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We propose an intrusion detection method that can deal with interleaved event in-

puts. The event sequences may be alert sequences in a network or running processes on a 
host which are both considered to contain mixed behaviors with unpredictable orders in 
the temporal domain. To detect intrusions with interleaved event sequences, one of the 
major difficulties is to separate the interleaved events that are produced by different users 
or for different intentions. We propose a novel ATM algorithm to extract subsequences 
that characterize different behaviors; afterwards, a method that is based on graph repre-
sentation is used to detect intrusions. In a network, there could be intruders who plan a 
DDoS attack on an environment that has mostly benign users. The proposed method can 
distinguish between different pieces of network data that represent different behaviors 
and locate where the intrusion is. On a host, users without enough privilege may inap-
propriately gain access to data that they are not supposed to see. The proposed method 
can detect the event subsequence that is associated with the unauthorized activity given a 
usage sequence from users such as process, command or log sequences. Given the net-
work or host-based data, the experiment results show that the proposed method can reach 
high precision and recall rates at the same time in the intrusion detection task. Moreover, 
the graphs produced by the proposed ATM method are also compared to the graphs gen-
erated from other methods to confirm that the ATM-based graph representation indeed 
describes meaningful transitions between events.    
 
Keywords: event sequence, host-based intrusion, interleaved event, intrusion detection, 
network-based intrusion 
 
 

1. INTRODUCTION 
 

We propose a unified intrusion detection method that can deal with both of the 
network data and host-based data under the same detection framework. One of the key 
issues to successfully detect intrusions given an event sequence collected either in a 
network-based or host-based environment is to separate events that correspond to differ-
ent behaviors or users where the various kinds of events are interleaved with each other 
in the sequence. Given an event sequence such as the one in Fig. 1 (a), separating the 
interleaved events and retrieving event subsequences that belong to single behaviors or 
single users are essential because the event transitions after the separation show more 
evidences of causality or possible multi-step attack scenarios than the transitions in the 
original interleaved sequence. In a sequence of alert events, we may observe an intruder 
whose activities trigger alerts scattering on many other false alerts produced by legiti-
mate users. As another case, multiple users may share the same computing resources at  

Received January 5, 2017; revised December 31, 2017; accepted February 12, 2018.  
Communicated by Meng Chang Chen. 



HSING-KUO PAO, FONG-RUEI LEE AND YUH-JYE LEE 

 

224

 

 
(a) An interleaved event sequence. 

 
(b) The event transition graphs for threads in the sequence in (a). 

 
(c1) The graph from ATM (Wc = 2).   (c2) The graph from ATM (Wc = 4). 

Fig. 1. The challenges of extracting threads from an interleaved event sequence. (a) shows an in-
terleaved event sequence where all events are numbered to indicate various event types. 
There are two subsequences (called threads) interleaved with each other in (a): a squared 
one (1-2-1-2-3-1-2-3) and another (4-5-6). Given the original sequence in (a), we can use 
the proposed method to find the graphs in (c1) and (c2) (via different parameters) which 
are almost identical to one of the true graphs in (b). 

a period of time under a cloud service. If we consider the sequence of running processes 
recorded in a time slice on the cloud, we find the processes, possibly for different com-
puting purposes likely interleaved with each other. It is clear that extracting alerts or 
processes that belong to single behaviors or single users is critical for intrusion detection 
or cloud environment monitoring. 

The event separation for interleaved sequence may not be trivial. The event features 
may provide clues for us to know how the events are generated, or generated by whom 
and we can surely use that information to separate events that belong to different behav-
iors or different users. In a network environment, we can use source or destination IP 
addresses to separate alert events that belong to different users or for different purposes. 
On a host, we can use usernames to discover who own different sets of processes. How-
ever, the above information such as IP address or identity may not always be available 
and reliable, especially when the network or host is under attack. To effectively detect 
intrusions robustly, we have to find an alternative approach. 

We propose an intrusion detection method that can extract sequential events, called 
threads where each belongs to a single activity from an interleaved event sequence and 
detect intrusions in the set of extracted event subsequences (threads). In Fig. 2, we dis-
cuss two examples that we can apply our method for intrusion detection. The first exam-
ple, which is shown in Fig. 2 (a) focuses on network intrusions. To avoid network at-
tacks, we usually adopt a network-based Intrusion Detection System (IDS) such as Snort 
[1] to issue alerts constantly for subsequent experts’ confirmation. Given the alert se-
quence, we can extract threads or subsets of alerts from the sequence that are associated 
with single users or behaviors. In Fig. 2 (a), we have an extracted alert sequence (or a 
thread) with the alert types shown by numbers. We may find a match between the alert 
thread and a multi-step attack scenario: searching a target, scanning, and attacking. Note 
that such scenario is not obvious to be observed in the original interleaved alert sequence. 

The second example, as in Fig. 2 (b) is about host-based intrusions. Given a set of 
sequential process data collected on a host or a virtual machine with multiple users, the 
proposed method can extract the process patterns that belong to different users and sepa-
rate intrusive users from authorized users. In cloud service environment, user identifica-
tion is especially important if the regular identification routines in the cloud are not reli- 
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(a) An attack behavior extracted from an 

alert sequence. 
(b) A software development behavior extracted 

from a process sequence.
Fig. 2. The user behaviors in two kinds of event sequence. 

