
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 137-158 (2019)
DOI: 10.6688/JISE.201901_35(1).0008

137

Chinese Multi-Keyword Fuzzy Rank Search over Encrypted
Cloud Data Based on Locality-Sensitive Hashing

YANG YANG1,2,3, YU-CHAO ZHANG1,2, JIA LIU1,2, XI-MENG LIU1,2,

FENG YUAN4 AND SHANG-PING ZHONG1,2,+
1College of Mathematics and Computer Science

2University Key Laboratory of Information Security of Network Systems
Fuzhou University

Fuzhou, 350116 P.R. China
3Fujian Provincial Key Laboratory of Information Processing and Intelligent Control

Minjiang University
Fujian, 350108 P.R. China

4Information Security Institute
Beijing Electronic Science and Technology Institute

Beijing, 100070 P.R. China
E-mail: yang.yang.research@gmail.com; spzhong@fzu.edu.cn

Most of the existing Chinese keyword fuzzy searchable encryption schemes realize

fuzzy keyword search utilizing the wildcard and gram methods to construct the fuzzy set,
which consumes a lot of storage and computation overheads. In this paper, we propose a
novel Chinese multi-keyword fuzzy rank searchable encryption scheme, which achieves
efficient fuzzy keyword search without constructing a large fuzzy set. First, the Chinese
keyword is converted to the pinyin string, which is partitioned based on unigram, or the
mandarin consonant, vowel and tone of pinyin. Then, we design two Chinese keyword
vector generation algorithms to convert a pinyin string into a keyword vector. Moreover,
the locality-sensitive hashing and Bloom filter are utilized to construct the fuzzy keyword
search algorithm. We design two schemes to realize the Chinese fuzzy multi-keyword
search, and all of them utilize a single Bloom filter as the encryption index of a document.
The cloud storage server only needs to add (or delete) an encrypted file and its encrypted
index to realize the dynamic update of the files. To improve the accuracy of the rank, a
three-factor rank algorithm is proposed. The theoretical analysis and experimental results
indicate that the proposed schemes realize Chinese multi-keyword fuzzy search, more
accurate search result rank, guarantee the data security, and save a large amount of stor-
age and computation costs.

Keywords: searchable encryption, cloud computing, fuzzy Chinese keyword, locality-
sensitive hashing, security

1. INTRODUCTION

With the rapid development of cloud computing [1], a large amount of sensitive
data is stored in the cloud. The cloud server provides high-quality data storage services
and reduces the data storage and maintenance overheads at the user side. In order to pro-
tect the data privacy, it is a common solution to encrypt data and then upload them into
cloud server for outsourced storage. However, the unreadability of the ciphertext also
hinders the data usability [2], such as the commonly used keyword search function. If the

Received July 6, 2017; revised October 15, 2017 & January 7, 2018; accepted February 20, 2018.
Communicated by Berlin Chen.
+ Corresponding author.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

138

quantity of stored data is not large, the user can download all the data to the local com-
puter, decrypt them and then operate keyword search on the plaintext documents. With
the increase of the outsourced data, this method is obviously not applicable. It is a tough
task to search over a large amount of encrypted data.

Song et al. [3] put forth the concept of searchable encryption to deal with the prob-
lem of keyword search over encrypted data. To improve the search efficiency, Chang et
al. [4] built an index for each document to facilitate the data retrieval. Wang et al. [5, 6]
proposed a rank searchable encryption scheme to support the single-keyword search. It
calculates the tf  idf (term frequency  inverse document frequency) of the keyword in
the document [7], which is encrypted by the order-preserving encryption (OPE) method-
ology [8, 9]. Then, rank the match files according to the encrypted tf  idf values, and
return the top-k documents to users, which are the most relevant documents. Hong et al.
[30] proposed a multi-keyword searchable encryption scheme, which builds multi-key-
word search indices at the server side. Cao et al. [10] constructed a new multi-keyword
rank searchable encryption scheme using the vector space model [11] and secure KNN
(k-nearest neighbor) algorithm [12]. The scheme encrypted the index vector and the
query vector with two different matrixes. Then, the generated encrypted indexes vector
and the encrypted query vector are multiplied using the inner product algorithm, and the
multiplication product is the relevance score, which is utilized in the rank process. How-
ever, these schemes only support accurate keyword search and the queried keyword must
be exactly the same as the predefined keyword in the encrypted index, which is obvious-
ly not quite practical.

Li et al. [13] proposed a fuzzy search scheme, which constructs the keyword fuzzy
sets using the gram method. Later, Li et al. [14] proposed a fuzzy keyword searchable
encryption scheme, which constructs the keyword fuzzy set with wildcards. If the que-
ried keywords contain spelling mistake, the scheme can also find out the match result,
which improves the users’ search experience. Wang et al. [15] utilized the wildcards and
index trees to design fuzzy search scheme. Chuah and Hu [16] constructed a multi-key-
word fuzzy search scheme based on BedTree to improve the search efficiency.

But the above schemes are aimed to achieve fuzzy search of English keyword, be-
cause Chinese characters are typical non-letter language and words are flexible and di-
verse, so the above schemes do not apply to Chinese keyword fuzzy search. Cao et al.
[17] proposed a plaintext fuzzy search scheme based on Chinese pinyin, but it cannot
achieve the search on ciphertext. Chen et al. [18] used alphabet-based string similarity
measure to achieve ciphertext fuzzy search scheme of Chinese keywords.

However, the above fuzzy searchable encryption schemes must pre-construct the
fuzzy sets, which consumes a large storage space in the cloud. For example, in the wild-
card based fuzzy keyword set construction method, the size of fuzzy keyword set expo-
nentially increases with the edit distance, which consumes a lot of computation and
storage overheads. Yang et al. [19] utilized n-gram method to deal with keywords and
generated the simhash fingerprint of the fuzzy keyword set using simhash algorithm,
which greatly reduces the storage space and computation time. Wang et al. [20] and Fu
et al. [21] combined LSH (locality-sensitive hashing) [22] and secure KNN (k-nearest
neighbor) methods to design a new multi-keyword fuzzy searchable encryption scheme.
Although the above schemes do not need to construct the fuzzy keyword sets, they are
designed for English fuzzy keyword search rather than Chinese fuzzy search.

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 139

In this paper, we construct a novel Chinese multi-keyword fuzzy rank searchable
encryption scheme. The main contributions are summarized as follows.

(1) Novel Chinese fuzzy multi-keyword search We propose a Chinese fuzzy multi-

keyword rank searchable encryption scheme without pre-constructed fuzzy keyword
set. A Chinese keyword is converted into the corresponding pinyin string. Then, two
vector generation algorithms are designed to transform the keyword pinyin string in-
to keyword vector: Chinese keyword vector generation algorithm based on pinyin
string (see section 4.1 for the details), Chinese keyword vector generation algorithm
based on the unigram (see section 5.2 for the details). Then, build a Bloom filter as
the encrypted keyword index for each document and insert the keyword vectors (in
the document) into Bloom filter using the LSH function. If the input values of the
LSH function are similar, the outputs are equal with a high probability. Using this
characteristic, the authorized user can get the match results with high probability
even though the query keyword contains some spelling errors. Thus, our scheme re-
alizes fuzzy Chinese multi-keyword rank search.

(2) Efficient keyword index storage This scheme does not need to construct a large
pre-constructed keyword fuzzy set. We only need to convert a keyword to a vector,
and then insert the keyword vectors into the Bloom filter using the LSH function.
The keyword index of each document is a Bloom filter, which greatly reduces the
computation and storage overhead.

(3) Return more accurate rank result In this scheme, the weighted zone score is in-
troduced for more precise match result rank, which gives keyword different weights
according to its occurrence domains in the document. The weighted zone score of
keyword, Euclidean distance and keyword frequency are combined to realize three-
factor ranking algorithm, which realizes more accurate rank.

