EF>) CE CBFDE
(<BD><BF>) DF 13 (<DB>,<BF>) DF DCBF (<BD><BF>) DF DCBF
(<CD>,<BD>) BC 16 (<CF><BF>) BC CDFB (<CF>,<BF>) BC CDFB

Table 6. Reducer results.

Key Value
AB 2
AC 6
AD 10
AE 13
AF 3
BC 4
BD 12
BE 11
BF 19
CD 12
CE 11
CF 8
DE 3
DF 7
EF 10

For k=1 to SubgraphNodesCount
For j=1 to SubgraphNodesCount
For i=1 to SubgraphNodesCount
{
If (dis-
tance (node (k), node(i)) != infin-
ity) && (distance (node (i),
node(j)) !'= infinity

distance (node (k) ,
node (j))= distance (node (k) ,
node(i)) + distance (node (i),
node (j)) ;

Insert into Map-
per Results (Source,Destination,Val
ue)

Val-
ues (node (k) . Name, node(j). Name,
distance (node (k) , node(j)));
}

}
Send Edges (Mapper Results,Reducer.
Mapper Edges SRC);

Pusedo code 1

Table 9. Reducer results.

Key Value
BF BCDF
CD CBFD
DF DCBF
BC CDFB

<BF,)>
«CD,>

Fig. 7. Adding deleted edges.

For k=1 to SubgraphNodesCount
For j=1 to SubgraphNodesCount
For i=1 to SubgraphNodesCount
{

If (length(path (node (k),
node (i))) <= length(InputPattern)) &&
(length (path (node (i) , node(j))) <=

length (InputPattern))

{
path (node (k) , node(j))=
path (node (k), node(i)) + path (node (i),
node (3)) ;
if (length (path (node (k),
node (j)))<= length (InputPattern))
{
Insert into Map-
per Results (Source,Destination,Value)
Values (node (k) .
Name, node(j). Name, path (node (k),
node (3))) 7
¥
}
}
Send Edges (Mapper Results,Reducer.
Mapper Edges SRC);

Pusedo code 3

Table 12. Reducer results.

Key Value
AD ABED
AD ABED
AE ABEDE
AE ABEDE
AF ABCDE
AF ABE
BC BC
BC CDFB
BE BCDE
BE BEDE
CE EBEDE
CE CPE
CF BFD
CF CDF
DF DCBF
DF DF

For k=1 to SubgraphNodesCount
For j=1 to StbgraphNodesCount
For i=1 to SubgraphNodesCoumt
{
If(length(path(node(k),

node (i))) <= InputLength) &&
(length (path(node (i), node(j))) <=
InputLength)

{
path (node (k), node(j))=
path (node (k), node(i)) + path(node (i),
node (j)) 7
if (length (path (node (k),
node (j)))<= InpatLength)
{
Insert into Map-
per Results (Source,Destination,Value)
Values (node (k) .
Name, node(j). Name, path (node (k) ,
node (3j)));
}
¥
}
Send Edges (Mapper Results,Reducer .
Mapper Edges SRC);

Pusedo code 5

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 153

Pusedo code 2

Pusedo code 4

Pusedo code 6

sequences among the customers. The customers and their transactions are considered to
be graph nodes and edges, respectively. We found patterns that have a length of ten edg-
es. This bank has approximately 130,000 customers and approximately 2,500,000 trans-
actions in three months. The results are shown in Table 16.

5.3 APSP

For loop detection, we used the bank transactions described in section 5.2 to find

154 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

loops that have a length of ten edges. The detection of loops among the customers signi-
fies fraudulent activity, such as money laundering or fake transactions aimed at falsely
increasing the turnover. The results are shown in Table 17. The detected loops were sent
to the bank’s fraud-detection office for further investigation.

5.4 Comparison of the Proposed Method with Other Methods

We applied the Pegasus, Pregel (Graph 1.0.0), and Power Graph 2.2 algorithms to
graphs on fifty servers using the specifications shown in Table 18. The total RAM
memory used for fifty nodes in ScaDiGraph is 912 GB, and the total HDD used is 10.5
TB. Fifty core i5 CPUs and a core i7 CPU are used as the processors. The total RAM
used for each of the other methods (Pegasus, Pregel, and Power Graph) is 3.2 TB, and the
total HDD used is 50 TB. Fifty core i7 CPUs are used as processors. Thus, it can be seen
that ScaDiGraph uses less hardware resources (RAM, HDD and CPU) to solve graph
problems. The results are shown in Fig. 8. The detected loops were sent to the bank’s
fraud-detection office for further investigation.