 

able and there is more than a single user who shares the same resources in the environ-
ment. As long as we can separate event threads that belong to different users, we can 
build a model for each user to describe his/her unique behavior and detect intrusions or 
unauthorized use afterwards. In (b), given an extracted process sequence from a cloud, 
we may find a user who runs processes that correspond to the loop of editing, compila-
tion, and execution in a software development task. At the same time, we may also find 
another attacker in the same cloud who plans to block the service as much as he/she can 
to maximize the computation power; or attempts to cause a fault in the operating system 
and gain control of the authorized users’ applications, systems, or networks. We can use 
the proposed method to separate the above two behaviors from the same cloud environ-
ment even their process data are highly interleaved from each other. 

In this work, we focus on intrusion detection given two types of event sequences: 
the alert sequence from network environment, and the process sequence monitored on a 
host or a cloud. We state the focused problem as follows. 

The Focused Problem and Proposed Method 
Given an event sequence such as an alert sequence or a process sequence s = (s1, 

s2, …, sn, …, sN), sn  S, where S is the set of all alert types or process types, and a set of 
known behavior patterns B, we aim to solve the following problems: 

1. Extract threads/subsequences t’s where each t belongs to a single behavior; and 
2. For each found t, classify t as a type of behavior b B. 

Given an alert sequence or a process sequence, behavior patterns may consist of a 
normal one and a malicious one, and the problem simply becomes a binary classification 
problem. Before the classification, we have to extract threads that correspond to different 
behaviors from the interleaved sequence. For instance, Fig. 1 (a) shows an event se-
quence which includes a thread (1,2,1,2,3,1,2,3) and another thread (4,5,6), each could 
be from a unique user or form a unique behavior. To understand patterns of the event 
sequence, we first need to recover the “pre-mixed” threads, one thread for each individu-
al user or behavior. As soon as the threads are extracted, the behavior patterns (instead of 
mixed, complicated, noisy and summarized patterns) can be relatively easy to be ob-
served and described for each single user/behavior. 

In this work, the key features as well as our major contributions include: 

 We detect intrusions with two different types of inputs, namely the network data and 
host-based data under a unified view. 

 To deal with interleaved event sequences, we propose a novel algorithm called ATM, 
to extract meaningful individual patterns from the sequences. 
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 We propose a graph-based representation to describe behavior patterns and a dissimi-
larity measure to compare between different patterns. 

In this work, a graph (or we call it a hyper-event) rather than a single event is a high- 
level representation for each individual pattern. The graph structure provides rich infor-
mation such as the causal correlations between events for domain experts to confirm the 
final pattern classification (e.g., to be malicious or not). 

The rest of the article is organized as follows. In Section 2, we review the previous 
work about intrusion detection, sequence analysis and other related topics. After that, in 
Section 3, we introduce the method for thread extraction and intrusion detection given 
the alert sequences and process sequences. In Section 4, we describe the data sets that we 
use in this study and their statistics. It is followed by Section 5, where we show the per-
formance of the proposed method and compare the result with that from other approach-
es. At last, we conclude our work in Section 6. 

2. RELATED WORK 

In this section, we discuss previous work that is related to the proposed method. For 
the application point of view, we survey some past work that is related to intrusion de-
tection and alert correlation. From the methodology viewpoint, we discuss some previ-
ous work about sequential data analysis. Some graph-based methods are also mentioned.  

2.1 Intrusion Detection 

There are many intrusion detection techniques that can be used to recover attack 
scenarios. We focus on the techniques that take alert sequences as the input to find at-
tacks or malicious behaviors. Given an alert sequence issued by an IDS on a network, 
considering several alerts within a period rather than one alert at a time is usually the 
approach to detect intrusions and to understand the true intention from the network data. 
By doing so, we not only enhance the possibility and confidence to classify alerts to be 
benign or malicious ones; at the same time, we also reduce the number of alerts for clas-
sification because we classify alerts in a group-based fashion. 

Several alert correlation approaches [2-5] have been proposed to solve the problem. 
Basically, the approaches are categorized into three kinds of techniques. The first cate-
gory correlates the alerts by the similarity measurement on the alert attributes. Both of 
Staniford et al. [6], and Valdes et al. [7] proposed the alert correlation methods based on 
the information such as the source, target IP addresses and the port numbers. They can 
correlate these alerts aggregately with the same IP addresses or port numbers. However, 
the drawback is that they cannot easily discover the whole causal relation for those re-
lated alerts not from the same address. Julisch [8] clustered the related alerts by the root 
causes, because the related alerts usually share the same root causes. In principle, the 
approach can significantly reduce the number of alerts for analysis compared to previous 
approaches, however, with the trade-off of longer computing time. 

The second category is based on the attack scenarios defined by human experts or 
learned from data. Cuppens et al. [9] and Dain et al. [10] fall into this category. Cuppens 
and Ortalo created a declarative language called LAMBDA to specify attacks. Dain and 
Cunningham combined data from heterogeneous sources to build scenarios. Both of their 
methods can deal with the data containing forged IPs, therefore, more powerful than the 
first category methods in general. 
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The third category is based on the specification of individual attacks. Templeton 
and Levitt [11], and Ning et al. [12, 13] proposed the alert correlation methods by 
matching the preconditions and consequences of alerts. Their methods correlate alerts if 
the preconditions of some later alerts are satisfied by the consequences of some previous 
alerts. These methods can discover the potential causal relationship between alerts. There 
are also some other techniques that used precondition and consequence of attacks; after-
wards, the techniques produced the scenario graph [14, 15] which were applied to net-
work security. Other than that, the model checking technique determines whether or not 
a formal model of a system satisfies a given property. Ammann [16] used model check-
ing for vulnerability analysis of networks. But they only can obtain one counterexample. 
Wing [17] modified the model to produce the attack graphs [18-20] for possible attack 
representations. The path in an attack graph shows the way of compromising the system. 
Zhu and Ghorbani [21] built attack graphs to represent the transition probabilities be-
tween different alert types. A more recent work, Idika and Bhargava [22] proposed a 
suite of graph-based security metrics and an algorithm to decide vulnerabilities. Also, 
Ramaki et al. attempted to correlate alerts for early attack warning [23]. There are some 
previous efforts that focused on the intrusion detection applied to one of the most popu-
lar KDD’99 dataset [24-27]. The classifiers for intrusion detection were built based on a 
set of expert-selected features. Apparently, significant human efforts are necessary for 
these approaches. 

