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In this paper we present an unsupervised method for learning a model to distinguish 

between ambiguous se-lection of structural transfer rules in a rule-based machine transla-
tion (MT) system. In rule-based MT systems, transfer rules are the component responsi-
ble for converting source language morphological and syntactic structures to target lan-
guage structures. These transfer rules function by matching a source language pattern of 
lexical items and applying a sequence of actions. There can, however, be more than one 
potential sequence of actions for each source language pattern. Our model consists of a 
set of maximum entropy (or logistic regression) classifiers, one trained for each source 
language pattern, which select the highest probability sequence of rules for a given se-
quence of patterns. We perform experiments on the Kazakh  Turkish language pair  a 
low-resource pair of morphologically-rich languages  and compare our model to two 
reference MT systems, a rule-based system where transfer rules are applied in a left-to- 
right longest match manner and to a state-of-the-art system based on the neural encod-
er–decoder architecture. Our system outforms both of these reference systems in three 
widely used metrics for machine translation evaluation.  
 
Keywords: machine translation, weighting, structural transfer rules, ambiguous rules, dis- 
ambiguation 
 
 

1. INTRODUCTION 
 

Machine translation (MT) is a procedure of translation from one language, the 
source language (SL), into second language, the target language (TL) through a compu-
tational model of translation via an intermediate representation (IR). These translation 
models may be differentiated based on both their knowledge source and intermediate 
representation. Rule-based, corpus-based, and hybrid approaches may be [1] based on 
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types of knowledge used in their development. 
The predominant approach to MT is corpus-based.1 These approaches use large ag-

gregations of parallel text (or bitexts) as the origin of knowledge. A parallel text is lo-
cated beside its translation to learn a statistical model of translation. Creating these texts 
can be time-consuming and labour-intensive. However, if parallel text exists for a given 
a language pair in the arrangement of tens of millions of words, [2] such a system re-
quires computational power but minimal direct human effort. In addition, by developing 
statistical or neural translation systems, we will ignore secondary language development, 
and barriers will be created between language groups. Digitalization should break these 
barriers, but current neural methods widen the gap between small groups of dominant 
languages and secondary ones. 

Neural machine translation is considered a current approach for corpus-based ma-
chine translation which was first released by [3, 4], and was developed using sequence- 
to-sequence models. This approach encounters difficulty handling long sentences be-
cause the fixed-length vector representation does not contain sufficient competency to 
encode lengthy sentences with complicated structure and intent. Furthermore, the per-
formance of NMT decreases rapidly as the number of unknown of words increases. This 
issue presents a challenge in increasing the magnitude of vocabularies employed by neu-
ral machine translation systems in the future. Another limitation of the NMT system is its 
incompatibility with the specific uses of certain organizations, thereby causing difficul-
ties for them to refine and improve the system according to their needs. 

An effective solution is to use hybrid methods that are based on combining the best 
features of two or more MT mechanisms [5]. Ehara [6] stated that the combination of 
rule-based and statistical methods had a positive effect on translation accuracy. We fol-
lowed a similar path, which involves improving RBMT systems by using statistical MT 
(SMT) in our approach to the research problem. 

In rule-based machine translation (RBMT) the translation process is based on using 
linguistic resources, such as computational morphological descriptions or grammar, bi-
lingual dictionaries, and rules for disambiguation and structural transfer. 

In this paper, we describe an extension to this system where we replace the left-to- 
right longest match algorithm with a search of possible rule combinations. In this context, 
we propose a novel unsupervised learning method in which shallow-transfer MT rules 
have been learned automatically from monolingual corpora by using an unsupervised 
maximum entropy approach. Thus, the annotated development corpus is not essential for 
calculation. The training procedure is based on obtaining translations for all possible 
combinations into the target language by using the rest of the modules in the MT pipeline, 
and then acquiring normalized probabilities for all translations from a language model to 
replace fractional counts in the supervised learning method. In this case, the performance 
of the target-language model can be surpassed by using only source-language infor-
mation. The conflict between transfer rules is resolved by selecting the most suitable 
ones according to a global minimization function, rather than proceeding in a pairwise 
greedy manner. The reminder of the paper is as follows: Section 2 provides a brief re-
view of previous research on Turkic language MT, Turkic and other language machine 
MTSs, and other recent MTSs. This section also provides an overview of other publicly 
accessible Kazakh-Turkish machine translators, and hybrid machine translation. Section 
3 describes the system and tools used to build up weighted systems. Section 4 presents a 
1 This includes neural machine translation (NMT), where the intermediate representation is a vector representa-

