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In this study, we propose an effective method for accurately detecting the number of
walking steps and estimating the step length adaptively using the set of inertial sensors of
a smartphone. The proposed walking behavior recognition method can be used as an im-
portant functional block in a pedestrian dead reckoning system. We develop a method for
classifying the four main holding styles while walking, i.e., holding a phone in the hand
while watching it, holding a phone while calling, swinging it, and putting it in a pocket.
The four main holding styles are divided into 34 sub-styles, which encompass the various
free styles of holding a smartphone during daily activities. Using this holding style clas-
sification, we obtain better performance when counting the walking steps and estimating
the step length, although we only employ a set of feature values that are easily calculated
without any complex data processing techniques. Based on numerous experiments, we
demonstrate the excellent performance of the proposed method for step counting and step
length estimation for various holding styles.

Keywords: holding style recognition, pedestrian dead reckoning, smartphone, inertial sen-
sors, indoor localization.

1. INTRODUCTION

At present, smartphones are indispensable devices in our daily lives and many ap-
plications have been developed to run on these devices to help users. Among the most
helpful applications are location-based services (LBSs) that require the identification of
the current location of the user and many systems have been developed for this purpose.
In outdoor environments, most LBSs use global navigation satellite systems (GNSSs)
such as GPS. However, we cannot use a GNSS in indoor environments. In the past dec-
ade, many studies of indoor localization have been performed but there is still no single
solution that satisfies both requirements of location accuracy and the building and man-
agement costs.

Recently, many researchers have started to employ dead reckoning methods to es-
timate the relative rather than the absolute location of a pedestrian because these methods
require little or no infrastructure in buildings and most people move around while walk-
ing. Thus, pedestrian dead reckoning (PDR) systems have been proposed in many studies
as indoor localization methods. PDR systems can be categorized into two types: inertial
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navigation systems and step-and-heading systems (SHSs) [1]. SHSs estimate the position
by accumulating relative changes (distance and heading) which are represented by walk-
ing steps. Naturally, SHSs need to count the number of steps and to estimate the step
length and walking direction, and most SHSs employ a set of inertial sensors for this
purpose. Indeed, we can obtain satisfactory results in detecting walking steps using sys-
tems with sensors attached to various body positions. However, it is still difficult to de-
termine a user’s walking direction in a global coordinates system if we do not know the
exact orientation of the sensing module, especially when using a smartphone. In real
situations, when a user walks, he/she holds the phone in various styles such as putting it
in a pocket, watching the phone (or texting), or swaying it sideways in the hand. These
various holding styles make it difficult to determine the walking direction in global co-
ordinate system without knowing the relative orientation between smartphone and the
user’s body. Therefore, many SHSs assume that the orientation and holding style of the
phone are known in advance [2, 3].

In order to relax these assumptions, we are developing an indoor localization system
using a smartphone, which mainly employs a SHS-type PDR and a complementary radio
fingerprinting method. The contributions of this study are as follows: Firstly, we describe
only the PDR system of the entire system that is under development. In particular, we
explain methods for recognizing holding styles, detecting the real forward walking be-
havior, counting steps, and estimating the step length. Secondly, we propose a method
for recognizing various holding styles using a set of features obtained by various sensors
in the phone. Based on the recognized holding style, our scheme attempts to detect the
real forward walking behavior, to detect the number of walking step and to estimate the
length of the detected step based on the step frequency and the acceleration strength.

The remainder of this paper is organized as follows. In Section 2, we briefly review
related researches on indoor localization methods. Section 3 provides detailed descrip-
tions of the proposed methods. The experimental results are presented in Section 4. In
Section 5, the conclusions and suggestions for future research are given.

2. RELATED WORK

There have been many previous surveys of indoor localization systems. Hightower
and Borriello [4] provided a taxonomy of various location-sensing systems for location-
aware applications. Liu [5] also gave an overview of wireless indoor positioning solu-
tions and attempted to classify them, where they summarized three typical techniques for
triangulation, scene analysis, and proximity, as well as discussing location fingerprinting
in detail. Recently, Harle [1] presented a taxonomy of modern PDR systems and re-
viewed various techniques for step detection, inertial navigation, and SHS-based dead
reckoning, where it was concluded that the PDR technique alone can facilitate good
short- to medium-term tracking.