2.2 Sequence Analysis 

One of our objectives is to understand behavior patterns from event sequences. To 
extract patterns from event sequences, Lin et al. [28] proposed a symbolic representation, 
called SAX for time series or streaming data, but mainly for continuous data. Toivonen 
et al. [29] processed events of Nokia routers, and reported frequent subsequences. In 
mining of frequent patterns with gapped constraint, several works focus on the reduction 
of subsequence candidates based on Apriori property [30, 31]. Ji et al. [32] studied the 
minimal distinguishing sequences (MDSs) with a gapped constraint which occurs fre-
quently in one class but infrequently in another class, and they developed an efficient 
algorithm named ConSGapMiner to prune the generated candidate patterns. Mining 
MDSs among sequences could also be regarded as the enhancement of measuring the 
dissimilarity between sequences. Mining the frequent closed sequences is also a way to 
provide more compact result with better efficiency. Ding et al. [31] proposed an efficient 
approach for finding closed repetitive gapped subsequences which generates much 
smaller candidates of sub-sequences. Zaki et al. [33] proposed a combined technique for 
modeling complex pattern in sequence data. Wang et al. [34] proposed an efficient algo-
rithm for mining closed sequences without maintaining any candidates. All the above 
approaches intend to discover specific patterns in efficient way. To speak of our case of 
distinguishing behaviors from difference categories of event sequences with interleaving 
or high variance of patterns, it is unlikely that those methods can be helpful. In the next 
section, we discuss the proposed method.  

3. PROPOSED METHOD 

In this section, we introduce the proposed intrusion method for network-based and 
host-based intrusions. Given an event sequence, to detect intrusions of many kinds, the 
first goal is to “understand” the behavioral patterns hidden in the sequence and then clas-
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sify the behaviors into a benign or a malicious type of some sorts. To solve the problems, 
we propose a system which consists of three components: sequence partition, behavior 
thread extraction and behavior dissimilarity measurement, further described below. Be-
fore doing so, we introduce some definitions and notations that are used in this work. 

3.1 Definitions and Notations 

 Event sequence: An event sequence s = (s1, s2, …, sn, …, sN) where sn  S and S = {1, 
2, …, K} is the set of all K event types. Examples include an alert sequence or a pro-
cess sequence. 

 Thread: A thread t = (t1, t2, …) = (st(1), st(2), ….) is a subsequence of an event sequence 
that contains a specific normal or malicious behavior. For instance, an FTP task con-
sists of at least three steps: typing password, going to a particular directory and up-
loading/downloading files. When the task sequence is transmitted through a network, 
we expect the sequence interleaved with packets of other behaviors in the network. In 
this situation, we would like to recover the original sequence such as the packets cor-
responding to the FTP task for the later behavior recognition.  

 Major/minor thread: An event sequence may include more than one thread in the se-
quence, which corresponds to different user behaviors. Among those threads, one 
thread could have more observations (higher saliency) than others. In math, given a 
thread t = (t1, …, tm, ..., tM), we define the number of occurrences for a pair of event 
types (i, j) to be #(i, j) = |{(tm, tm+1): i = tm, j = tm+1, 1  m  M − 1}|. Given a se-
quence s, a thread t in s is a major thread if all the numbers of event pair occurrences in 
t are larger than or equal to all the numbers of event pair occurrences in any other 
threads t in s. All threads that are not major threads are called minor threads. It is 
simply an ideal case to discuss between major threads and minor threads.  

 Correlation window: The size of correlation window (Wc 1) defines the maximum 
range of directly correlated event pairs. That is, given an event sequence s, we call two 
events sn, sm in s to be possibly (directly) correlated, if |m  n|  Wc  1.   

 Scenario window: Given an event sequence, we define the scenario window (Ws) to be 
the size of the window that is likely to include all the events, from the beginning to the 
end for a group of similar behaviors. Typically, we set Ws to be around a few hours to 
a day in this work. 

 Thread transition graph: Given a thread, we build a directed transition graph G = (V, E, 
M) with vertex set V, edge set E, and transition matrix M. The vertex set V includes all 
possible event types such as alert types or processes in a thread. The edge set E denotes 
the transitions between vertices and M is the transition matrix where Mij records the 
transition probability/counts going from vertex (event type) i to vertex (event type) j. 

 Shortcut: Given two vertices u, vV on a directed graph G = (V, E), if there exists two 
paths going from u to v such as 1(u, v) = (u = u1

1, u
1
2, ..., u

1
1+1 = v) and 2(u, v) = (u = u2

1, 
u2

2, ..., u
2
2+1 = v), and the length of 1 is less than or equal to 2, or 1 ≤ 2, we call 1 a 

shortcut from u to v if compared to 2. When 1 = 1, we call it a strong shortcut, oth-
erwise, a weak shortcut. We focus only the strong shortcut in this work. 

3.2 Sequence Partition 

Given an event sequence, we first apply a preprocessing step to partition the se-
quence into several different subsequences so that it is easier to analyze the events and 
the event correlations in each individual subsequence. We discuss two approaches: the 
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partition based on a temporal consideration and the partition based on a spatial consider-
ation, i.e., the partition based on IP address or user information, further described below. 