tion of the sentence, and the classic “phrase-based” statistical machine translation, where the intermediate 
representation is typically the correspondence between fixed length sequences of words. 
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Fig. 1. The maximum-entropy rule-application process. The weights for each translation are
summed and the translation with the highest associated weights is selected. For the words біздің 
тілімізді ‘our language’ үйренгеніңе ‘to learn’, the translation dilimizi öğrendiğine is chosen, the 
translation of sentence біздің тілімізді үйренгеніңе риза болды ‘she/he was happy to learn our 
language’ is dilimizi öğrendiğine mutlu oldu. 2.08354+1.05042=2.08354 is the highest weight over
other translations. 

preliminary evaluation of the system. Section 5 discusses the results we obtained. Finally, 
Section 6 provides concluding remarks. 

2. PREVIOUS WORK 

RBMT systems have relied on handcrafted rules, which determine how a (syntactic 
or semantic) structure in a particular language fits into the corresponding structure in 
another language.  

Within the scope of the Apertium [7] project, ongoing work builds underlying MT 
components (such as morphological transducer systems) to carry out translation between 
two Turkic languages, either between a Turkic language and Russian or a Turkic lan-
guage and English and also between several other language pairs. There are released MT 
systems are for Kazakh-Turkish [8], Kazakh-Tatar [9], and English-Kazakh [10].  

Statistical machine translation (SMT) emerged at the beginning of the 1990s and 
has registered many achievements in MT performance. These systems have strengths and 
weaknesses in providing the best translation. For this reason, the research community has 
switched its concentration toward integrating rule-based and statistical methods by com-
bining the outputs of MT systems, which are known as hybrid systems. Studies have 
been conducted on constructing systems in which the statistical constituent is responsible 
for the translation and the second system supplies auxiliary information. In both cases, 
the results have been positive for out-of-domain testing. The other approach, in which 
the translation is led by the RBMT system and complementary information is provided 
by the SMT system, has been less explored. Habash et al. [11] improved the dictionary 
of an RBMT system with phrases from an SMT system. Results showed improvement to 
both systems, particularly hybrid systems translating into languages with more complex 
morphology than the source. 
 

 
 
 

 
 

 

 
3. SYSTEM 

3.1 Methodology 
 

According to the rule, lemma sequences and morphemes are translated one at a time. 
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This approach is not consistent, even for closely related languages. Structural transfer 
rules consist of two basic parts: namely, a pattern and an action, which are accountable 
for adapting the morphology or word arrangement to generate sufficient TL content. 

The structural transfer module uses a sequence of SL and TL lexical form pairs in 
the following format: ^SL-lemma<SL-tag1><SL-tag2><…><SL-tagN>/TL-lemma<TL-tag1><TL- 

tag2><…><TL-tagN>$. TL lemma sequences and tags are supplied by the preceding two 
modules: lexical transfer and lexical selection. The lexical transfer module touches at the 
TL lemma and commonly the first one or two tags, and the rest of the tags are carried 
over from the SL. 

  

 
Fig. 2. Architecture of translation approach based on maximum entropy models. 

 