(4) Supporting dynamic document update The other existing schemes [5, 6, 23-26]
utilize tf  idf value in the keyword index encryption algorithm, which is influenced
by the document updates such that these schemes [5, 6, 23-26] cannot support dy-
namic document updates. In our scheme, we utilize term frequency instead of tf  idf
to avoid the influence brought by the document update. When an encrypted docu-
ment is inserted (or deleted), the other encrypted keywords indexes are not influ-
enced.

(5) Simulation demonstrates the efficiency of the scheme Extensive simulations are
done to evaluate the performance of our scheme, which show that this scheme real-
izes the fuzzy Chinese multi-keyword rank search based on LSH, has better efficien-
cy and returns more accurate rank results.

2. SYSTEM AND THREAT MODEL

2.1 System Model

The system model is shown in Fig. 1, which consists of the following parties. The
main notations used in this paper are shown in Table 1.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

140

(1) Data owner is responsible to generate encrypted keyword index and encrypted do-
cuments, which are outsourced to the cloud server for secure storage. The data owner
extracts the keyword set W = (w1, w2, …, wn) from the document, utilizes Chinese
keyword vector generation algorithm to convert the keywords into vectors, generates
the encrypted index EncSK() and encrypts the plaintext document set F = (f1, f2, …,
fm) into ciphertext set C = (c1, c2, …, cm). Finally, the data owner sends the ciphertext
set C and the encrypted index EncSK() to cloud server.

(2) Authorized data user submits search requests to the cloud server to issue keyword
search query. The authorized data user figures out the query keyword set Q = (q1,
q2, …, qn), converts the query keywords into vectors using Chinese keyword vector
generation algorithm, and then constructs the trapdoor TQ. Then, the generated trap-
door EncSK(TQ) is submitted to cloud server for multi-keyword rank search.

(3) Cloud server is responsible to store data owners’ encrypted files with encrypted in-
dexes, and responds to data users’ search request. Receiving the query trapdoor
EncSK(TQ) from the authorized data user, the cloud server calculates the relevance
score of the encrypted index EncSK() and trapdoor EncSK(TQ). Then, the cloud server
ranks the search result and returns top-k most relevant results to the data user ac-
cording to the calculated relevance scores.

index

Cipertext Top-k cipertext

Data Owner Authorized User

Plaintext

Keyword Set
Encrypted

Indexes

Encrypt
Decrypt

Vector
Generation
Algorithm

Query
Keyword

Cloud server

Search

Plaintext

Vector
Generation
Algorithm

Encrypted
Trapdoor

Cipertext

Fig. 1. System model.

Table 1. Notations.
Symbols Notations Symbols Notations

fi/ci Plaintext/ciphertext
documents

Q
→

 = (
→
q1,

→
q2, …,

→
q)

Query keyword vector set of
file Q

W = (w1, w2, …, wn) Keyword set pi/yi Syllable segmentation set of
keyword wi/qi

→
wi,

→
qi Keyword vector of

wi/qi
W
→

i = (
→
w1,

→
w2, …) Keyword vector set of file fi

 = (I1, I2, …, Im) Index set Q = (q1, q2, …, q) Query word set

2.2 Threat Model

Assume that cloud server is “honest-but-curious”, who is honest to perform the
search operation for the authorized data user, returns the match results, and does not de-

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 141

lete the encrypted index and ciphertext stored by data owners. Cloud server is also curi-
ous to make statistical analysis on the search query and search result to get some addi-
tional information about keywords and the plaintext of the stored encrypted documents.
This paper focuses on the known ciphertext model [20, 21, 26], which assumes that
cloud server can only access the encrypted documents, the secure indexes and the sub-
mitted trapdoors. The cloud server also records the search results.

3. PRELIMINARIES

3.1 Weighted Zone Core

The title, abstract and body in a document are usually considered as different do-

mains [7]. Keywords in different domains usually have different importance. Keywords
in the title are the most important, keywords in the abstract are the second important, and
keywords in the text are the least important. Assume that each document has  domains
and the corresponding weight coefficients are g1, …, g[0,1] which satisfies 

i=1gi = 1.
Let i = 1 denote that a keyword appears in the ith domain; otherwise, i = 0. The
weighted zone score of a keyword in a document is defined as Z = 

i=1gii.

3.2 Locality Sensitive Hashing

Locality sensitive hashing (LSH) functions [22] hash close items to the same hash

values with high probability. A hash function family H is (r1, r2, p1, p2)-sensitive if any
two items x, y and hH, r1 < r2, p1 > p2 satisfy: if d(x, y)  r1, Pr[h(x) = h(y)]  p1; if d(x,
y)  r2, Pr[h(x) = h(y)]  p2; where d(x, y) is the distance between x and y, e.g. Euclidean
distance.

3.3 Bloom Filter

Bloom filter [27] is an efficient data structure which can quickly determine whether

an element belongs to a collection. A Bloom Filter is a -bit array, which is initially set
to 0 in all positions. For a given set S = {a1, a2, …, an}, it uses l-independent hash func-
tions H = {h | h: {0, 1}*  [1, ], [1, l]} to map each element aiS into the -bit
array by setting the value of the position to be 1. To check whether an element q is in the
set S, we map it using the hash functions H = {h | h: {0, 1}*  [1, ], [1, l]} to get
the l positions. If any value of the l position is 0, qS; otherwise, qS or q yields a false
positive. As shown in Fig. 2, the keyword “searchable” is mapped to Bloom filter, where
 = 20, l = 4. The values of the four positions P = {2, 8, 14, 17} in the Bloom filter are
set to be 1.

10 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

searchable

Fig. 2. An example of bloom filter.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

142

Fig. 4. An example of BCMS.

4. BASIC CHINESE MULTI-KEYWORD FUZZY RANK SEARCH SCHEME

In this section, we propose a basic Chinese multi-keyword fuzzy rank search scheme
(BCMS), which utilizes Chinese keyword vector generation algorithm based on pinyin
string to convert a pinyin string into a keyword vector. Moreover, the LSH function and
Bloom filter are utilized to realize the fuzzy keyword search algorithm. The BCMS scheme
supports dynamic document update and saves a large amount of storage and computation
costs.

4.1 Chinese Keyword Vector Generation Algorithm based on Pinyin String

If pinyin string of a Chinese keyword is considered as an English letter string, the
inserting, deleting and replacing of letters in the pinyin string may result in an invalid
one. The edition operation over a pinyin string is defined as follows. (1) Only the con-
sonants or vowels in the same syllable change; (2) The consonants and vowels in the
same syllable simultaneously change; (3) The mandarin tone changes.

Firstly, Chinese keyword vector generation algorithm converts a Chinese keyword
into a pinyin string, which is separated to consonant, vowel and tone. The structure of a
keyword vector is shown in Fig. 3. This scheme uses a 63-bit vector to represent a key-
word. The first 23 bits represent 23 mandarin consonants in Chinese, the middle 24 bits
represent 24 vowels, and the last 16 bits represent the word position and tone (it has the
format “ab”, where “a” represents the 1st, 2nd, 3rd, 4th word in the keyword and “b” repre-
sents four Chinese tones in pinyin). If the element exists in the pinyin string, the corre-
sponding position is set to 1; otherwise, the position is 0. For example, the syllable seg-
mentation set of the keyword “实验” is {sh, i, 12, y, an, 24}, where “12” indicates that
the 1st word “实” in the keyword “实验” is 2nd tone, “24” indicates that the 2nd word
“验” in the keyword “实验” is 4th tone.

w a o ...e ... ing ong ...m ypb

Concosant Vowel

23 24 31 3332 34 41 42 43 4413 14 21 221211

1st word 2nd word 3rd word 4th word

Word Position
and Tone

1st tone 2nd tone 3rd tone 4th tone

Word Position and Tone

Fig. 3. Structure of a keyword vector in BCMS.