 
3.2.1 Temporal based partition 
 

Given an event sequence such as from NIDS alert records or user process data, we 
assume that each thread terminates in a limited window size. For instance, we can con-
sider a partition of sequence s = (s1, s2, …) into Ws-length subsequences s1 = (s1, s2, …, 
sWs), s2 = (sWs+1, sWs+2, …, s2Ws), etc., given a pre-defined scenario window. 

 
3.2.2 Spatial/IP based partition 
 

In network data, the IP address is usually informative to separate packets from dif-
ferent network behaviors. In a cloud-based environment with unknown users connected 
for resource sharing, the account information can be used to separate the tasks from dif-
ferent users. As discussed, the above information, either the IP address or username is 
not necessarily trustful due to the possibility of, for instance, dynamic IP assignment, 
user camouflage, etc. Still, we can use such information, called spatial information on 
sequence partition and help us to find subsequences where event correlations can be eas-
ily observed in each subsequence. Because the spatial information is not 100% accurate, 
we shall apply a thread extraction algorithm (discussed in the next sub-section) to further 
improve the result. 
 
3.3 Behavior Thread Extraction 
 

Given the sequence partition result, from either the temporal or spatial consideration, 
the goal of behavior thread extraction is to extract threads from the partitioned sequences 
and use a graph to describe the correlations between events for each thread. Ideally, we 
expect each thread (or its corresponding graph) represents an intention or a behavior 
from a specific user (a normal one or an intruder) such as someone performing an FTP 
download, or trying to break an account. We propose an approach, called ATM, which 
includes three steps: All-pair correlation computation, Thresholding low frequency 
counts for noise removal, and building Maximum directed spanning tree to find thread 
graphs from the partitioned sequence, further described below. 

 
3.3.1 All-pairs 
 

Given a partitioned subsequence obtained from sequence partition, we want to ex-
tract threads from it so that a thread contains only events for a single behavior or from a 
single user. For a partitioned event sequence (or subsequence) s = (s1, s2, …, sn, …), we 
consider an event pair to be the possible correlated events if they are within a correlation 
window distance, denoted by Wc. The rationale behind it is that two directly correlated 
events should not be very far away from each other (within Wc). On the other hand, two 
events with distance within Wc may not be true correlated events and counting all within 
Wc pairs to be correlated events should provide an over-estimated result. We further re-
fine the all-pair result by thresholding and maximum spanning tree computation to re-
move some unwanted event pairs. 

In math, given a partitioned sequence s = (s1, s2, …), we count 1 for each occur-
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rence of event pair (sn, sm) from s if m  n  Wc  1 and 1  n < m  |s|, where |s| is the 
sequence length of s. The result is stored in a matrix M where Mij denotes the number of 
counts that we observe in the sequence for a pair of (ordered) event types (i, j). We can 
normalize the counts to probabilities by 

| |

1

( | ) / ,ij j i ij ik
k

P P M M 


 
   

 

S

 (1) 

where |S| = K denotes the number of all possible K event types. As mentioned before, the 
frequency counts and the probabilities are expected to be over-estimated by the all-pair 
consideration. 

Using either the frequency counts or probabilities for event type pairs, we construct 
a directed graph called thread transition graph to reveal the (directed) event correlations. 
The thread transition graph G = (V, E, M) is composed of a vertex set V for event types, 
an edge set E, and a transition matrix M that serves as the weights on the graph. A di-
rected edge from i to j indicates that there exists significant amount of observations of 
the pair (sn = i, sm = j) in the sequence. We build a graph for each partitioned sequence. 
For instance, if we use the temporal partition with scenario window size Ws, we shall 
have one graph for each of the sequences s1 = (s1, s2, …, sWs), s2 = (sWs+1, sWs+2, ..., s2Ws), 
etc. 

3.3.2 Thresholding and maximum spanning tree 

For the sequence in Fig. 1 (a), the thread transition graphs in Fig. 1 (b) is the ideal 
set of graphs that we want to find. In our approach, based on the all-pair result, we first 
discard the edges that have counts lower than a threshold and second, select a maximum 
directed spanning tree to approximate the true graphs. We believe that even the sequence 
is highly interleaved, those false correlations can be removed after the two additional 
procedures. 

There are two kinds of event transitions that were over-estimated by the all-pair 
consideration. For the sequence in Fig. 1 (a), given Wc  3, we may count the pair (1, 4), 
or the pair (3, 5), called random link which connects two events from different threads. 
In general, we expect the random links to have small counts because there is no reason to 
produce a certain event pair with large counts if there is no causal relationship between 
the pair of events. We set a constant threshold and consider edges with counts below the 
threshold to be random links and discard them. 

The second kind of over-estimation comes from the so-called shortcut. In Fig. 1 (a), 
the pair (1, 3) links two events that are not directly related, but in the same thread. To 
make the transition graph easier to visualize and analyze, we intend to remove those 
shortcuts. We propose a maximum directed spanning tree (MDST) algorithm to find the 
subset graph that does not have such shortcuts. The rationale why the MDST can select 
edges without shortcuts is because the shortcuts always contribute less than or equal to 
the nearby directly correlated pairs. For instance, the counts corresponding to (1, 3) 
should be smaller than the counts of (1, 2) and the counts of (2, 3). Because whenever we 
observe a pair (1, 3), we observe the pair (1, 2) and the pair (2, 3) as well. On the other 
hand, sometime we only observe the pair (1, 2) or the pair (2, 3) but not the pair (1, 3) be- 
cause (1, 3) may occupy in a window larger than the correlation window, if Wc is small. 
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Algorithm 1: ATM (All-pair, Threshold, MDST) 
Input: s = (s1, …, sn, …, sN), an event type set S, a constant integer Wc ≥ 2: 