6. DISCUSSION

The proposed method works better than Pregl, Pegasus and Power graphs because
all these methods must exchange intermediate results among the hardware nodes. Ex-
changing messages among the hardware nodes has two main problems. The first problem
is that each hardware node must store messages from other hardware nodes. If we have a
large graph, then we have too many subgraphs, and therefore, we require a large amount
of memory to maintain and process the messages and we must have a message process
queue. On the other hand, message exchange among hardware nodes causes network
congestion. Both network congestion and message process queues cause the sender
hardware nodes to wait, which causes improper use of the processing power and memory
capacity. Nevertheless, in ScaDiGraph, there is no relation among the Mapper hardware
nodes. Each Mapper works with its subgraph, and therefore, data locality is completely
met. In other words, all the data necessary to execute an algorithm on the hardware node
are located on the same hardware node; therefore, we have avoided message exchange
among the hardware nodes and its consequences.

The best execution time for ScaDiGraph occurs when we have an isolated subgraph
on each Mapper (thus, there is no deleted edge and no calculation on the Reducer node).
Fig. 9 shows the best case. The worst execution time occurs when all the nodes on each
Mapper have no relation with other nodes and all the relations among the nodes are add-
ed at the deleted edges. In such cases, ScaDiGraph cannot improve the execution time,
and all the calculations must be performed on the Reducer node. Fig. 10 shows the worst
case. We used two techniques to solve the graph problems separately on each hardware
node. First, we unified the data format on each hardware node. Second, we changed the
algorithm in such a way that each node can solve its problem in a solitary way. We have
used this technique to solve problems in other fields, such as data mining [40] and data-
bases [41], and this technique has achieved lower execution times than other prominent
existing methods.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 155

Table 13. Hardware node specifications. Table 14. Input data Table 18. Hardware node specifications.

Mapper CPU Intel Core i5-6500T Processor format. CPU Intel Core i7-6700'T
virtual (6M Cache, up to 3.10 GHz) D Processor
hardware HDD 10 GB Source Hardware (8M Cache, up to 3.60
nodes RAM S GB Destination nodes GHz)
Reducer CPU Intel Core i7-6700T Processor Value HDD 10TB
hardware (8M Cache, up to 3.60 GHz) RAM 64 GB
nodes HDD 10 TB
RAM 512 GB
Table 16. Execution Table 17. Execution time for loop detec-
Table 15. ScaDiGraph execution time {ime f‘:’r pattern tion. _
for APSP matching. Stage name Time(minute)
Stage name Time(minute) Stage name | Time(minute) Mapper =
o Mapper 12 Reducer 310
Mapper 14
Reducer 301 Reducer 284
700
600
. 500
K]
2 400
£
. 300
E
E 200
100
0
APSP Pattern Loop
matching detection
W Pegasus 633 531 519
= Pregel 470 436 405
PowerGraph 449 408 402
u ScaDiGraph 315 29 322

Fig. 8. Comparing ScaDiGraph with other methods.

P
oK
S

Mapper 1

b

Ak

Mapper n

Fig. 9. ScaDiGraph best case. Fig. 10. ScaDiGraph worst case.

7. CONCLUSIONS

The large amount of information in graph data structures requires scalable and dis-
tributable information processing methods. Many scalable methods have been proposed
to solve large graph problems, but some of these create heavy traffic on the network be-
cause of non-consideration of data locality. Some methods use iterations to solve graph
problems. However, in these methods, the next iteration cannot be started until all the
previous iteration tasks have been completed, which gives rise to hardware inefficiency.

In this paper, we introduced a method, ScaDiGraph, which is based on MapReduce,
to solve graph problems, such as APSP, pattern matching and loop detection. ScaDi-

156 MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

Graph divides a large graph into subgraphs. Each node of the subgraph executes an algo-
rithm without the need for information about other subgraphs. By converting large graph
problems into subgraphs, the proposed method can solve graph problems in a timely
manner. Another advantage of the proposed method is that commodity hardware nodes
can be used to solve large graph problems. By converting the iterative nature of graph
problems into non-iterative problems, ScaDiGraph makes it possible to solve these prob-
lems using MapReduce methods. The method was applied to two case studies: an expert
social network for which APSP algorithms were used and a bank’s transactions for which
pattern matching and loop detection problems were solved.