Syllable Segmentation Set
{ sh , i , 12 , y , an , 24 }

{ 12 , 24 }{ sh , y } { i，an }

{ sh , i , 12 , y , ang , 24 }
Syllable Segmentation Set

{ sh , y } { i , ang }

Consonant Set Vowel Set Tone Set

{ 12 , 24 }

Consonant Set Vowel Set Tone Set

1 ... 0 1 ... 1 ... 1

1 ... 1 0... ... 1 ... 1 ...
1w


1 ... 1

1 ... 1
1q


Extracted Keyword
Vectors

Query Keyword
Vectors

Extracted Keyword
Syllable Segmentation Set

{ zh , ong , 11 , w , en , 22 }

{ 11 , 22 }{ zh , w } { en , ong }

{ zh , ong , 11 , w , en , 22 }
Syllable Segmentation Set

{ zh , w } { en , ong }

Consonant Set Vowel Set Tone Set

{ 11 , 22 }

Consonant Set Vowel Set Tone Set

1 ... 1 ... 1 ...1

1 ... 1 1 ... 1 ...1 ... 1

1 ... 1

Extracted Keyword

1q = 实样

w = 中文2

2w


2q


Query Keywords Query Keywords

w = 实验1

q2= 中文

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 143

As shown in Fig. 4, assume that the user wants to query the keyword “实验”. Due
to the spelling mistake, he enters the query keyword “实样” by substituting the mandarin
vowel “an” with “ang” (In Chinese, the confusion of the former nasal vowel and the lat-
ter nasal vowel happens with high probability). In traditional hash algorithms, if a pinyin
string of keyword is misspelled, the output of the hash function will be completely dif-
ferent from the original output. The vectors →wi and →qi in this scheme are processed by the
LSH function to insert them into Bloom filter, which outputs the keyword index and
query trapdoor, respectively. According to the characteristics of the LSH function, the
hash values are equal with high probability when the inputs are similar. The Euclidean
distance between the vector of keyword “实验” and the vector of keyword “实样” is
only 2. Their hash values are equal with high probability after being processed by the
LSH function. Although the data user inputs a misspelled query keyword “实样”, our
scheme can still find the match result related to the keyword “实验”.

4.2 Scheme Construction

The concrete algorithms of BCMS are described as below. (Fig. 5 shows an exam-

ple of keyword index and trapdoor construction.

(1) Setup: The keyword set W = (w1, w2, …, wn) is extracted from the plaintext files F =
(f1, f2, …, fm).

(2) KeyGen(): On input a security parameter , this algorithm generates a vector S and
two invertible matrices {M1, M2}, where S{0, 1} and M1, M2  {0, 1}. The se-
cret key SK consists of the triple {S, M1, M2}. Then, data owner generates a symmet-
ric key sk to encrypt the documents.

(3) BuildIndex(F, SK, l): Data owner selects l LSH functions from the LSH family H =
{h: {0, 1}63{0, 1}}. For each document, build a -bit length Bloom filter as the
keyword index. The keyword index set is denoted as  = (I1, I2, …, Im). The genera-
tion process is described as below: (a) Use Chinese keyword vector generation algo-
rithm based on pinyin string to generate the keyword vector →wj for each keyword wj.
The keyword vector set of the document fi is W

→
i = (w→1, w

→
2, …); (b) Each keyword

vector w→j is hashed using the LSH functions h  H(1    l), which are inserted in-
to Bloom filter Ii.

(4) EncIndex(, SK): According to the vector S, the index Ii is split into Ii and Ii. If the
jth bit of S is 0, set Ii[j] = Ii[j] = Ii[j]; if the jth bit of S is 1, Ii[j] and Ii[j] are set to be
random values such that Ii[j] + Ii[j] = Ii[j]. Then, encrypt Ii and Ii with key SK and
obtain EncSK(Ii) = {M1

TIi, M2
TIi, EncSK() = (EncSK(I1), EncSK(I2), …, EncSK(Im)). Fi-

nally, the data owner uploads the encrypted keyword index set EncSK() to the cloud
server.

(5) EncFile (F, sk): Data owner uses a symmetric encryption algorithm to encrypt the
document set F = (f1, f2, …, fm) to the ciphertext set C = (c1, c2, …, cm), and uploads
them to the cloud server.

(6) Trapdoor(Q, SK, l): When an authorized user makes a search query, he specifies a
query keyword set Q = (q1, q2, …, q). Then, generate a -bit Bloom filter trapdoor
for Q, which is described as follows: (a) Use the Chinese keyword vector generation
algorithm based on pinyin string to generate the query keyword vector →qj for each

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

144

query keyword qj  Q; (b) Use the LSH functions h  H (1    l) to hash the query
keyword vectors, which are inserted into Bloom filter TQ.

(7) EncTrapdoor(TQ, SK): According to the vector S, the trapdoor TQ is split into T Q
and TQ. If the jth bit of S is 0, the T Q[j] and TQ[j] are set to be random values such
that T Q[j] + TQ[j] = TQ[j]; if the jth bit of S is 1, set T Q[j] = TQ[j] = TQ[j]. Then, en-
crypt T Q and TQ with key SK and obtain EncSK(TQ) = {M1

-1
T Q, M2

-1
TQ}. Finally, the

data user uploads the encrypted trapdoor EncSK(TQ) to the cloud.
(8) Query (EncSK(), EncSK(TQ), k): According to the encrypted keyword index EncSK(Ii)

and the trapdoor EncSK(TQ), cloud server calculates the relevance scores of the en-
crypted documents, sorts all the relevance scores and returns top-k encrypted docu-
ments to the data user. The relevance score of document is calculated as

EncSK(Ii)  EncSK(TQ) = {M1

T
I i, M2

T
Ii}  {M1

-1
T Q, M2

-1
TQ} = I i  T Q + Ii  TQ = Ii  TQ.

(9) Decrypt(C, sk): The authorized data user decrypts the returned top-k ciphertext using

the symmetric key sk distributed by the data owner to recover the plaintext document.

Index Bloom Filter

... 1 ... 1 ... 1 ... 1 ... 0 ... 1 ... 1 ...

“实验”

... 1 ... 1 ... 1 0 ... 1

... 1 ... 1 ... 1 ... 1 1

“中文”
... 1 ...

2w


1w


Extracted Keyword Vectors
LSH function

(a) Construction of index

... 1 ... 1 ... 1 ... 0 ... 1 ... 1 ... 1 ...

“实样”

... 1 ... 1 ... 1 0 ... 1

“中文”

... 1 ... 1 ... 1 ... 1 1 ... 1 ...

Trapdoor Bloom Filter

Query Keyword Vectors
LSH function

1q


2q


(b) Construction of trapdoor

Fig. 5. An example of index and trapdoor construction.

4.3 Analysis of the BCMS Scheme

(1) Support dynamic document update: The BCMS scheme uses a single Bloom filter

as a keyword index for a document. It is not necessary to change the encrypted key-
word indexes of the original dataset to add a new document (or delete an old docu-
ment). The data owner calculates the term frequency and weighted zone score of the
keywords in the new document, inserts encrypted index and ciphertext of the new
document (or deletes the old document’s encrypted index and ciphertext). Finally, the
encrypted new document is uploaded to the cloud (or delete the encrypted old docu-
ment) to achieve a dynamic document update.

(2) Save storage and computation overhead: In traditional keyword searchable en-
cryption scheme based on pinyin string [13, 14], they use the wildcard or gram
method to construct the fuzzy keyword sets to achieve fuzzy keyword search, which
wastes a lot of storage space and computation resources. Our schemes are compared
with these schemes [13, 14]. For the schemes using the wildcard based fuzzy key-
word set construction method, assume that the length of the keyword wi (1  i  n) is
L, the sizes of the fuzzy set Swi,1, Swi,2 and Swi,3 are 2  L + 1 + 1, C1

L+1 + C1
L  C

1
L+1  2C2

L+2

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 145

and C1
L + C

3
L + 2C2

L+2C2
L  C

1
L with editing distance d = 1, 2, 3, respectively. Therefore,

the size of the keyword fuzzy set is O(Ld) [14] with edit distance d and length L. The
size of the fuzzy set Swi,d constructed by the gram method is CL

L + CL
L-1

 + … + CL
L-d [13].