the correlation window size, and a constant θ : random link threshold. 
Output: A thread transition graph G = (V, E, M) with vertex set V, edge set E, and transition 

matrix M. 
begin 

create G = (V(S), E  , M(|S | × |S |)); 
for w = 2: Wc do 

for n = 1: N − w + 1 do 
Mi,jMi,j+1 (assuming sn = i & sn+w-1 = j); 

end 
end 
let E = {(i, j): Mi,j > 0}; 
foreach (i, j)E do 

if Mi,j ≤ θ then 
Mi,j  0; 
delete (i, j) from E; 

end end 
return MDST(G); 

end 
 

We show the complete ATM algorithm, consisting of All-pair counting, Threshold-
ing, and maximum directed spanning tree computation, in Algorithm 1 and Algorithm 2. 
In Fig. 3, for the graph in (a), we can apply the thresholding to produce the graph in (b), 
and to produce the graph in (c) by the MDST algorithm. To combine both the threshold-
ing and MDST procedures, we have the graph in (d). A slightly different version of the 
algorithms can work on probabilities (normalized counts) instead of counts. 

 
                   (a)            (b)            (c)           (d) 
Fig. 3. Given (a) an original graph; selecting the top four edges produces the graph in (b), if the 

threshold  is chosen to be 5; and based on (a), the MDST generated by Algorithm 2 is 
shown in (c). If we apply the thresholding followed by MDST, we produce the graph in (d). 

 

3.4 Behavior Dissimilarity Measurement 
 
Given a pair of thread transition graphs representing two user behaviors, we com-

pute their dissimilarity for subsequent behavior classification. We consider a graph- 
based dissimilarity measurement. For two graphs G1 = (V1, E1, M1) and G2 = (V2, E2, M2) 
where M1 and M2 are non-negative, we define their dissimilarity by 

1 2

1 2

( , )

1 2

( , )

( , )
( , ) 1 ,

( , )
u v E E

u v E E

I u v
D

U u v
 

 

 



G G  (2) 
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Algorithm 2: MDST (Maximum Directed Spanning Tree) 
 

Input: A graph G(V, E, M) 
Output: A refined graph G  (V, E, M) without shortcuts 
begin 
 E; 
 sort the edge E into non-increasing order according to M; 
 foreach (i, j)E do 
  if there exists no (directed) path from i to j in E then 
   EE{(i, j)}; 
  end 
 end 
 Mi,j  Mi,j if (i, j)E or Mu,v  0 if (i, j)E      
 return G = (V, E, M) 

 end 

 

where 

I(u, v) = min{M1(u, v), M2(u, v)} and (3) 

U(u, v) = max{M1(u, v), M2(u, v)},  (4) 

record the minimum and maximum from two corresponding edges in two graphs, respec-
tively. We define the weight Mi(u, v) = 0 if (u, v) does not exist in graph Gi. That means 
when an edge exists in one graph but not the other, the edge weight will contribute none 
to the numerator. Clearly, we have 0 ≤ D(G1, G2) ≤ 1. The dissimilarity measure describes 
the dissimilarity between two behaviors. When two behaviors have the same transition 
graph, their dissimilarity (or distance) is equal to 0. On the contrary, if two behaviors are 
different, their distance is larger than 0, but no more than 1. 

3.5 Graph Embedding and Classification 

Given an event sequence, we partition the sequence into subsequences and extract 
threads from the subsequences. For each thread, we build a transition graph to describe 
the behavior. Afterwards, we compute the pairwise behavior dissimilarities. Based on the 
dissimilarities, in principle we can plug in any classifiers to classify an unlabeled behav-
ior graph into one with certain intention, or any clustering methods for behavior group-
ing. For instance, given an alert sequence, we can extract threads from the sequence and 
classify the corresponding thread graph as either normal or malicious one; and given user 
process data, we can classify the corresponding thread graph to be with a specific be-
havior or one owned by a particular user. 

We adopt a manifold learning method called Isomap [35] for thread transition graph 
visualization and representation. The map produced by Isomap provides the interpretable 
insight for further investigation for domain experts; also, it may enhance the performance 
of graph classification. As a purpose of evaluation, we conduct a SVM [36], or more 
specifically smooth SVM [37] as the classification method to demonstrate how effective 
the proposed method is given the result from behavior dissimilarity computation fol-
lowed by Isomap. 
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4. THE DATA SET 

We use two types of data sets for the evaluation: a network-based data set and a 
host-based data set to demonstrate how effective the proposed method is. The network 
data includes alert sequences generated by an IDS. Basically we tend to use as little pay-
load information as possible to detect intrusions due to the privacy issue. The design is to 
allow easy deployment of the proposed system to clients who do want a high standard of 
privacy protection. The network-based data set is a private, real-world data set collected 
from one of the sensors at Acer1 eDC (Acer e-Enabling Data Center). The host-based 
data set is the one for monitoring processes executed on desktop computers, a self-col- 
lected data set. Table 1 summarizes the data statistics of the focused data sets. 

 

Table 1. Table 1. Data statistics. The labels in the Acer07 dataset show whether each 
alert event is a true alert or false one; and the labels of User Process denote 
who executes the processes. 

Dataset Duration Event No. Event Type No. Labels 
Acer07 Aug. 30~Sep. 7, ‘07 302433 15 2 

Process10 Mar. 9~10, ‘10 1265 195 4 
 

4.1 Network-based Data 

The first data set used to evaluate the proposed method is the Acer eDC 2007 da-
taset (Acer07). It is a real-word data set, comprises of alerts generated for inside packets 
collected from August 31 to September 7, 2007, from Acer eDC (Acer e-Enabling Data 
Center). Other than the alert information, we obtained the ground truth of attack labels 
(attack or non-attack/benign) that were identified during the data collection period by the 
system administrators at Acer following a complete analysis process and the issue of 
anomaly tickets to the monitored organizations. 