These rules specify patterns (sequences) of source text lexical form and perform the 
coinciding transformations. Our approach has attempted to solve two main issues: First, 
the patterns were detected by the module in a left-to-right, longest-match way. For in-
stance, the phrase Бұл үлкен жетістік ‘This big success’ was designated and handled 
by the rule for determiner-adjective-noun and not by the rule for determiner-adjective or 
determiner-noun because the first pattern is longer. Selecting the longest rule is not al-
ways correct, because for some sentences, the two shortest rules provide a better transla-
tion than that of the longest rule. Second, when two rules apply to the same pattern, the 
existing unweighted model selects the default rule, which is located first in the structure 
transfer rules file. This situation is considered problematic in selecting the correct rule 
for the most adequate translation. For instance, past-tense verbal adjectives have one 
form, ‘V-GAH’ but can be translated as past-tense verbal adjectives or subject-relative 
verbal adjectives in Turkish. The first rule detects a pattern when the word being 
modified by the verbal adjective is the subject of the verbal adjective, which represents 
the form of the verb with the suffix -(y)An, and the second rule detects the pattern in 
which the word being modified by the verbal adjective has other functions, and repre-
sents a past-tense verbal adjective. The suffix -dik joins the verb and the subject of verbal 
adjectives, and is expressed by possessive agreement on the verbal adjective. For exam-
ple, the Kazakh sentence Сербия мен Қазақстан арасында алмасқан мәселе жоқ, 
‘There are not any unresolved issues between Serbia and Kazakhstan’ can be translated 
into Turkish as Sırbistan ve Kazakistan arasında değişen mesele yok, and as Sırbistan ve 
Kazakistan arasında değiştiği mesele yok. In addition, verbs as verbal nouns with the 
form ‘V-GAH’ in Kazakh also have two forms in Turkish: verbal nouns formed with the 
-{D}{I}k suffix and verbal adverbs formed with the -y{A}r{A}k suffix, such as the phrase 
Мұғалім оқытқаныңды ұмытып кетті.’ ‘A teacher forgot what to teach’ Hoca 
okuduğunu unuttu or Hoca okuyarak unuttu. Another example is a verbal noun in which 
the verb form in Kazakh with U has two forms in Turkish as a gerund with the form 
m{A} and a gerund infinitive with the form -m{A}k, such as the sentence Полицияның 
жұмысы жаман адамдарды тұтқындау. ‘The police’s job is to arrest the bad men’ 
which can be translated into Turkish as Polisin işi kötü adamları tutuklamak or Polisin 
işi kötü adamları tutuklama. We must write two rules for detecting these patterns. All the 
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circumstances mentioned are considered ambiguous texts from the source language (Ka-
zakh) (see Fig. 1). 

The dilemma concerning these ambiguous rules can be addressed by computing 
scores for sentence variants with a probabilistic language model and detecting the pre-
sumed rule by relying on the policy of maximum entropy. The probability of a target t 
being the translation for a word s in an SL context c is ps (t | c) (refer to Eq. (1)). Through 
the training process, every feature is assigned a weight s and by using the maximum 
entropy classifier, the weights of ambiguous rules can be learned for each SL word. This 
classifier is then integrated into the translation model. The following equation summa-
rizes how the most probable rule is selected: 

1
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In Eq. (1), Z is a normalising constant of scores. Hence, the most possible translation can 
be encountered using Eq. (2). 
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In principle, the upper limit for the accomplishment of the system was TLM, be-
cause after obtaining all possible translations, we used TL information to decide which 
translations were better, and considered the main difference between TLM and unweigh- 
ted systems. The process of applying rules is conducted in the following steps: First, 
rules are applied to input sentences, and rules matched to the input sentences are detected 
as the active features. Next, the probability ps(t|c) is computed for all active features 
(rules). We sum up the weights of the live rules for each TL translation of each SL word 
in place of selecting the longest rule using Eq. (1). The comprehensive architecture of the 
direct maximum entropy models is outlined in Fig. 2. 

When the initial state q0 is the only living state in the transducer, we retract and pick 
the translation with the highest total of weights as declared in Fig. 1. It should be noted 
that the main reason for using maximum entropy despite scoring our sentences with 
TLM, is that maximum entropy indicates which features are relevant and how to weight 
them. This means that we do not have to carry out all translations, but if we only use the 
language model, we should accomplish all the translations before scoring them. This 
saves time and increases performance. 
 