Although the storage cost of the gram method is less than that of the wildcard method,
it still needs a large amount of storage space. The computation costs of the above two
methods come from calculating the hash values for the fuzzy set when constructing
encrypted keyword index and the trapdoor. With the increase of the edit distance d
and length L, the size of fuzzy keyword set increases rapidly. As a result, the storage
and computation overheads grow rapidly too.

Our scheme does not need to construct a fuzzy keyword set. The data owner gener-

ates a keyword vector for each keyword and the storage space is not affected by L and d.
The storage space of each keyword is O(1). To insert the keyword vector into the Bloom
filter, l times LSH function calculations are required, which obviously has better effi-
ciency than the above mentioned schemes.

4.4 Problem of the BCMS Scheme

In Table 2, the Euclidean distance between the original keyword vector and the
query keyword vector is the same when the mandarin consonant, vowel, tone changes or
a similar pronunciation occurs. In general, there are nine common pronunciation similar
pairs in Chinese. Mandarin consonant pronunciation similar pairs are {/sh/and/s/, /ch/and
/c/, /zh/and/z/, /b/and/p/, /d/and/t/, /f/and/h/ and /l/and/n/}, and the vowels pronunciation

Table 2. Query examples in the BCMS and ECMS scheme.
Change

(consider a syllable)
Query
word

Syllable segmentation set
Euclidian
distance

original keyword 实验
BCMS: {sh, i, 12, y, an, 24}
ECMS: {s1, f1/h1, i1, 12, 02, i2, a2, l2/n2, 24}

0
0

change of a consonant 实干
BCMS: {sh, i, 12, g, an, 24}
ECMS: {s1, f1/h1, i1, 12, g2, a2, l2/n2, 24}

2
3

change of a vowel 实业
BCMS: {sh, i, 12, y, e, 24}
ECMS: {s1, f1/h1, i1, 12, 02, i2, e2, 24}

2
3

change of a consonant
and a vowel

实物
BCMS: {sh, i, 12, w, u, 24}
ECMS: {s1, f1/h1, i1, 12, w2, u2, 24}

2
6

change of a tone 试验
BCMS: {sh, i, 14, y, an, 24}
ECMS: {s1, f1/h1, i1, 14, 02, i2, a2, l2/n2, 24}

2
2

similar pronunciation 实样
BCMS: {sh, i, 12, y, ang, 24}
ECMS: {s1, f1/h1, i1, 12, 02, i2, a2, l2/n2, g2, 24}

2
1

similar pronunciation
and change of tone

石羊
BCMS: {sh, i, 12, y, ang, 22}
ECMS: {s1, f1/h1, i1, 12, 02, i2, a2, l2/n2, g2, 22}

2
2

original keyword 故事
BCMS: {g, u, 14, sh, i, 24}
ECMS: {g1, u1, 14, s2, f2/h2, i2, 24}

0
0

change of position 事故
BCMS: {sh, i, 14, g, u, 24}
ECMS: {s1, f1/h1, i1, 14, g2, u2, 24}

0
10

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

146

similar pairs are {/an/and/ang/, /en/and/eng/, /in/and/ing/}. Therefore, this issue should
be considered when we deal with Chinese keywords. The difference between pronuncia-
tion similar pairs should be less than the difference of changes of the mandarin conso-
nant and vowel. BCMS scheme does not consider this issue nor the term weight of key-
words such that the search result is not accurate enough.

5. ENHANCED CHINESE MULTI-KEYWORD FUZZY RANK SEARCH
SCHEME

In BCMS scheme, the vectors of keywords “故事” and “事故” are the same. If data
user queries the keyword “故事”, the encrypted documents containing both “故事” and
“事故” are all returned to the data user, which is obviously not reasonable. In addition,
we don’t take into consideration the similar consonant pairs like “b/p”, “d/t”. In order to
solve these problems, we propose an enhanced Chinese multi-keyword fuzzy rank
search scheme (ECMS), which utilizes Chinese keyword vector generation algorithm
based on unigram to convert a pinyin string into a keyword vector. It enlarges the dif-
ference of diverse change patterns in the pinyin string to make rank result more accurate.
Moreover, the three-factor rank algorithm is designed, which combines the Euclidean
distance of keyword vectors, keyword frequency and weighted zone score.

5.1 Chinese Keyword Vector Generation Algorithm based on Unigram

Unigram is a method in natural language processing to divide a word into single

symbols. For example, the output of the English word “cloud” processed by the unigram
method is the set {c, l, o, u, d}, and that of the Chinese keyword “可搜索加密” is the set
{可, 搜, 索, 加, 密}. Before introducing the specific algorithm, we enumerate six spe-
cial cases that may occur in practical applications and give out a way to deal with these
situations: (1) The syllable “ya” is converted into zero-consonant and a vowel “ia”; (2)
The syllable “yan” is converted into zero-consonant and a vowel “ian”; (3) The syllable
“yang” is converted into zero-consonant and a vowel “iang”; (4) The syllable “yong” is
converted into zero-consonant and a vowel “iong”; (5) The syllable “yao” is converted
into zero-consonant and a vowel “iao”; (6) The syllable “ye” is converted into zero-con-
sonant and a vowel “ie”. In addition, we define four similar consonant pairs like “b/p”,
“d/t”, “f/h” and “l/n”. The unigram based Chinese keyword vector generation algorithm
is introduced as follows.

Firstly, convert the Chinese keyword into pinyin string, and split the pinyin string
using unigram method. The structure of a keyword vector is shown in Fig. 6. This
scheme uses a 108-bit vector to represent a keyword. We utilize the 1st 23 bits to repre-

z2 02b2/p2 ...

1st Word 2nd Word

...

Word Position
and Tone 23 24 31 3332 34 41 42 43 4413 14 21 221211

2nd word 3rd word 4th word

1st tone 2nd tone 3rd tone 4th tone

Word Position and Tone
01b1/p1 d1/t1 f1/h1 l1/n1

1st Word

z1a1 ...

... z3 03b3/p3 ...

3rd Word

z4 04b4/p4 ...

4th Word

Fig. 6. Structure of a keyword vector in ECMS.

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 147

sent the 1st word in the keyword: (1) Put the similar pairs “b1” and “p1”, “d1” and “t1”,
“f1” and “h1”, “l1” and “n1” into one bit in the form of “b1/p1”, “d1/t1”, “f1/h1” and
“l1/n1”, respectively; (2) The next 18 bits represent the remaining letters from “a1” to
“z1” in alphabetical order; (3) The 23rd bit is called “01” bit, where “1” represents the 1st
word in the keyword and “0” represents that it (the 1st word) has no consonant. The bit
vector structure of the 2nd word, 3rd word and 4th word in a keyword is same as that of the
1st word of the keyword. The last 16 bits (i.e., 93rd-108th bits) represent the word position
and tone (the same as that in BCMS). If the element exists in the pinyin string, the cor-
responding position in the bit vector is set to 1; otherwise, the position is set to 0.

For example, the syllable segmentation set of the keyword “故事” is {g1, u1, 14, s2,
f2/h2, i2, 24} using unigram division method, where “g1” indicates that the English
symbol “g” comes from the 1st word “故”.

{ g1 , u1 , 14 , s2 , f2/h2 , i2 , 24 }

1 ... 1 ... 1 1 ... 1... ... 1 ... 1 ...

1 1 ... 1 ... 1 ... 1... ... 1 ... 1 ...

{ s1 , f1/h1 , i1, 14 , g2 , u2 , 24 }

3w


Extracted Keyword Vectors

Query Keyword Vectors

Syllable Segmentation Set of Extracted Keyword

Syllable Segmentation Set of Query Keyword

3


q

q3= 事故

...

...

3w = 故事

Fig. 7. An example of ECMS.

“故事” and “事故” are completely different, but their syllable segmentation sets are
the same in BCMS scheme and denoted as {g, u, 14, sh, i, 24}. As shown in Fig. 7, in
ECMS, the syllable segmentation sets of “故事” and “事故” are {g1, u1, 14, s2, f2/h2, i2,
24} and {s1, f1/h1, i1, 14, g2, u2, 24}, respectively. Thus, we succeed to distinguish the
disordered keywords.