The data format for the network-based data includes the record ID, when the attack 
(or normal behavior) occurred, the source and destination IP addresses of the attack (or 
normal behavior) and its alert type. We use only the alert type as the input for our system. 
In some occasions, we adopt the IP addresses, as the spatial information for the sequence 
partition procedure. It is also compared to the procedure when no IP addresses have been 
used in the partition. 

4.2 Host-based Data 

The real large-scale data for host-based intrusion detection with interleaved events 
such as the event data for host-based intrusion detection in a resource-sharing PaaS en-
vironment is not trivial to acquire. Moreover, we hardly know what the real identities 
behind the scene for the PaaS users even the raw event data can be acquired. Instead, we 
collected a lab-scale data called Process10 that consists of user processes from several 
lab members and assume the user processes can represent certain user behaviors in a 
period of time. We simulate the process data from real PaaS environment by collecting 
process data from several hosts, mixing them according to time stamps, and removing 
the original host information afterwards for analysis. In this case, we have a highly in-
terleaved sequence for analysis without the users’ identity and hopefully, we can still 
pick up the patterns from different user behaviors. 

We use a tool to monitor user processes on hosts. According to the Microsoft De-

1 http://www.acer-group.com/public/The Group/overview.htm 
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veloper Network (MSDN) [38], the .NET framework provides us the Process class to 
access the local and remote processes and we can start or stop the system process re-
cording when necessary. We use some class properties to collect the process data, listed 
as follows, 

 The StartTime: The time when the process is started. 
 The HasExited: Indicating whether or not a specific process has been terminated. 
 The ProcessName: The process identity. 

In the .NET framework, the program checks the executed processes and records the start 
time of the processes. Only the process type is used as the input for our analysis. The rest 
data are used for various comparisons in our evaluation. 

5. EXPERIMENT 

In this section we evaluate the proposed method. We test how effective the pro-
posed method can help to detect intrusions given network alert data or host-based pro-
cess data. We also check carefully how well the thread transition graphs can summarize 
the correlations between each pair of event types. Based on the evaluation, for net-
work-based data, we can use the thread transition graphs to describe malicious or normal 
behaviors and the graph-based labeling is effective to differentiate the true alerts (associ-
ated with attack behaviors) from false alerts (associated with normal behaviors). For 
host-based data, the graphs can describe users’ intentions when they use computers or 
cloud-based services. 

5.1 Experimental Setting 

The correlation window size Wc is used to decide how far the (direct) event correla-
tions still exist in a sequence. In principle, a larger Wc can catch more correlations, but at 
the same time give us more unwanted pairwise event counts. On the other hand, setting a 
large random link threshold  may be able to remove those unwanted counts. In the ex-
periments, for each fixed choice of Wc, we set q by searching the best choice from  = 
0.1 to  = 0.9 in the ATM algorithm to see which combination can give us the best per-
formance. We set the scenario window size Ws to be 0.5 to 1 hour. The number of 
neighbors used for Isomap is 4 for all the experiments. The intrinsic dimensionality of 
Isomap, i.e., the dimensionality after Isomap is set to be 15 at all cases for simplicity. We 
also give the result in 2-D for the purpose of visualization. All the parameters used in 
this work are in shown in Table 2. 

To evaluate the proposed method, we separate the data into the training part and test 
part, as shown in Table 2. Note that all the event threads are transformed into graphs, and 
the prediction to be a behavior of certain type is all graph-based in this work. We con-
struct the thread transition graphs and label them as true or false based on the individual 
event labels in the original thread. For the network data, as a conservative way, a graph 
is called malicious if any of the alerts in the thread is labeled as attack (positive); other-
wise, we label the graph as normal (negative). For the process data, we call a graph to be 
with a certain label according to the majority of identities in the thread. Some graph sta-
tistics are shown in Table 3. 
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Table 2. Parameter settings and the size of training/test sets. 
 Ws Wc KIso Dim. Training Test 

Acer07 0.5 hr 2-11 4 15 Aug. 30~Sep. 6 Sep. 7 
Process10 1 hr 4 4 15 Mar. 9 Mar. 10 

 

Table 3. Thread transition graph statistics. (a) the number of graph vertices for Acer07, 
and (b) the size of the training and test sets for both of the Acer07 & Process10 
datasets. The size of training and test sets is not fully controlled by us but de-
cided by the training and test periods (Table 2). 

                 (a)                                     (b) 
 Label Max Min Avg. Std.  #of training graphs #of test graphs 

Acer07 Normal 13 3 7.20 2.50 Acer07 127 23 
 Attack 3 1 1.68 0.60 Process10 16 27 

 

After the classification by SSVM, we provide several metrics to evaluate the pro-
posed method. We compute the precision P = TP/(TP + FP) and the recall R = TP/(TP + 

FN), where TP is the number of true positives which represents the number of true at-
tacks that are detected, FP is the number of false positives, and FN is the number of false 
negatives. Also, we compute F-score by F = 2PR/(P + R), which should give a fair com-
parison even the data is unbalanced, i.e., having a large portion data of one kind or so 
(such as the Acer07 dataset). For host-based data, we want to verify which person owns 
the behavior, given some pre-assigned identity. In other words, if there are n users in the 
dataset, we do (n

2) trials and compute the average result for evaluation. That is, we have 
one as the genuine user and the other as the unauthorized user in each trial. 