3.2 Translation using Beam Search 
 

We use a fundamental version of the beam search algorithm to find a translation that 
maximizes the conditional probability accorded by the maximum entropy model. First, 
we apply a set of ambiguous rules to some words, and then we obtain the weights of 
these words for every rule from models of the maximum entropy. Thereafter, we build a 
tree for these new words. The tree is based on vectors of rule indices along with the sum 
of their weights. Let us assume, that at any iteration, we have a set of rules applied to the 
same words. The beam tree would expand with the number of rules applied to the words. 
For example, if in any iteration a set of rules exists (r = 5 rules and w = 3 words) in 
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which every word matches three rules, three different translations are obtained for each 
word. In this case, the beam tree is expanded to have nine translations, and these trees 
merge with the existing beam tree. Then, we sort those nine translations by descending 
sum of weights, and reduce the beam tree to have no more than the beam size transla-
tions. Supposing that the beam size equals four, we remove the last five translations from 
the tree, and continue until we finish all the ambiguous rules, and the output is a tree with 
no more than the beam size translations. Finally, we obtain and output only the best 
translation. 
 
3.3 Overview of Apertium 
 

A typical translator built using the Apertium platform, including the translator de-
scribed here, consists of a Unix-style pipeline or assembly line with the following mod-
ules (see Fig. 3). 

 

 
Fig. 3. The pipeline architecture of a typical Apertium MT system. 

 

 De-formatter: Separates the text to be translated from the formatting tags. 
 Morphological analyzer: Segments the source-language (SL) text in surface forms (SF) 

(words, or, where detected, multiword lexical units) and for each, delivers one or more 
lexical forms (LF) consisting of lemma (dictionary or citation form), lexical category 
(or part-of-speech) and inflection information. 

 Morphological disambiguator: A morphological disambiguator that chooses the most 
adequate sequence of morphological analyses for an ambiguous sentence. 

 Lexical transfer: This module reads each SL LF and delivers the corresponding target- 
language (TL) LF by looking it up in a bilingual dictionary encoded as an finite-state 
transducer compiled from the corresponding XML file. The lexical transfer module 
may return more than one TL LF for a single SL LF. 

 Lexical selection: A lexical selection module selects the most adequate translation of 
ambiguous SL LFs based on context rules. 

 Structural transfer. The structural transfer module applies a sequence of one or more 
finite-state constraint rules on the output of the lexical selection module so that it can 
select the left-right longest matching translation. 

 Morphological generator: It transforms the sequence of TL LFs produced by the struc- 
tural transfer to a corresponding sequence of TL SFs. 

 Post-generator: Performs orthographic operations, for example elision (such as da + il 
= dal in Italian). This module has not been employed in our translator so far. 

 Reformatter: De-encapsulates any format information. 
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2 https://kk.wikipedia.org 
3 https://github.com/diasks2/pragmatic_segmenter/tree/kazakh 
4 http://opus.nlpl.eu/ 

Modules of the described pipeline are independent from each other and thus can re-
ly on various programs and formalisms, and be of rule-based, statistical, or hybrid nature. 

3.4 Corpora 

To create the training corpora, we provide an SL corpus for training and a TL cor-
pus for scoring. We used two freely available corpora: a dump of articles from Kazakh 
Wikipedia2 with size 320 MB, 643.4 MB, and a single dump of articles from Turkish 
Wikipedia with size 440.6 MB were used for scoring TL corpus. 

The training phase consists of setting up a co-occurrence model of SL lemmas (with 
the equivalent scores) for each translation sense managed by the MT system. As our ap-
plication takes a sentence as input, we must break the corpus into sentences. To perform 
this task, we applied a rule-based sentence boundary detection tool called a pragmatic 

segmenter.3 
Then, we randomly selected 1,000 sentences pairs for testing the performance of the 

system. Table 1 presents the statistics of the test corpora, specifically the number of sen-
tences used for testing, and the number of tokens in the source and target sentences. The 
number of ambiguous tokens indicates the number of singular tokens with more than one 
likely translation. Then, we calculated the mean number of translations for each ambig-
uous word by dividing the number of ambiguous tokens by the entire number of tokens. 

As we have compared our system with neural machine translation (openNMT) [12] 
system, and with another statistical machine translation system Moses [13], we used a 
parallel corpus for Kazakh and Turkish with size of 3.2 MB which is available online 
through OPUS4. 

Table 1 presents statistics for the parallel corpus that we used in NMT system, SMT 
system, and weighted system training. After splitting the corpus into training and devel-
opment sets, we selected 5,000 sentence pairs for development (dev) and left the rest for 
training. Moreover, we calculated the number of ambiguous over the entire corpus. The 
number of ambiguous words indicates more than one possible translation with the num-
ber of particular tokens. 
 