In ECMS, the syllable segmentation set of “yan” in the keyword “实验” is s1={02,
i2, a2, l2/n2, 24}, the syllable segmentation set of “gan” in the keyword “实干” is s2=
{g2, a2, l2/n2, 24}, the syllable segmentation set of “dian” in the keyword “小店” is
s3={d2/t2, i2, a2, l2/n2, 24}, the syllable segmentation set of “pian” in the keyword “十
片” is s4={b2/p2, i2, a2, l2/n2, 24} and the syllable segmentation set of “bian” in the
keyword “十遍” is s5={b2/p2, i2, a2, l2/n2, 24}. It can be seen that the similarity of
“bian” and “pian” is larger than that of “bian” and “dian”, and the similarity of “dian”
and “tian” is larger than that of “dian” and “bian”, too.

5.2 Scheme Construction

ECMS scheme utilizes unigram based Chinese keyword vector generation algorithm

to generate the Chinese keywords vector and three-factor rank algorithm to improve the
accuracy of the rank results. The three-factor represents Euclidean distance between key-
word vectors, weight of keyword information and weighted zone score. Therefore, the
difference between ECMS scheme and BCMS scheme lies in the construction of key-
word index and trapdoor. In order to simplify the description, this subsection only de-
scribes the difference between ECMS scheme and BCMS scheme.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

148

(1) BuildIndex(F, SK, l)
 Calculate the keyword frequency weight wft,f. Sublinear scaling method [7] is used
to calculate the keyword frequency weight: if tft,f > 0, wft,f = 1 + logtft,f; if tft,f = 0, wft,f
= 0, where tft,f represents the term frequency of the keyword t in document f.
 Calculate weighted zone score Zij. Each document has three domains: title, abstract
and text. Set the weight coefficients of these domains as g1, g2, g3, respectively,
which satisfy g1 > g2 > g3. Let i = 1 denote that a keyword appears in the ith domain
in the document; otherwise, i = 0. Then, calculate the weighted zone score of the
keyword wj. For instance, if a keyword wj appears in the title and the text (not in ab-
stract) of a document fi, we set 1 = 1, 2 = 0, 3 = 1. The weighted zone score of the
keyword wj in document fi is Zij = g1  1 + g2  2 + g1  g3.
 BuildIndex: Data owner selects l LSH functions from LSH family H = {h: {0, 1}63

{0, 1}}. For each document, build a -bit length Bloom filter as the keyword in-
dex. The keyword index set is denoted as  = (I1, I2, …, Im). The generation process
is described as below: (a) Use Chinese keyword vector generation algorithm based
on unigram to generate the keyword vector w→j for each keyword wj in the document
fi; (b) Each keyword vector w→j is hashed using the LSH functions hH(1    l),
which are inserted into Bloom filter Ii. The hash value inserted into Bloom filter is
(Zij  wft,f)/l, rather than the value 1 in BCMS scheme.

(2) Trapdoor: When an authorized user makes a search query, he first enters a query
keyword set Q = (q1, q2, …, q). Then, generate a -bit Bloom filter trapdoor for Q
and the generation process is described as follows: (a) Use the Chinese keyword
vector generation algorithm based on unigram to generate the query keyword vec-
tor →qj for each query keyword qj  Q; (b) Use the LSH functions h  H(1    l), to
hash the query keyword vectors and insert them into Bloom filter TQ.

(3) Query: According to the encrypted keyword index EncSK(Ii) and the encrypted trap-
door EncSK(TQ), cloud server calculates the relevance scores of encrypted documents,
sorts all the relevance scores and returns top-k encrypted documents to data user. The
relevance score of document is calculated as

EncSK(Ii)  EncSK(TQ) = {M1

T
I i, M2

T
Ii}  {M1

-1
T Q, M2

-1
TQ} = I i  T Q + Ii  TQ = Ii  TQ

= ,1
().

n

ij t fj
Z wf




5.3 Analysis of the ECMS Scheme

(1) Support document dynamic update: The ECMS scheme introduces weight infor-
mation and the domain weighted scores of keywords to improve the accuracy of rank
results. This ECMS scheme uses keyword frequency weight wft,f to replace the tf 
idf weight used in most of the existing schemes [5, 6, 23-26]. The reason is that the tf
 idf weight method involves the inverse document frequency idft. It indicates the
rareness of the keyword t in the whole document set and defined as idft = log(N/dft),
where N is the document number, dft is the number of documents that contain the
keywords t.
Obviously, when the number of the total documents changes, the inverse document
frequency idft of the keyword t will change. Then, all the original encrypted keyword
indexes should be rebuilt such that these existing schemes [5, 6, 23-26] cannot sup-

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 149

port dynamic document update. On the contrary, our ECMS scheme substitutes tf 
idf with keyword frequency weight wft,f, which is not influenced by the other inserted
or deleted documents. Thus, the ECMS scheme supports dynamic document update.

(2) Improvement of the rank accuracy: In ECMS, the three-factor rank algorithm is
designed to improve the rank accuracy. In BCMS, some of the Euclidian distances
are the same shown in Table 2 and cannot distinguish the different change patterns in
the pinyin string, such as the mandarin consonant, vowel or tone changes, or a simi-
lar pronunciation. In ECMS, the Euclidian distances are different shown in Table 2
such that the different changes in the pinyin string can be distinguished in the rank
algorithm due to the characteristic of the LSH function. For example, the Euclidian
distance between the vector of similar pronunciation and original word vector is re-
duced from 2 to 1. Then, the difference of Euclidian distance caused by the similar
pronunciation is less than that of the variation of mandarin consonant or vowel. For
another example, the Euclidian distance between the vector of position change is en-
larged from 0 to 10. Then, the change of position is distinguished from the original
keyword.

6. PERFORMANCE ANALYSIS

In this paper, we use 3000 Chinese research papers as the test dataset. Simulation
experiments are implemented using Java language and TextRank algorithm [28], which
is part of the HanLP natural language processing package. TextRank algorithm calcu-
lates and ranks the weights of keywords in documents, and selects top-100 keywords as
the keyword set of the document. Chinese keyword pinyin conversion, mandarin conso-
nant, vowel and tone recognition and word frequency statistics in this paper are also
handled by HanLP toolkit. The LSH family with parameter (3,2,0.56,0.28) is used in
the simulation. We select l = 30 LSH functions and set the length of Bloom filter as  =
8000. The experiments are conducted on a desktop computer with CPU i7-2600 3.4 GHz,
16 GB RAM running 64-bit Windows 8 operation system.

6.1 Functions Comparison

In Table 3, the functions of our schemes (BCMS and ECMS) are compared with the
schemes in [10, 13, 14, 18, 19], which are anlyzed below; (1) Multi-keyword search is
not supported in the schemes [13, 18, 19], while the schemes in [10, 14] and our schemes
(BCMS and ECMS) have this function; (2) Weighted zone score is helpful to return
more accurate rank results, which is realized in our ECMS scheme. However, all the
other schemes [13, 14, 10, 18, 19] do not take this into consideration; (3) Fuzzy search
is a frequently used method in the query phase. However, the scheme [10] does not sup-
port this search pattern; (4) Chinese keyword search is designed according to the char-
acteristic of Chinese, which is useful for the Chinese query. Chen’s scheme [18] and our
schemes (BCMS and ECMS) realize this function using different methods; (5) Rank
function enables the system to return the most relevant results to the users, which is con-
sidered in the schemes [10, 14, 19] and our schemes (BCMS and ECMS); (6) Yang’s
scheme [19] and our schemes (BCMS and ECMS) realize fuzzy keyword search without
pre-constructed fuzzy keyword set, which greatly reduces the storage overhead at the

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

150

cloud server. Unfortunately, the schemes [10, 13, 14, 18] do not have this desirable cha-
racteristic.