10.

11.

12.

13.

14.

REFERENCES

. M. Sarwat, et al., “Horton: Online query execution engine for large distributed
graphs,” in Proceedings of IEEE 28th International Conference on Data Engineer-
ing, 2012, pp. 1289-1292.

. B. Nicolae, et al., “BlobSeer: Bringing high throughput under heavy concurrency to
Hadoop map-reduce applications,” in Proceedings of IEEE International Symposium
on Parallel and Distributed Processing, 2010, pp. 1-11.

. A. Osman, E.-R. Amr, and A. Elnaggar, “Towards real-time analytics in the cloud,”
in Proceedings of IEEE 9th World Congress on Services, 2013, pp. 428-435.

. S. G root, “Modeling i/o interference in data intensive map-reduce applications,” in
Proceedings of IEEE/IPSJ 12th International Symposium on Applications and the
Internet, 2012, pp. 206-209.

. S. Yang, et al., “Efficient dense structure mining using mapreduce,” in Proceedings
of IEEE International Conference on Data Mining Workshops, 2009, pp. 332-337.

. L. Ding, et al., “Commapreduce: An improvement of mapreduce with lightweight
communication mechanisms,” in Proceedings of International Conference on Data-
base Systems for Advanced Applications, 2012, pp. 150-168.

. R. Lichtenwalter and N. V. Chawla, “DisNet: A framework for distributed graph
computation,” in Proceedings of IEEE International Conference on Advances in So-
cial Networks Analysis and Mining, 2011, pp. 263-270.

. L. Fegaras, “Supporting bulk synchronous parallelism in map-reduce queries,” in
Proceedings of IEEE High Performance Computing, Networking, Storage and Anal-
ysis Companion, 2012, pp. 1068-1077.

. Y. Zhang, et al., “Imapreduce: A distributed computing framework for iterative

computation,” Journal of Grid Computing, Vol. 10,2012, pp. 47-68.

L. G. Valiant, “A bridging model for parallel computation,” Communications of the

ACM, Vol. 33, 1990, pp. 103-111.

Y. Bu, et al., “HaLoop: efficient iterative data processing on large clusters,” in Pro-

ceedings of the VLDB Endowment, Vol. 3, 2010, pp. 285-296.

K. Kambatla, et al., “Asynchronous algorithms in MapReduce,” in Proceedings of

IEEE International Conference on Cluster Computing, 2010, pp. 245-254.

F. N. Afrati, et al., “Map-reduce extensions and recursive queries,” in Proceedings of

the 14th ACM International Conference on Extending Database Technology, 2011,

pp- 1-8.

Message passing interface, http://www.mpi-forum.org/.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

SCADIGRAPH: A MAPREDUCE-BASED METHOD FOR SOLVING GRAPH PROBLEMS 157

. T. Kajdanowicz, K. Przemyslaw, and 1. Wojciech, “Parallel processing of large
graphs,” Future Generation Computer Systems, Vol. 32,2014, pp. 324-337.

H. Mohamed and M.-M. Stéphane, “MRO-MPI: MapReduce overlapping using MPI
and an optimized data exchange policy,” Parallel Computing, Vol. 39, 2013, pp.
851-866.

Q. Li, et al., “LI-MR: a local iteration map/reduce model and its application to mine
community structure in large-scale networks,” in Proceedings of the 11th IEEE In-
ternational Conference on Data Mining Workshops, 2011, pp. 174-179.

F. N. Afrati, F. Dimitris, and J. D. Ullman, “Enumerating subgraph instances using
map-reduce,” in Proceedings of the 29th IEEE International Conference on Data
Engineering, 2013, pp. 62-73.

F. Highland and J. Stephenson, “Fitting the problem to the paradigm: algorithm
characteristics required for effective use of MapReduce,” Procedia Computer Sci-
ence, Vol. 12,2012, pp. 212-217.