Table 1. Statistics of the test corpora and the training parallel corpora used by three 
systems (Weighted, NMT, and Moses). 

 Lines SL TL DEV No.amb %am-big 
Train 62,893 266,555  285,648 5000 9.999  
Test 1000 9,158 9,249  1,619 5.65 

 

3.5 Reference Systems 
 
We measured the performance of our method by comparing it to the consecutive 

reference (or baseline) systems: 
 
• Linguist-chosen defaults (unweighted). A structural transfer in an Apertium language 

pair includes rules with the name of similar patterns. In this case, more than one rule 
can apply to the same token, which means that one sentence can have more than one 
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translation. If many possible translations of a structural form exist, then one must be 
signified as the default translation. 

• Random. A set of transfer rules in an Apertium language pair contains rules with iden-
tical patterns. As more than one rule can apply to the same token. In case of many pos-
sible translations of a structural form, one must be selected randomly as a best transla-
tion. 

• Target language model (TLM). A method of structural transfer that applies the extant 
MT system to produce all possible translations for a source sentence, and then scores 
these translations online on a model of the TL. The top scoring sentence is then output. 

4. EVALUATION 

The system was evaluated through translation quality measurement method, which 
calculates the error rate of the text produced by the system compared to the postedited 
version of the same system as a reference. A comparison of the evaluated system with 
reference systems shows that the error rate was quite low for a weighted system. 

Furthermore, the system was evaluated and compared with state-of-the-art machine 
translation systems, for which we used our previous test data as presented in Table 1. We 
also compared the output of all systems with the postedited version of our weighted system. 

We did not postedit each system independently because when we checked the out-
put of other baseline systems, such as the Moses system, we found that most of the 
words were not in the vocabulary as presented in Table 2. Furthermore, over 50% were 
unknown words. Some sentences were not fully generated as target sentences. 

 
Table 2. WER and PER; OOV is the number of out-of-vocabulary (unknown) words. 

System OOV% WER (%) PER (%) BLEU (%) 

Weighted 0.28 41.78 40.13 31.20 
NMT 0.02 96.85 92.26 0.05 
Moses 0.14 91.04 85.87 1.33 

* WER and PER scores the reference system on the test corpora. The BLEU 
scores are computed against a posteditted reference translation. 

 

Regarding NMT, the output (target) sentences were not related to the input sentenc-
es (source) sentences, which means that many of the sentences were translated arbitrarily 
and out of context. Additionally, the output sentences were not fully generated. Owing to 
these errors, postediting the output of each system independently is not a good decision, 
and would be detrimental to system performance. 

 
4.1 Translation Quality 

 
Translation quality was calculated using two different metrics: word error rate 

(WER) and position-independent word error rate (PER). These two metrics depend on 
the Levenshtein distance [14]. Metrics dependent on WER were selected to compare the 
system with systems based on comparable technology and to evaluate the usefulness of 
the system in a real-world setting, that is, to translate for distribution. Besides calculating 
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5 http://wiki.apertium.org/wiki/apertiumevaltranslator 
6 https://www.letsmt.eu/Bleu.aspx 
7 https://wwwi6.informatik.rwthaachen.de/web/Software/YASMET.html 

WER and PER for the weighted Kaz-ur MT system, we did the same for publicly availa-
ble unweighted Kaz-Tur MT, TLM Kaz-Tur MT and Random Kaz-Tur MT systems. The 
policy was the same for all four systems. We picked a small number (9,158 tokens) of 
Kazakh text, which was a concatenation of several articles from Wikipedia, and trans-
lated it using the four MT systems. The output of each system was postedited inde-
pendently to avoid bias in favour of one particular system. Next, we computed WER and 
PER for each using the each apertium-eval-translator tool5, and we applied the widely used 
BLEU metric tool6, which admirably tested the success rate of the system apropos of an 
approximate measurement of the final translation quality in a real system [15]. Note that 
the BLEU score is typically calculated by comparing the translation quality against a pre- 
translated reference translation. We have also used apertium-eval-translator for calculating 
WER and PER for all three systems (weighted, NMT, and SMT) as presented in Table 2. 
 