Table 3. Query examples in the BCMS and ECMS scheme.
Function Li [13] Li [14] Cao [10] Yang [19] Chen [18] BCMS ECMS

Multi-keyword       
Weighted zone score       

Fuzzy search       
Chinese keyword search       

Rank       
without pre-constructed

fuzzy keyword set
      

6.2 Storage Overheads Comparison

We compare the storage overheads of keyword vectors in our schemes (BCMS and
ECMS) and that of the wildcard (or gram) based scheme [13, 14] to demonstrate the ef-
ficiency of our scheme. In our system, the lengths of keyword vectors in the BCMS and
ECMS schemes are 63 bits and 108 bits, respectively. The keyword vector storage over-
heads of these two schemes are shown in Fig. 8, which linearly increase with the number
of keywords. In order to test the performance of Li’s schemes [13, 14] and make a com-
parison, we construct the fuzzy keyword set of Chinese keyword’s pinyin string using
Li’s wildcard (and gram) based methods. Then, each element in the constructed fuzzy
keyword set is mapped into a vector.

0 2 4 6 8 10
0

20

40

60

80

S
to

ra
ge

 o
ve

rh
ea

d
(K

B
)

Number of documents(*500)

BCMS
ECMS

0 2 4 6 8 10

0

1

2

3

4

5

S
to

ra
ge

 o
ve

rh
ea

d(
M

B
)

Number of keywords(*500)
 Fig. 8. Storage overhead of BCMS and ECMS. Fig. 9. Storage overhead.

Fig. 9 shows the keyword vector storage overhead comparison between BCMS,
ECMS and Li’s schemes [13, 14]. The implementations of Li’s schemes [13, 14] consists
of six colorful lines, which represent the gram based fuzzy keyword set method with edit
distance d = 1, 2, 3, and wildcard based fuzzy keyword set method with edit distance d =
1, 2, 3, respectively. The pink line represents the storage overhead of our BCMS scheme,
which has the least keyword vector storage overhead. The black line represents the stor-
age overhead of our ECMS scheme, which has the second least keyword vector storage
overhead. ECMS still has far less storage cost compared with Li’s schemes [13, 14]. The
subfigure in Fig. 9 shows the wildcard based fuzzy keyword set method with edit dis-
tance d = 3. Since its keyword vector storage space is much bigger than the other meth-

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 151

ods, we put it in a separate subfigure in Fig. 9 to make the comparison more clearly.
Table 4 gives out the keyword vector storage overhead comparison when the key-

word numbers are 1000, 2000, 3000, 4000 and 5000, respectively, which indicates that
BCMS scheme has the least storage overhead. It can be seen that the fuzzy set storage
overheads of Li’s schemes [13, 14] increase rapidly with the edit distance. When edit
distance is fixed, the gram based fuzzy keyword set construction method requires less
storage space than the wildcard based method. When d = 3 and the keyword number is
5000, the storage overhead of gram based method in Li’s scheme [13] is about 86 times
of that in the BCMS scheme, and the storage overhead of wildcard based method in Li’s
scheme [14] is about 813 times of that in the BCMS scheme.

Table 4. The storage overhead comparison.

1000 2000 3000 4000 5000

Gram d = 1 [13] 46 91 139 181 232
Gram d = 2 [13] 205 410 639 819 1065
Gram d = 3 [13] 631 1262 2012 2523 3348

Wildcard d = 1 [14] 92 184 282 368 471
Wildcard d = 2 [14] 878 1756 2744 3512 4577
Wildcard d = 3 [14] 5945 11890 19034 23779 31700

BCMS 8 16 24 31 39
ECMS 15 30 44 59 74

6.3 Computation Overheads Comparison

The trapdoor generation time (encryption time) is the same as the keyword index
generation time (encryption time) when the keyword numbers are the same. The key-
word index generation time (encryption time) in BCMS and ECMS is same. The reason
is that the generation time equals the LSH function execution time and the encryption
time is relevant to the length of Bloom filter. Both of the generation and encryption time
depends on the length of the keyword vector. Thus, we only plot the keyword index
generation time of BCMS scheme in Fig. 10, which increases with the keyword number.

0 2 4 6 8 10 12 14 16

0

50

100

150

200

250

300

350

In
de

x(
or

 t
ra

p
d

oo
r)

ge
nr

at
io

n
ti

m
e(

m
s)

Number of keywords

1 2 3 4 5 6
0

20

40

60

80

100

120

In
d

ex
 e

nc
ry

p
ti

on
 t

im
e(

s)

Number of keywords(*500)

BCMS
ECMS
Cao[10]
Li[26]
Fu[21]

2 4 6 8 10 12
0

2

4

6

8

10

T
ra

p
d

oo
r

en
cr

yp
ti

on
 t

im
e(

s)

Number of keywords(*500)

BCMS
ECMS
Cao[10]
Li[26]
Fu[21]

Fig. 10. Keyword index (or trap-

door) generation time.
Fig. 11 (a). The index encryp-

tion time.
Fig. 11 (b). The trapdoor en-

cryption time.

Storage(KB)

Schemes

Keyword Numbers

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

152

Fig. 11 (a) shows the keyword index encryption time of Cao’s scheme [10], Li’s
scheme [26], Fu’s scheme [21], BCMS and ECMS scheme, which linearly grows with the
document number. Fig. 11 (b) plots the trapdoor encryption time of these schemes, which
is a constant and does not grow with the number of query keywords. No matter how
many keywords are queried, they are all inserted into the Bloom filter. The trapdoor en-
cryption time using the KNN algorithm depends on the length of Bloom filter rather than
the number of query keywords.

1 2 3 4 5 6
200

400

600

800

1000

Q
u

er
y

ti
m

e(
m

s)

Number of documents(*500)

BCMS
ECMS
Cao[10]
Li[26]
Fu[21]

2 4 6 8 10 12
0

200

400

600

800
Q

u
er

y
ti

m
e(

m
s)

Number of query keywords

BCMS
ECMS
Cao[10]
Li[26]
Fu[21]

0 2 4 6 8 10

50

60

70

80

P
re

ci
si

on
(%

)

Number of query keywords

BCMS
ECMS

0 2 4 6 8 10
50

60

70

80

90

100

R
ec

al
l(

%
)

Number of query keywords

BCMS
ECMS

Fig. 12 (a). Query time va-

ries with |F|.
Fig. 12 (b). Query time va-

ries with |Q|.
Fig. 13. Precision. Fig. 14. Recall.

The query time in two schemes of this paper is the same since the query algorithm
executed by KNN depends on the length of Bloom filter rather than the length of key-
word vector. Fig. 12 (a) shows the query time of these schemes, which linearly grows
with document number. Fig. 12 (b) plots the query time of these schemes, which is a
constant and does not grow with the number of query keywords.

6.4 Accuracy Evaluation

Before analyzing the accuracy of the proposed scheme, we first introduce two con-

cepts of LSH function and Bloom filter: false positive and false negative rates.

(1) False positive rate. When a query keyword q matches a keyword w and d(w, q) > r2,
the false positive situation occurs. Both Bloom filter and LSH function have false
positive rate. The false positive rate of the Bloom filter using l hash function with m-
bit length is (11/m)nl, where n indicates that n elements are inserted into the Bloom
filter. The false positive rate [20] is calculated by the following formula (1  (1  p2)

n (1

 1/m)n(l-1))l, where p2 is the parameter of LSH function.
(2) False negative rate. If a query keyword q does not match a keyword w and d(w, q) <

r1, the false negative is generated. Bloom filter does not have false negative rate, but
LSH function has. The false negative rate of LSH [20] is calculated as 1  (1  (1  p1)
(1  p2)

n-1(1  1/m)n(l-1))l.

In order to evaluate the accuracy of the query results, two fundamental notations:

precision and recall are used in information retrieval field. Precision is the proportion of
the relevant documents to all the returned results. Recall is the proportion of the relevant
documents that are returned to all the relevant documents. The relationship among true/
false positive and true/false negative are shown in Table 5.