5.2 User Behavior Extraction on Real Data 

We study the real-world data sets and demonstrate the thread transition graphs that 
are produced by the ATM algorithm for the data sets. First, we show a network-based 
user behavior graph to confirm a case of multi-step attack. It is followed by an example 
of host-based graph to confirm a Java programming behavior. The results are shown in 
Fig. 4 (a), for the network data; and in (b), for the host-based process data. In (a), we 
capture various multi-step attacks from the DARPA99 dataset, while in (b), we observe 
that a user focuses on Java programming, editing, compiling and running the code. 

 
                      (a)                                      (b) 
Fig. 4. (a) Given the DARPA99 dataset, the multi-step attack captured by the ATM algorithm, and 

(b) given the Process10 dataset, the user behavior captured by the ATM algorithm. 
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5.3 Quantitative Analysis 
 
To further confirm how effective the proposed method is, we design some experi-

ments for quantitative analysis. For network data, we demonstrate how the proposed 
method can help for intrusion detection; and for host-based data, we show the proposed 
method can detect account misuse, such as stealing user privilege from one with normal 
authority to with root authority.  

5.3.1 Sensitivity analysis 

First we run some sensitivity analysis on the proposed method and discuss how dif-
ferent choices of the parameters can influence the performance. Based on the ATM algo-
rithm, we use the correlation window size Wc to adjust how far between two events that 
we still consider them as possible correlated events. Basically, a larger Wc includes more 
true correlations, but at the same time some random correlations are also covered. In real 
cases, we should tune an appropriate window size according to different environments. 
In Table 4, a real-world dataset Acer07 is considered to have highly interleaved data (a 
large number of threads), than the lab-produced dataset DARPA99. Therefore, we sup-
pose to use a larger Wc for the Acer07 dataset than for the DARPA99 dataset. The table 
shows exactly the result. For the Acer07 dataset, the best result is when we choose Wc = 
9 to 10; however, for the DARPA99 dataset, we should choose Wc = 4 to obtain the best 
result. 

Table 4. The classification result based on different choices of correlation window size 
(Wc = 2 to 11) for the Acer07 and DARPA99 datasets. In terms of F-score, we 
can obtain the best result when Wc = 9 or 10 for the Acer07 dataset and Wc = 4 
for the DARPA99 dataset. A larger correlation window is necessary for the 
Acer07 dataset implies that Acer07 contains more highly interleaved events 
than the DARPA99 dataset. 

Acer07 DARPA99
Wc F-score P R Training  Test

                   Err.    Err. 
F-score P R Training  Test 
                   Err.    Err. 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.36 1.00 0.22  0.14  0.31
0.29 0.53 0.21   0.15   0.44 
0.44 0.66 0.33   0.18   0.34 
0.38 0.66 0.26   0.08   0.38 
0.40 1.00 0.25   0.11   0.34 
0.35 0.59 0.25   0.13   0.40 
0.50 0.75 0.37   0.17   0.34 
0.76 0.71 0.83   0.16   0.18 
0.76 0.71 0.83   0.10   0.19 
0.57 0.66 0.50  0.13  0.31

0.67 0.80 0.58   0.78   0.10 
0.66 0.68 0.64   0.75   0.10 
0.73 0.66 0.82   0.15   0.23 
0.63 0.78 0.52   0.10   0.24 
0.61 0.80 0.50   0.16   0.24 
0.63 0.73 0.55   0.09   0.25 
0.65 0.79 0.55   0.05   0.23 
0.57 0.72 0.47   0.18   0.27 
0.51 0.70 0.41   0.06   0.30 
0.41 0.91 0.26  0.10   0.30 

 

5.3.2 Effectiveness of ATM and graph-based dissimilarity measure 
 
In network-based data, such as an alert sequence generated by IDS, our goal is to 

separate true alerts from false alerts. In our case, we extract threads from the sequence, 
and transform each thread to a transition graph. Based on the transition graphs and the 
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proposed graph-based dissimilarity measure (Eq. 2), we can distinguish the graphs of 
normal behavior (called normal graphs) from the graphs with malicious intention in-
volved (called attack graphs). We adopt SSVM [37] to classify graphs into normal ones, 
or ones with attacks involved. As a result, the proposed ATM method works better than 
the previous approach that has been applied to the same dataset. In Table 4, we observe 
that the proposed ATM achieves the F-measure up to 0.76 (Wc = 9 or 10), which is supe-
rior to that from the IGS (Intrinsic Graphical Signature) approach proposed by Pao et al. 
[39]. Note that the comparison is hard to be 100% fair because the evaluation for IGS is 
not from the graph-based but sequence-based metrics. 

As a comparison to another approach to directly dealing with interleaved events, we 
compare the proposed method to a naïve benchmark approach from IP filtering, i.e., us-
ing the IP addresses (the spatial information, see Subsub-Section 3.2.2) to extract threads 
from a sequence, then build transition graphs for classification. As a result, the ATM 
algorithm gives better results than those from the IP filtering (Table 5). Our explanation 
is that IP information is informative to catch the network activities; however, it is not 
enough because some IP information can be faked or dynamic, therefore introduces dif-
ficulty for us to spot the intruders based only on IP information. To take a look of the 
visualized result, Fig. 5 shows the 2-D plots after Isomap. Each instance in the plots rep-
resents either a normal graph (circle sign), or attack graph (cross sign). Again, based on 
the ATM method, we can obtain better separation between two groups of instances than 
the IP filtering method. Note that the classification is not necessarily done in this 2-D 
space, but in the space with intrinsic dimensionality (equal to 15 in this case, see Table 2). 