4.2 Confidence Intervals 

 
Confidence intervals for both metrics are calculated through bootstrap resampling as 

described by Koehn [16]. In all cases, bootstrap resampling is conducted for 1,000 repe-
titions. Wherever the p < 0.05 confidence intervals overlap, we achieve paired bootstrap 
resampling [16]. 

WER and PER scores with 75% confidence intervals for the reference systems on 
the test corpora. The BLEU scores are calculated against a postedited reference transla-
tion. 

5. RESULTS AND DISCUSSION 

When working with binary features, we used the execution of generalized iterative 
scaling available in the YASMET tool7 to calculate feature weights. 

Evaluation results are presented in Table 3, which compares the outcomes of the 
new approach (weighted) with the default (unweighted), randomly selected, and results 
are obtained by using the TL model online, for the language pair in Apertium with our 
two evaluation metrics. In addition, no large difference exists in the evaluation results 
because we selected the test data randomly from corpora of different articles, and not all 
sentences have ambiguous words. Furthermore, in some ambiguous words, the unwei- 
ghted achieved a performance equal to that of the weighted. Significant enhancement 
with respect to TL model performance is expected as a result of the effective application 
that the maximum entropy model makes of information regarding appropriate SL con-
texts and their translations, through the weighting of features that represent those SL 
contexts over the entire corpus. 

 
Table 3. WER and PER; OOV is the number of out-of-vocabulary (unknown) words.  

System OOV% WER (%) PER (%) BLEU (%) 
Weighted 0.28 24.72 24.51 55.28 

Unweighted 0.28 32.14 31.88 42.28 
TLM 0.28 28.85 28.48 48.31 

Random 0.28 30.91 30.00 44.73 
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8 http://opus.nlpl.eu/ 
9 http://opennmt.net/OpenNMTpy/ 
10 http://www.statmt.org/moses/index.php 
 

In addition, to evaluate our system on the parallel corpus and compare it with the 
performance of state-of-the-art MT systems trained on the same corpora, we trained the 
NMT and SMT baseline systems as the weighted system by taking the parallel dataset 
from the KDE4 corpus8. Table 2 exhibits the performance of the weighted system. 

First, we compared the results of our weighted system with NMT9, an NMT-small 
model from OpenNMT, with a framework employing neural translation. We trained the 
model at word level by using byte-pair encoding Second, we compared the weighted 
system with other publicly available SMTs such as the Moses system10. We used a 
phrase-based decoder in the Moses system [13], which allows us to create phrase-based 
systems using standard features that are usually used in current systems. The phrase- 
based decoder is used to train translation models for our language pair. Additionally, we 
trained 3-gram language models with Kneser-Ney smoothing using KenLM [17]. 

As shown in Table 2, the performance of the weighted system is much better than 
that of other baseline systems; the weighted system established a baseline of WER 41.78, 
PER 40.13, and BLEU 31.20. For the out-of-vocabulary (unknown words) coverage in 
the corpus that we used for our experiments, the weighted system outperformed the 
NMT and Moses systems in WER, PER, and BLEU. One reason for the results is that the 
orthographic and dialectal variety of the texts used in the aligned corpus, may have pre-
vented learning and generalization in the SMT and NMT systems. The weighted (RBMT) 
system is able to overcome this issue to some degree. Adding variants of frequent words 
is a simple issue, and one that we frequently addressed while developing the weighted 
system on the Wikipedia and news corpora. 

The evaluation results of NMT were insufficient compared with our weighted sys-
tem. Table 2 shows a very low BLEU score of 0.05, very high WER score of 96.85, and 
PER score of 92.26, which were obtained through our experiments in the NMT. Howev-
er, most errors for the NMT system can be a factor in this event. Some sentences were 
much longer than the average appropriate length for NMT, thereby resulting in poor 
translation because encoder-decoder NMT models were unable to translate long sen-
tences. 