W. Jiang and G. Agrawal, “Ex-mate: data intensive computing with large reduction
objects and its application to graph mining,” in Proceedings of the 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2011, pp. 475-484.
V. S. Martha, W. Zhao, and X. Xu, “A-MapReduce: a framework for workload bal-
ancing in MapReduce,” in Proceedings of the 27th IEEE International Conference
on Advanced Information Networking and Applications, 2013, pp. 637-644.

D. Lee, J.-S. Kim, and S. Maeng, “Large-scale incremental processing with MapRe-
duce,” Future Generation Computer Systems, Vol. 36, 2014, pp. 66-79.

S. S. Khopkar, N. Rakesh, and A. G. Nikolaev, “An efficient map-reduce algorithm
for the incremental computation of all-pairs shortest paths in social networks,” in
Proceedings of IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining, 2012, pp. 1144-1148.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clus-
ters,” Communications of the ACM, Vol. 51, 2008, pp. 107-113.

Redis In-Memory database, http://redis. io/.

J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in MapReduce,”
in Proceedings of the 8th ACM Workshop on Mining and Learning with Graphs,
2010, pp. 78-85.

M. Erwig, “Inductive graphs and functional graph algorithms,” Journal of Function-
al Programming, Vol. 11,2001, pp. 467-492.

M. T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java, John
Wiley & Sons, 2008.

J. L. Gross and J. Yellen, Graph Theory and its Applications, Chapman and Hall/
CRC, 2005.

D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing,
Vol. 37, Addison-Wesley, NY, 1993.

K. Mehlhorn, S. Néher, and C. Uhrig, “The LEDA platform of combinatorial and
geometric computing, 1999,” http://dx. doi.org/10, 1007/3-540-63165-8 161: 7-16.
A. Lumsdaine, L. Q. Lee, and J. G. Siek, The Boost Graph Library: User Guide and
Reference Manual, Addison-Wesley, MA, 2002.

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining
system implementation and observations,” in Proceedings of the 9th IEEE Interna-

158

34.

35.

36.

37.

38.

39.

40.

41.

MOHAMMADHOSSEIN BARKHORDARI AND MAHDI NIAMANESH

tional Conference on Data Mining, 2009, pp. 229-238.

H. Higaki, et al., “Checkpoint and rollback in asynchronous distributed systems,” in
Proceedings of the 16th Annual Joint Conference of the IEEE Computer and Com-
munications Societies, Driving the Information Revolution, Vol. 3, 1997, pp. 998-1005.
Y. Low, et al., “Distributed GraphLab: a framework for machine learning and data
mining in the cloud,” in Proceedings of the VLDB Endowment 5, Vol. 8, 2012, pp.
716-7217.

G. Malewicz, et al., “Pregel: a system for large-scale graph processing,” in Proceed-
ings of ACM SIGMOD International Conference on Management of Data, 2010, pp.
135-146.

A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: large-scale graph computation
on just a PC,” Presented as part of the 10th USENIX Symposium on Operating Sys-
tems Design and Implementation, 2012.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory
cloud,” in Proceedings of ACM SIGMOD International Conference on Management
of Data, 2013, pp. 505-516.

J. E. Gonzalez, et al., “Powergraph: Distributed graph-parallel computation on natu-
ral graphs,” Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation, 2012, pp. 17-30.

M. Barkhordari and M. Niamanesh, “ScadiBino: An effective MapReduce-based
association rule mining method,” in Proceedings of the 16th ACM International
Conference on Electronic Commerce, 2014, p. 1.

M. Barkhordari and M. Niamanesh, “ScaDiPaSi: an effective scalable and distribut-
able MapReduce-based method to find patient similarity on huge healthcare net-
works,” Big Data Research, Vol. 2, 2015, pp. 19-27.

Mohammadhossein Barkhordari received the M.S. de-
grees in Software Engineering from Amirkabir University, Iran.
He is currently pursuing the Ph.D. degree in the Information and
Communication Technology Research Center, Iran. His research
interests include big data, business intelligence, data warehouse,
data mining.

Mahdi Niamanesh received his Ph.D. degree in Computer
Engineering in the Department of Computer Engineering, Sharif
of University Technology in 2009. He is currently a Professor at
the Information and Communication Technology Research Cen-
- ter, Iran. His research interests include algorithm pervasive com-
puting, big data.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