 
Table 5. Given the Acer07 dataset, The evaluation of the proposed ATM algorithm and 

the IP filtering method based on various evaluation metrics: F-score, precision, 
recall, and error rates. The bold-face numbers indicate the best result in the 
category. The ATM algorithm gives better result than the IP filtering method 
at all times. 

ATM IP filtering 
Threshold (θ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8   
F-score 0.75 0.76 0.69 0.54 0.39 0.38 0.32 0.35 0.48 
Precision 0.82 0.75 0.80 0.72 0.44 0.34 0.27 0.33 0.64 
Recall 0.70 0.78 0.61 0.43 0.36 0.44 0.40 0.41 0.38 
Training Err. 0.03 0.02 0.03 0.05 0.13 0.16 0.23 0.28 0.04 
Test Err. 0.04 0.03 0.04 0.06 0.14 0.17 0.24 0.29 0.05 

 

  
              (a) ATM ( = 0.2)                          (b) IP filtering 
Fig. 5. Given the Acer07 dataset, the 2-D graph-based plots based on Isomap for attack and normal 

graphs. In (a), we use the ATM algorithm to build the graphs, while in (b), we use IP in-
formation to build the graphs. The plot produced by the ATM algorithm clearly gives better 
separation between the positive (attack) and negative (normal) instances/graphs. 
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For the host-based data which consists of process sequences, the proposed method 
can help us to verify the user identity according to the transition graphs. In the experi-
ment, we run the test for each pair of users to see if the behavior extracted from the tran-
sition graph can confirm the given identity. That is, we assume different users may have 
different behavior patterns. Fig. 6 (a) shows the 2-D Isomap plot of all user behaviors. 
Each point denotes a graph which describes user behavior of one whole hour. The clear 
separation between different users’ behavior implies that different users indeed have 
different behavioral patterns. The only overlapped instances exist on the bottom-right 
corner, where different users all involve in similar activities such as system programming 
or in a remote desktop. Table 6 shows the authentication result by SSVM. It gives 6% 
average test error in the user authentication/verification task. That means that 6% of the 
true account users can be mis-judged as intruders, or intruders mis-judged as the true 
account owners. 
 

  
                    (a)                                   (b)           match% 
Fig. 6. (a) Given the Process10 dataset, the 2-D Isomap plot for four user behaviors. Each instance 

represents a transition graph (or a thread) which describes the process transitions and there- 
fore may reveal user behavior. We observe clear separation between different users. The in-
stances on the bottom-right area belong to the remote desktop or system programming ac-
tivities. That is the only overlapping between those users. There are some moments that we 
can not easily tell the difference between different users. For instance, when a host is just 
started, only system processes are running and we have no hint to tell who uses the host re-
sources. (b) The comparison between the graphs produced by the ATM algorithm and the 
graphs produced by the IP filtering method, given the DARPA99 dataset. The x-axis shows 
different values of , as the lower bound to decide two graphs are similar to each other. 

 
Table 6. The summary of verification result based on the ATM algorithm and the pro-

posed dissimilarity measure. The correlation window size is set to 4. 
 ATM

Data Set Training Error Test Error
User Process 2010 (4 labels) 0.11 0.06

 

5.3.3 The similarity between the graphs generated by the ATM and IP filtering methods 

In the last part of our experiments, we would like to measure the similarity between 
the graphs generated by the ATM algorithm and the graphs generated by the IP filtering 
method2. We use a similarity function defined below to measure the similarity between a 
graph generated by ATM GATM(V, EATM) and a graph generated by IP filtering GIP(V, EIP)  

Attack 
Normal 

DARPA 1999SimilarityUser Process Dataset 2010 User A 
User B 
User C 
User D 

2 We conduct the experiment on the DARPA99 dataset because the IP information seems reliable in the set. 
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as 

IPATM

IPATMATM IP

| |
| |Sim( , ) ,E E
E E


G G and we define the similarity of the result produced by the  

ATM method and the result produced by the IP filtering as Similarity = 
IP

IPATM ) )#(Sim( ,
# ,G G
G  

where the parameter a is to determine whether two graphs are similar. In Fig. 6 (b), we 
show the histogram of similarity with different a for the DARPA99 dataset. Based on the 
result, two sets of graphs have higher similarity in attack graphs than in normal graphs. 
About 80% of the attack graphs from the proposed ATM approach and the IP filtering 
approach have close to 80% shared edges. On the other hand, the dissimilarity between 
two versions of normal graphs looks not so important because the normal graphs just 
describe the transitions between false alerts. In summary, we believe that the ATM 
algorithm can produce reliable attack graphs given their similarity to the attack graphs 
obtained from IP filtering by using the DARPA99 dataset, a dataset seems to be with 
reliable IP information.  

6. CONCLUSION 

In this work, we proposed a unified approach for intrusion detection given net-
work-based and host-based data which contain highly interleaved events. The proposed 
ATM algorithm can be used to extract threads of individual behavior from an interleaved 
event sequence. We then combined the ATM algorithm and a graph-based dissimilarity 
measure to separate different behaviors. In the evaluation, we have shown that the pro-
posed method performs well in terms of F-scores on the intrusion detection given net-
work-based or host-based data. Especially, the proposed ATM approach outperforms the 
existing methods such as Intrinsic Graphical Signature (IGS) based approach and IP fil-
tering. The Isomap-projected visualization also shows that the ATM algorithm well sep-
arates graphs representing different behaviors, for both network-based data and host- 
based data. To focus on the graphs that are generated by the ATM algorithm, we have 
about 80% similarity in about 80% of all attack graphs, to the ones that are generated by 
IP addresses. Overall, we believe that the proposed approach can provide a new direction 
to the intrusion detection, user authentication and other related research topics. 
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