The NMT system performed poorly on lengthy sentences, but is relatively good up 
to a sentence length of approximately 60 words. As the NMT system produces short 
translations (length ratio 0.859, opposed to 1.024), the quality of these translations is 
drastically low [18]. Moreover, lack of data is a main reason for the poor quality of the 
NMT system. The figures obtained, given approximately 265,000 tokens of training data 
on each side seem to be consistent with experiments conducted on the relation of NMT 
performance and the amount of data [18]. Another reason for the poor performance was 
the relative lack of language standardization. Furthermore, the NMT system exhibited 
worse translation quality out of domain11 than normal, which is a familiar challenge in 
translation in a different domain. Input words have various translations and their mean-
ings are predicated in different styles. NMT is adapted for the sake of fluency. Although 
the output of the NMT system is sufficiently fluent, it is still completely unrelated to the 
input. 

Most of the errors in the weighted system are due either to mistakes and gaps in the 
morphophonology components and disambiguation errors or input words being out of 
vocabulary. Furthermore, lexical selection was one of the causes of errors. The reason 
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11 In NMT, a domain can be described by a corpus from a specific source, and may diverge from other domains
in topic, genre, style, level of formality, and other factors. 

for this was that we made our system to select the first translation of an input word when 
more than one translation of the input word existed, and the first translation was not al-
ways suitable. The test corpus used for evaluation was not used while developing the 
RBMT system, including the training and development sets. 

In case of SMT, we achieved a BLEU score of 1.33, WER score of 91.04, and PER 
score of 85.87 respectively. These results are lower than those of our weighted system. 
The error causes include the following reasons: 

The main error category is a factor of the scarcity of data used during our experi-
ments. Furthermore, the performance declines with a limited amount of parallel data. Big 
data is expected to yield better performance. Another reason was the existence of 
low-frequency words and word formation errors, which characterize the morphological 
richness of Kazakh and Turkish, and that negatively affect the quality of the SMT system; 
this system performs poorly on morphologically rich languages [22]. In addition, we 
found that the translation was less fluent. Some errors were related to accuracy, particu-
larly mistranslation and omission. 

6. CONCLUDING REMARKS 

When a sufficiently large, freely available parallel corpus exists, rule-based MT is 
not competitive with corpus-based approaches, such as NMT and SMT. However, when 
only a small parallel corpora exists, the method can be competitive, especially between 
closely related languages or languages with non-trivial morphology, such as Kazakh and 
Turkish. 

In this paper, we presented a method shown to be better than state-of-the-art RBMT 
for Kazakh and Turkish. This method also improves the current structural transfer in 
RBMT and can be trained in an unsupervised manner, that is, without using an annotated 
corpus (in this circumstance, a word-aligned bilingual corpus); one will only need an SL 
corpus, a statistical TL model, and the RBMT system itself. The method accepts input as 
the part-of-speech tagged source text in which each word is annotated with the transla-
tions provided by the bilingual dictionary in the system, thereby making the method 
suitable to nearly any RBMT system. The system uses maximum-entropy formalism for 
structural transfer. Instead of counting actual transfer rule selection events in an anno-
tated corpus, the system counts fractional occurrences of these events as supposed by a 
TL model. The method is evaluated extrinsically, by measuring the quality of MT. 

We evaluated our system using part of the monolingual data dump of articles from 
Kazakh Wikipedia, and compared the results with that of NMT and SMT systems trained 
on that corpus. The results indicate that even in 2019, RBMT can be used between 
closely related, morphologically rich languages when resources are insufficient to train 
the cutting edge in NMT and SMT. These evaluation methods have shown that the per-
formance of the weighted system was better than of the other systems. Results of the 
Kaz-Tur pair using the Apertium MT system show that the method obtains results similar 
to or better than those obtained at greater cost by scoring an exponential number of 
transfer rule selections for each sentence using the TL model online. 

We aim to continue development of the weighted transfer module to apply only 
chunker transfer rules (patterns of words), which will be conducted by extending the 
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module into other stages of structural transfer such as interchunk and postchunk transfer 
rules (patterns of chunks). Both interchunk and postchunk transfer rules are analogous to 
the chunker, but with certain dissimilarities. The module has already been integrated into 
Apertium, and is ready for use as free/open-source software under the GNU GPL. The 
entire system can be downloaded from GitHub. 
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