The detection of steps or strides is an important task for SHSs. Most of the detection
algorithms are threshold-based, where they employ the acceleration magnitude [6], an-
gular velocity [7], or their combination [8]. Various step detection methods that use non-
inertial sensors have also been suggested, including pressure sensors embedded in the
sole of the shoe [9] and ultrasonic ranging between the feet [10]. In fact, detecting a step
cycle using sensors placed on parts of the body is not simple or reliable.
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Estimating the step length or stride length is also important for a SHS because the
positional change in one step is computed directly from the step length. Fortunately, pe-
destrians walk naturally with a surprisingly constant step length. Thus, many PDR sys-
tems use a constant step length. However, this natural walking pace often varies in dif-
ferent situations. Weinberg reported that the step length can vary by as much as 40%
between people walking at the same speed [11]. He also proposed a dynamic step length
estimation method based on the strength of acceleration in the vertical direction. Some
studies [12, 13] have reported that there is a linear relationship between the step frequency
and the step length; thus, a combined method that employs both properties is proposed.

The widespread deployment of appropriate sensors in smartphones is one of the key
motivations for employing PDR. Smartphone-based PDR systems are highly attractive,
but they present new difficulties by loosening the attachment constraints. Some resear-
chers have assumed that the smartphone is attached to the waist [14], or held in the hand
[15]. In a previous study [16], instead of assuming that smartphone has attached to the
fixed part, we tried to estimate the holding style as in the present study. Recently, Kang
et al. [17] proposed a full indoor localization system based on a smartphone kept on
hands all the time to track the position of pedestrian on the application interface.

Additional communication capacities of smartphones have been focused on in the
development of hybrid methods. The most popular hybrid systems combine PDR with
WiFi fingerprinting to overcome the limitations of both. Woodman simplified the data
collection problem using an SHS and particle filtering method [18]. The Zee system [19]
achieves location recognition by WiFi fingerprinting, as well as by making a radio map
that is crowd-sourced from the users with SHS-capable smartphones.

3. PROPOSED METHOD

3.1 System Overview

Fig. 1 shows a block diagram of our indoor localization system, which comprises
two main systems: a PDR system and a WiFi fingerprinting-based localization system. In
this study, we only consider the PDR system.
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Fig. 1. Block diagram of the overall indoor localization system.
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In the first step, we use sets of sensor data to classify the smartphone holding styles
since we assume that estimating the holding style can be very helpful for a PDR system.
After determining the holding style, we try to recognize the walking behavior. For this
step, we propose a novel method that discriminates fake and real walking forward be-
haviors by using the combination of accelerometer and magnetometer on smartphone. If
the system detects that the current behavior is actually forward walking, then the method
tries to count the number of walking steps. Whenever a new step is determined, the sys-
tem estimates the length of the current step based on its cadence and the user’s physical
features, such as their height. Thus, we propose an estimation method which uses the
cadence and the strength of acceleration to estimate each step, thereby allowing us to
determine the relative moving distance from the previous position. Next, the PDR system
requires information about the walking direction. Sensing a user’s global walking direc-
tion is a very important and challenging problem in real life situations because the phone
is held in different orientations at various body positions. Many previous studies have
assumed that the system knows the orientation of the sensing module (i.e., phone) or
even the walking direction. Our system estimates the user’s walking direction more ac-
curately and stably by recognizing the holding style [20]. However, in this study, we
only describe the methods for obtaining the distance information, which include the step
detection method and step length estimation method.

The other main component of our localization system is a conventional WiFi fin-
gerprinting system [21]. We employ the WiFi fingerprinting system to estimate the initial
position and/or to eliminate the accumulated error in a PDR system by using a relatively
small numbers of reference points compared with conventional fingerprinting systems.
When a new step is found, the scheme scans the WiFi signals to determine the current
location among the pre-determined reference positions. The main aim of our full study is
to enhance the complementary performance of the PDR and radio fingerprinting tech-
niques.

Table 1 summarizes the various notations and symbols which will be used in this

paper.

Table 1. Notations and symbols.