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 153

Table 5. The relevance of the returned documents.
 Relevance Irrelevance

Returned documents true positive, tp false positive, fp
Not returned documents false negative, fn true negative, tn

The precision and recall can be calculated by Precision = tp/(tp+fp) and Recall =
tp/(tp+fn).

(1) Precision: Fig. 13 shows the precisions of BCMS and ECMS schemes, which in-

crease with the number of query keywords. According to the precision analysis of the
schemes [20, 21], the precision increases with the number of keywords. This is rea-
sonable as the query keywords increase, the impact of false positive caused by the
fuzzy keyword will decrease. Similarly, the precisions of two schemes in this paper
increase with the number of query keywords. Precision of ECMS scheme is higher
than that of BCMS scheme because ECMS scheme utilizes Chinese keyword vector
generation algorithm based on unigram to deal with keywords such that different
change patterns in the pinyin string can be distinguished, such as the mandarin con-
sonant, vowel, tone changes or a similar pronunciation. And weight information,
weighted zone score of keywords in documents and Euclidian Distance of keyword
vectors are introduced into the rank algorithm to realize more accurate three-factor
rank. In addition, ECMS scheme takes into consideration the word location infor-
mation in the keyword vector generation algorithm such that the permutation of
words in a keyword may result in different syllable segmentation set. Thus, the pre-
cision of ECMS scheme increases further. When the number of the query keywords
is 10, the precisions of BCMS and ECMS schemes are 73% and 86%, respectively.
The precision of ECMS scheme is 13% higher than that of BCMS scheme.

(2) Recall: Fig. 12 shows the recalls of BCMS and ECMS schemes, which increase with
the number of query keywords. According to the recall analysis of the schemes [20,
21], the recall decreases when the number of keywords increases in the query. It is
reasonable as the query keywords increase, the impact of false negative caused by the
fuzzy keyword will increase. Similarly, the recalls of two schemes in this paper de-
crease with the number of query keywords. The recall of ECMS scheme is higher
than that of BCMS scheme because ECMS scheme utilizes Chinese keyword vector
generation algorithm based on unigram to deal with keywords such that different
change patterns in the pinyin string can be distinguished，such as the mandarin con-
sonant, vowel, tone changes or a similar pronunciation. Weight information, weigh-
ted zone score of keywords in documents and Euclidian Distance of keyword vectors
are introduced into the rank algorithm to realize more accurate three-factor rank and
return the most relevant documents. When the number of all relevant documents does
not change, ECMS scheme will return more relevant documents. Moreover, ECMS
scheme takes into consideration the word location information in the keyword vector
generation algorithm such that the permutation of words in a keyword may result in
different syllable segmentation set. Thus, the recall of ECMS scheme increases fur-
ther. When the number of the query keywords is 10, the recalls of BCMS and ECMS
schemes are 61% and 87%, respectively. The recall of ECMS scheme is 26% higher
than that of BCMS scheme.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

154

7. SECURITY ANALYSIS

Cloud server obtains the access pattern by recording the uploaded trapdoor and the
query results of data users. In known ciphertext model, cloud server does not get any
additional information except for the access patterns [29].

Theorem 1: BCMS scheme is secure in the known ciphertext model.

This article utilizes some notions in [29].

 History is H = (, I, W, W

→
), where  is a document set, I is an index set built from , W

= (w1, …, wk) is the query keyword set and W
→

 = (w→1, …, w→k) is the query keyword
vector set.

 View is V(H) = (Encsk(), EncSK(I), EncSK(W
→

)), where Encsk() is the encrypted docu-
ment set (using the symmetric key sk), Encsk(I) is the encrypted index set (using the
key SK) and EncSK(W

→
) is the encrypted query keyword vector set (using the key SK).

The contents in V(H) is available for the cloud server.
 Trace of a history is the sensitive information learnt by the cloud server, such as the

access pattern. The trace of a history is defined as Tr(H) = {Tr(w1), …, Tr(wk)}, Tr(wi)
= {(j, sj)wij, 1  j  ||}, where sj is the relevant score of the query keyword wi in the
file j.

In the known ciphertext model, given two histories {H, H} with same trace, it gen-

erates V(H) and V(H), respectively. If V(H) and V(H) are not distinguishable, the cloud
server (or the attacker) cannot obtain any additional information about the index or the
document set except for the access patterns. Now we prove Theorem 1.

Proof: Denote Sim as a simulator. Given a history H, the simulator Sim can simulate a
View V(H) such that the cloud server cannot distinguish V(H) and V(H). To achieve
this purpose, the simulator Sim operates as below.

 Sim randomly selects i{0, 1}|i|, i, 1  i  || and ouputs  = {i, 1  i  ||}, ran-

omly generates a vector S{0, 1} and two invertible matrices M1, M2  {0, 1}. The
secret key is SK = {M 1, M 2, S}. Then Sim constructs W

→
 and the trapdoor EncSK(W

→
)

for each w→i  W
→
, 1  i  k; (1) Generate a vector w→i  {0, 1} such that the number of

1 in w→i is same as that in w→i. Then, output W
→
 = {w→i, 1  i  k}; (2) Generate the trap-

door for each w→i  W
→
 (1  i  k) and output EncSK(W

→
) = {EncSK(w

→i), EncSK(w
→2), …,

EncSK(w
→k)}.

 To generate I(), Sim operates as below: (1) Generate a vector Ij{0} as the index
for j(1  j  ||); (2) For each wi  W(1  i  k), if wij, Sim sets Ij = Ij+w→i; (3)
For each Ij(1  j  ||), Sim replaces the values of the elements that are bigger than 1
with 1 in the vector Ij; (4) Set I() = Ij, 1  j  ||}.

 Sim encrypts the index I() using the secret key SK and output EncSK(I()) =
EncSK({Ij}, 1  j  ||), and then sets V = (, EncSK(I()), EncSK(W

→
)).

Through the above operations, the encrypted index EncSK(I()) and the encrypted

trapdoor EncSK(W
→
) generate the same trace as the one that cloud server has generated.

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 155

Cloud servers cannot distinguish V(H) and V(H). Since the documents are encrypted by
the symmetric encryption algorithm using the secret key sk, cloud server cannot distin-
guish Encsk() and . Moreover, the index EncSK(I()), EncSK(I), trapdoor EncSK(W

→
),

EncSK(W
→
) are encrypted by secure KNN algorithm, and the vector split process in the

encryption process is random. If cloud server (or the attacker) does not have the secret
keys SK and SK, they are not able to recover the plaintext index and query keyword.
Thus, cloud server cannot get any additional information about the encrypted index or
documents set except for the access patterns.

Theorem 2: ECMS scheme is secure in the known ciphertext model.

Proof: Denote Sim as a simulator. Given a history H, the simulator Sim can simulate a View
V(H) such that cloud server cannot distinguish V(H) and V(H). To achieve this purpose,
Sim executes the similar operations as in the proof of Theorem 1, the difference lies in
the generation process of I(). The specific operations are described below; (1) Gener-
ate a vector Ij{0} as the index for j(1  j  ||); (2) For each wi  W(1  i  k), if
wi  j, Sim calculates the number of 1 (set the number as ) in the keyword vector w→i
and replaces all 1s in w→i with sj/. Then, set Ij = Ij + w

→i; (3) Set I() = {Ij, 1  j  ||}.

According to the analysis in the proof of theorem 1, cloud server cannot distinguish

V(H) and V(H). Thus, cloud server cannot get any additional information about the en-
crypted index or documents set except for the access patterns.

8. CONCLUSION

A novel Chinese multi-keyword rank searchable encryption scheme is proposed in
this paper utilizing locality-sensitive hashing (LSH) function and Bloom filter, which
realizes efficient fuzzy keyword storage and supports dynamic document update. Weigh-
ted zone score, keyword weight and Euclidean distance are introduced to realize three-
factor rank algorithm, which improves the accuracy of the rank results. Theoretical anal-
ysis and experimental results show that the proposed system not only realizes fuzzy
Chinese multi-keyword rank searchable encryption function, but also reduces the storage
cost of the keyword index. Thus, this system protects the privacy of data and realizes
more accurate rank.