Notation Definition
HA Holding the phone in the hand for texting or watching
CA Holding the phone parallel to the ear while making a call
SwW Swinging the phone while walking
PO Placing the phone into a pocket

w,, 0, @, | The x, y, z components of the gyroscope vector (rad/s)

2o 8, 8- The x, y, z components of the gravity vector (m/s?)

la,, la,, la, | The x, y, z components of the linear acceleration vector (m/sz)

my, my, m; | The x, y, z components of the magnetic vector (¢T)

||a_7:|\ The magnitude of the gyroscope vector (rad/s)
Eg The pitch angle of the orientation sensor (degree)
Touch The status whenever the user touches the screen while texting
prox The output of a proximity sensor (cm)
light The output of a light sensor (lux)

Mo, Mean value of the x and y components of the gravity vector (m/s)
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The average value of the previous 30 samples of the x component of the

Hacao gravity vector (m/s%)

max The maximum value among the last 30 samples of the x component ob-
“30 | tained from the gyroscope vector (rad/s)

o The standard deviation of the last 60 samples of the z component of gravity
£:60 vector (m/s°)

The standard deviation of the last 20 samples of the x component of the

o
20 gyroscope vector (rad/s)

The standard deviation of last 12 samples of the magnitude of the gyro-

Ola,12 scope vector (rad/s)

The average of the last 30 samples of the x component of gravity vector
Hg. 30 ( Wsz)

The average of the last 30 samples of the z component of gravity vector
Hg_30 (m/s2)

The standard deviation of the last 12 samples of the magnitude of the mag-

Ol 12 netic vector (rad/s)
. The sum of the last 12 samples of the magnitude of the linear acceleration
S vector (m/s°)
Siv The fusion feature from oj; 1, and Sy
O%,,12 The standard deviation of the last 12 samples of the fusion feature f;,
He, The average of the last four values of 07,12
o) The positive peak of the selected input signal (m/s’ for the linear accelera-
P tion vector or rad/s for gyroscope vector)
) The negative peak of the selected input signal (m/s” for the linear accelera-
p tion vector or rad/s for gyroscope vector)
by The moment when p is detected
Lo The moment when p* is detected

3.2 Holding Style Estimation

The holding style is defined as how a user holds his/her smartphone. During our
daily life, we may hold the phone in many ways while walking, such as swinging it along
beside the leg, watching the screen, or making a call. In this study, we selected four
holding styles that represent typical styles employed in daily activities such as: holding
the phone in the hand for texting or watching (HA), holding the phone parallel to the ear
while making a call (CA), swinging the phone while walking (SW), and placing the
phone into a pocket (PO), as shown in Fig. 2.

For each holding style, the user can also hold his/her phone in many different ways.
For example, for the style (CA), the user may hold it in the right or left hand. In addition,
the orientation of the phone may differ depending on how the phone is grabbed. Thus,
we determined many possible sub-cases for each holding style, i.e., four main holding
styles and 34 sub-cases of them, as shown in Fig. 3, where the holding styles are catego-
rized according to a hierarchical structure. The estimator inevitably decides 34 holding
styles even if smartphones are used with other holding styles.
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(HA) (cA) (sw)
Fig. 2. Four main holding styles.
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Fig. 3. All the estimated holding styles.

We propose a simple but effective recognition method for classifying the 34 holding
styles using various sensor signals. The main sampling frequency is 30 Hz. At each sam-
pling time, the holding style estimator reads the output signals from the sensors, i.e., the
gyroscope, proximity, and light sensors, and the software sensors provided in Android
system, i.e., the gravity and the orientation sensors. The phone tries to estimate the cur-
rent holding style using the calculated feature values with various thresholds at each
sampling time. The thresholds in this paper are determined empirically. However, the
system determines the final holding style when a new walking step is detected because
the position should be updated at every new step in a PDR system. The “Changing Style”
class is added to determine whether the smartphone position has changed from one
holding style to another. The “Changing Style” is classified when the magnitude (H&H)
of the gyroscope vector, ©,= (@, w,, @), is greater than a threshold Th,. Th in this case
is 1 rad/s. The proposed system keeps the recognized holding style if the condition of
“Changlng Style” is not satisfied. For the style (HA), the y component (g,) of the gravity
vector, , gV (g & g:) and the pitch angle (Ep) of the orientation sensor are used. When
the smartphone is in (HA), we can easily recognize the orientation of the phone among
the vertical (i.e., portrait) direction (“Up/Down” notations in Fig. 3) and horizontal (i.e.,
landscape) direction (“Left/Right” notations). The “Touch” function is added for (HA)
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to indicate the status whenever the user touches the screen while texting. For the style
(CA), we use the output of a proximity sensor (abbreviated as prox) and the two com-
ponents of the gravity vector: g,, g, When the smartphone is near the ear, (prox) chang-
es greatly with positive values of g, g, for the “left hand” and negative values for the
“right hand.” The style (PO) shows that g, < 0 and the output of a light sensor (abbrevi-
ated as light) < Th, (Th, = 10 lux). In particular, during the second stage in (PO), we
discriminate the smartphone in the front pockets of the pants according to two statuses:
placed in the pocket with the screen pointing inward or outward compared with the body,
where we use g.. If g, < 0, then the screen points inward and vice versa for the outward
direction. Furthermore, when the smartphone is placed into the pocket in an upward di-
rection, it has a similar orientation to the style (CA), so we use a new feature given by
the following equation:

g, +g,
g =55 (1)

We find that g, <Thj; for the style (CA) and g, <Th; for the style (PO). The sub-
cases of “Up/Down” can be recognized easily using g,. The value of Th; is 3 m/s”. For
the style (PO), we find that the phone may be located in different positions if the size of
the pocket is large, as shown in Fig. 4. We denote these differences in terms of mode 1
and 2. To discriminate these positions, we use the average value of the previous 30 sam-
ples of the x component of the gravity vector, as follows:

30 gx(t—i)
’ugx,30 - Zizl 30 (2)

where ¢ is the current sampling time. The previous samples are stored in a moving win-
dow of 30 samples, i.e., a period of around 1s. The feature g , has a bigger value in
mode 1 than mode 2.

MODE 1

Fig. 4. Different locations of a phone in a pocket.

Next, the estimator tries to classify the style (PO) more specifically among four
sub-cases: placing into the front pocket of pants, back pocket of pants, shirt pocket, or
the pocket on a backpack. A backpack is an additional sub-case because many people
keep their smartphone in a backpack while walking. To differentiate the shirt and the
front of pants, we determine the maximum value (denoted as max,, ,) among the last 30
samples of the x component obtained from the gyroscope, w,. Placing a phone in the
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pocket of a shirt has a smaller max,, ,, value. Two features are added to classify the four
pocket style sub-cases. One feature is the standard deviation of the last 60 samples of the
z-component of gravity, which is denoted as o, _eo, and the other is the standard deviation
of the last 20 samples of the x-component obtained from the gyroscope, which is denoted
as 0, 2. We summarize these classification conditions in Table 2 with Thy = 1.5 and Ths
=0.6.

To classify the style (SW), we use the standard deviation (denoted as OM 12) of last
12 samples of the magnitude of the gyroscope vector, i.e., Ha)‘||(t i), i= , 12,1
Oa,12 > The, then the system determines the style (SW), where the user keeps their phone
in hand in landscape and they swing it while walking. Thg is chosen as 0.5. For the style
(SW), there are four sub-cases depending on how the phone is grabbed: swing ahead and
inward, swing ahead and outward, swinging backward and inward, swinging backward
and outward. The inward/outward distinction represents the direction of the screen and
ahead/backward denotes the direction of the top of the phone. We use two features to
classify these four sub-cases for (SW): the average of the last 30 samples of the x-com-
ponent of gravity, z, 30, and the average of the last 30 samples of the z-component of
graV1ty, Hg_30- Table 3 shows the conditions for these feature values with Th; = Thy =0
m/s2. Table 4 summarizes all of the features used to classify the different holding styles.

Table 2. Classification conditions for four sub-cases of the style (PO).
Cases Og.60 00,20
Pocket of shirt <Thy < Ths
Front pocket of pants | > Thy > Ths
Back pocket of pants | < Thy > Ths
Pocket of backpack > Thy < Ths

Table 3. Classification conditions for four sub-cases of the style (SW).