ACKNOWLEDGEMENT

The authors thank the editor-in-chief, associate editor and reviewers for their con-
structive and generous feedback. This work is supported by the National Natural Science
Foundation of China (No. 61402112, 61702105); Open Fund Project of Fujian Provin-
cial Key Laboratory of Information Processing and Intelligent Control (Minjiang Uni-
versity) (No. MJUKF201734).

REFERENCES

1. P. Mell and T. Grance, “The NIST definition of cloud computing,” Communications

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

156

of the ACM, Vol. 53, 2010, p. 50.
2. B. Chen, Y. W. Chen, K. Y. Chen, et al., “Enhancing query formulation for spoken

document retrieval,” Journal of Information Science and Engineering, Vol. 30, 2014,
pp. 553-569.

3. D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on en-
crypted data,” in Proceedings of IEEE Symposium on Security and Privacy, 2000, p.
44.

4. Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on re-
mote encrypted data,” in Proceedings of International Conference on Applied Cryp-
tography and Network Security, 2005, pp. 442-455.

5. C. Wang, N. Cao, K. Ren, et al., “Enabling secure and efficient ranked keyword
search over outsourced cloud data,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 23, 2012, pp. 1467-1479.

6. C. Wang, N. Cao, J. Li, et al., “Secure ranked keyword search over encrypted cloud
data,” in Proceedings of IEEE International Conference on Distributed Computing
Systems, 2010, pp. 253-262.

7. C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval,
Cambridge University Press, Cambridge, 2008.

8. D. Liu and S. Wang, “Nonlinear order preserving index for encrypted database query
in service cloud environments,” Concurrency and Computation: Practice and Expe-
rience, Vol. 25, 2013, pp. 1967-1984.

9. A. Boldyreva, N. Chenette, Y. Lee, et al., “Order-preserving symmetric encryption,”
in Proceedings of the 28th Annual International Conference on Advances in Cryp-
tology, Vol. 5479, 2009, pp. 224-241.

10. N. Cao, C. Wang, M. Li, et al., “Privacy-preserving multi-keyword ranked search
over encrypted cloud data,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 25, 2014, pp. 829-837.

11. I. H. Witten, A. Moffat, and T. C. Bell, “Managing gigabytes: compressing and in-
dexing documents and images,” IEEE Transactions on Information Theory, Vol. 41,
1995, pp. 79-80.

12. W. K. Wong, W. L. Cheung, B. Kao, et al., “Secure kNN computation on encrypted
databases,” in Proceedings of ACM Sigmod International Conference on Manage-
ment of Data, 2009, pp. 139-152.

13. J. Li, Q. Wang, C. Wang, et al., “Enabling efficient fuzzy keyword search over en-
crypted data in cloud computing,” Computer Science and Information Systems, Vol.
10, 2009, pp. 1-5.

14. J. Li, Q. Wang, C. Wang, et al., “Fuzzy keyword search over encrypted data in cloud
computing,” in Proceedings of IEEE INFOCOM, 2010, pp. 1-5.

15. C. Wang, K. Ren, S. Yu, et al. Achieving usable and privacy-assured similarity
search over outsourced cloud data,” in Proceedings of IEEE INFOCOM, 2012, pp.
451-459.

16. M. Chuah and W. Hu, “Privacy-aware bedtree based solution for fuzzy multi-key-
word search over encrypted data,” in Proceedings of the 31st International Confer-
ence on Distributed Computing Systems Workshops, 2011, pp. 273-281.

17. J. Cao, X. J. Wu, Y. Q. Xia, et al., “Pinyin-indexed method for approximate match-
ing in Chinese,” Qinghua Daxue Xuebao / Journal of Tsinghua University, Vol. 49,

CHINESE MULTI-KEYWORD FUZZY RANK SEARCH 157

2009, pp. 1328-1332 (in Chinese).
18. H. F. Chen, B. G. Lin, Y. Yang, et al., “Chinese keyword fuzzy search over en-

crypted cloud data,” NETINFO SECURITY, Vol. 7, 2014, pp. 69-74 (in Chinese).
19. Y. Yang, S. L. Yang, and M. Ke, “Ranked fuzzy keyword search based on simhash

over encrypted cloud data,” Chinese Journal of Computers, Vol. 2, 2017, pp. 431-
444 (in Chinese).

20. B. Wang, S. Yu, W. Lou, et al., “Privacy-preserving multi-keyword fuzzy search
over encrypted data in the cloud,” in Proceedings of the IEEE INFOCOM, 2014, pp.
2112-2120.

21. Z. Fu, X. Wu, C. Guan, et al., “Toward efficient multi-keyword fuzzy search over
encrypted outsourced data with accuracy improvement,” IEEE Transactions on In-
formation Forensics and Security, Vol. 11, 2016, pp. 2706-2716.

22. P. Indyk, R. Motwani, et al., “Approximate nearest neighbors: towards removing the
curse of dimensionality,” in Proceedings of the 30th ACM Symposium on Theory of
Computing, 1998, pp. 604-613.

23. C. Wang, K. Ren, S. C. Yu, et al., “Achieving usable and privacy-assured similarity
search over outsourced cloud data,” in Proceedings of the IEEE INFOCOM, 2012,
pp. 451-459.

24. Z. Xia, Y. Zhu, X. Sun, and L. Chen, “Secure semantic expansion based search over
encrypted cloud data supporting similarity ranking,” Journal of Cloud Computing.
Vol. 3, 2014, pp. 1-11.

25. J. Wang, X. Yu, and M. Zhao, “Privacy-preserving ranked multi-keyword fuzzy
search on cloud encrypted data supporting range query,” Arabian Journal for Sci-
ence and Engineering, Vol. 40, 2015, pp. 2375-2388.

26. H. W. Li, Y. Yang, et al., “Enabling fine-grained multi-keyword search supporting
classified sub-dictionaries over encrypted cloud data,” IEEE Transactions on De-
pendable and Secure Computing, Vol. 13, 2016, pp. 312-325.

27. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commu-
nications of the ACM, Vol. 13, 1970, pp. 422-426.

28. R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” in Proceedings of
Conference on Empirical Methods in Natural Language Processing, 2004, pp. 404-
411.

29. R. Curtmola, J. Garay, S. Kamara, et al., “Searchable symmetric encryption: im-
proved definitions and efficient constructions,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security, 2006, pp. 79-88.

30. C. Hong, Y. Li, M. Zhang, et al., “Fast multi-keywords search over encrypted cloud
data,” in Proceedings of International Conference on Web Information Systems En-
gineering, 2016, pp. 433-446.

Yang Yang (杨旸) is an Associate Professor in the College of
Mathematics and Computer Science of Fuzhou University, China.
She received her Ph.D. degree from Xidian University in 2011. Her
research interests include information security and privacy protec-
tion.

YANG YANG, YU-CHAO ZHANG, JIA LIU, XI-MENG LIU, FENG YUAN AND SHANG-PING ZHONG

158

Yu-Chao Zhang (张煜超) is an M.S. candidate in the College
of Mathematics and Computer Science of Fuzhou University. His
current research interests include information security and searchable
encryption.

Jia Liu (刘佳) is an M.S. candidate in the College of Mathe-
matics and Computer Science of Fuzhou University. Her current re-
search interests include information security and searchable encryp-
tion.

Xi-Meng Liu (刘西蒙) is a Lecture in the College of Mathema-
tics and Computer Science of Fuzhou University, China. He received
his Ph.D. degree from Xidian University in 2015. His research in-
terests include information security and privacy protection.

Feng Yuan (袁峰) is an Assistant Researcher of Beijing Elec-

tronic Science and Technology Institute, China. He received his Ph.D.
degree from the Xidian University in 2010. His research interests are
in the area of information security.

Shang-Ping Zhong (钟尚平) is a Professor in the College of

Mathematics and Computer Science of Fuzhou University, China. He
received his Ph.D. degree from Chinese Academy of Sciences in
2005. His research interests include machine learning and informa-
tion security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