Cases He 30 U o,

Swing ahead inward > Thy, < Thg
Swing backward inward < Thy < Thyg
Swing ahead outward < Thy > Thg
Swing backward outward | > Thy > Thg

Table 4. Summary of the features used to estimate different holding styles.
Feature (15)

@ OO @O |@[ [ ®]0O |G [&]d]|@m]|Mm]©)
1| HA | o ° . . ° ° o]
2 | CA ° . . 0%
3 | SW ° L4 i
4 | PO ° ° . o | &

where letters a-o are g, g, &, £ prox, light, Touch, s 30, #g, 30, Mg, , MAX 4 30, Og, 60,
Gl 12> Gas0s 163, respectively.
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3.3 Walking Behavior Recognition

The recognition of walking behavior is essential for a PDR localization technique
because the number of walking steps detected determines the walking distance. Thus, we
aim to discriminate a forward walking behavior from similar behaviors such as walking
on the spot. When a user walks on the spot (referred to as “fake walking”), if the smart-
phone recognizes this as a new walking step, the system will update the position of the
user incorrectly. In order to solve this problem, we propose a simple method that uses two
features: the standard deviation of the last 12 samples, which represents the magnitudes
of the vectors of the magnetic sensor signals, ojz 12, m= (my, my, m.), and the sum of the
last 12 samples of the magnitude of the linear acceleration vector by the following equation:

CRICED IS T ()

where K is a scaling factor and ||la_(;)|| is the magnitude of the linear acceleration vec-
tor la = (lay, lay, la.).

When a user walks forward, ||n_)1|| will vary greatly compared with that when a user
walks on the spot; thus, we employ this as the first feature. The second feature has a sim-
ilar property. Thus, when a user walks forward, Sp; will change greatly. The two features
are plotted in Fig. 5, which clearly demonstrate the differences between these features
during real and fake walking behaviors.

25 T2
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Fig. 5. Two features used for discriminating real and fake walking.
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To make the results clearer, we introduce a new feature, f;,(¢), which is computed by
fusing the two features described above. We use the complementary filter technique for
fusion according to the following equation:

[ =acq  (O+(1-a)Sg (1) 4

where « is the filter coefficient and in this work « = 0.8. At each sampling time, the fu-
sion feature f;(f) is calculated and saved in a buffer. Our scheme then computes the
standard deviation (oy, 12(¢)) for the last 12 samples of the f3,(#). Finally, we calculate the
average M (f) using the last four values of the standard deviation value, Oy 12(t=0), i =
0, ..., 3. Fig. 6 shows the trajectories of the feature s,(¢) for the real and fake walking
behaviors, which clearly demonstrates the differences between the two walking behaviors.
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Fig. 6. Trajectories of the averaged fused feature values for real and fake walking.

We use different threshold values based on the estimated holding style to improve
the recognition accuracy. For the holding styles (HA, CA), if 15.(f) > The, where Thy is
0.025, then our scheme determines that the current behavior is real walking; otherwise, it
is fake walking. For the holding styles (SW, PO), we compare y,(?) to the different
threshold value Thy which is 0.043. We can obtain more accurate recognition results by
using different threshold values. In case of (HA, CA), the smartphone does not move
(changing position in compared with the user’s body) a lot while walking, but in case of
(SW, PO), the smartphone moves violently and periodically. Therefore, the (HA, CA)
will be assigned the same threshold and (SW, PO) will be assigned another threshold.

3.4 Step Detection

Whenever the system detects real walking behavior, it executes the step counting
method. The proposed method also uses the estimated holding style to ensure more sta-
ble and accurate detection. The relationship between the sensor signals and walking be-
havior depends on the holding style. For example, if a user holds their smartphone in
styles (HA) and (CA), we focused on the moment of heel strike so we have chosen the
magnitude of the linear acceleration vector (||/a(?)||) l&gause it exhibits better repeatabil-
ity than the magnitude of the gyroscope vector (||a(?)||). By contrast, for the holding
styles (SW) and (PO), the motion of device includes more rotational movements than
linear movements, so it is easier to use the magnitude of the gyroscope vector to detect
the walking steps. Therefore, the input signals employed to detect the step are linear ac-
celeration values for holding styles (HA) and (CA), and gyroscope values for holding
styles (SW) and (PO). During one gait cycle, there are always two phases: stance and
swing. During the swing phase, we can easily find the positive peak (maximum — p™)
and the negative peak (minimum — p) of the selected input signal, such as the magni-
tude of linear acceleration and the gyroscope vector across all holding styles. The system
tries to find the positive and negative peaks, and the two moments: z,» moment @™ oc-
curs) and #,0 moment (p" occurs). If the system detects all of these features, then two
conditions are checked: the magnitude of the difference between positive and negative
peaks, i.e., (p“) - p(')) > Thy;, and the time interval between the two moments: Th;, <
(t,0 — ty») < Thys. If these conditions are satisfied, then one new step is detected. In these
conditions, Thy, is different for each holding style: 0.15 m/s? for (HA), 0.05 m/s? for
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(CA), 0.8 rad/s for (SW) and 0.94 rad/s for (PO); Thy, =3 and Th;3 = 12. The thresholds
differ among holding styles since in each holding style, the input data differs from the
sensors (linear acceleration and gyroscope), thus their magnitude ranges are also differ-
ent. The time interval represents the walking speed so we can check whether it is within
the possible walking speed range.

3.5 Step Length Estimation

During the human gait cycle, the step length is defined as the distance between the
corresponding successive heel contact points of the opposite feet. We propose an estima-
tion method that uses two walking behavior properties that affect the step length: the
cadence and the strength of acceleration. The cadence is defined as the number of steps
per unit time, which means that the cadence is greater when a person walks faster.

With body fixed sensors and even with handheld devices, there exists a linear rela-
tionship between step length and cadence of a user: if the user walks faster, both the step
length and the cadence increase [22, 23]. Moreover, the user’s step length is proportional
to the length of the user’s height [24]. Because of these reasons, based on both the ca-
dence and the height of a user, we can calculate the step length of that one. The step
length can be calculated from the first property by the following equation:

SLi(n) = Ksihfs(n), fs(n) = 1/t — 1,0 5)

where Ky, is a calibration constant which is different for each individual, 4; is the height
of user j and fy(n) is the inverse of the time interval of the moments of two peaks for the
nth step, which represents a cadence factor. The other step length method is computed
based on the strength of acceleration in a similar manner to the method of Weinberg [11].
There is an empirical relationship between the vertical input signals (acceleration, gyro-
scope, efc.) with the stride length [1] so that this method assumes that the step length is
proportional to the vertical movement of the human hip, where the hip bounce is esti-
mated from the largest acceleration differences during each step. Another component is
also introduced to consider this property by using the two peaks as:

SL,(n) =K,/ p© - p© (6)

where K, is a calibration constant, p”, p are the positive and negative peaks of the nth
step of input signal, respectively. After doing experiments and comparing with other
comparable combinations (arithmetic and geometric means) with two components, we
propose a method for calculating the length of the nth step with these two components as
follows.

SL(n) = K3\ J(SL, (m)* + (SL, (n)? ™

where Kg; is a calibration constant.
The scaling constant K3 will be different values depending on the recognized
holding style.
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4. PERFORMANCE EVALUATION
4.1 Experimental Setup

As shown in Fig. 7, all experiments were executed in three scenarios with five users
(all males with heights ranging from 1.62m to 1.80m). The experiments were conducted
in 3" floor of Engineering Building at Hallym University. In scenario 1, we tested the
performance of our method in a small area where there was noise from many electrical
devices (unstable environment) as a typical laboratory environment. In scenario 2, the
users walked in a straight line down a long corridor to assess the performance in a longer
and more stable environment. In scenario 3, the performance was tested by combining
the two scenarios described above, where the users walked in different environment
conditions, which ranged from unstable to stable environments. The true distance is de-
fined as the length of the given path the user walks. It was measured manually by using
the measuring tool named “Walking Measure”, Model: WM-1K (Made in Japan).
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Scenario 1: In Laboratory Walking (30.35m); Scenario 3: Laboratory to Laboratory Walking (107.6m);
Fig. 7. Walking paths in the three test scenarios.

4.2 Holding Style Estimation Results

To estimate the smartphone holding style, the five users held their smartphones
while walking in five situations that corresponded to the four holding styles, i.e., (HA),
(CA), (SW), and (PO), and a random mixture of all of them. For each holding style,
each user walked the path two times, i.e., there were 10 trials replicated for each scenario
and 150 for five users in three scenarios. The system recognized the holding style when a
new walking step was detected. Thus, the number of holding styles recognized was the
same as the number of steps detected. We evaluated the accuracy of holding style recog-
nition in discrete samples.

Table 5 shows the confusion matrix for the experimental results when we tested
each holding style separately in three scenarios. Each row shows the recognized holding

Table