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By ensuring well-developed complex big data platform architectures, data engineers 

provide data scientists and analysts infrastructure with computational and storage re-
sources to perform their research. Based on such supports, data scientists are provided an 
opportunity to focus on their domain problems and design the required intelligent mod-
ules (i.e., prepare the data; select, train, and tune the machine-learning modules; and val-
idate the results). However, there are still gaps between system engineering and data sci-
entist/engineering teams. Generally, system engineers have limited knowledge on the ap-
plication domains and the purposes of an analytical program. On the contrary, both data 
scientists and engineers are usually unfamiliar with the configuration of a computational 
system, file system, and database. However, the performance of an application can be af-
fected by a system’s configuration, and the data scientists and engineers have little in-
formation and knowledge about which of the system’s properties can affect the applica-
tion’s performance. As a typical example, for Internet-scale applications that have thou-
sands of computing nodes or billions of Internet of Things devices, even a slight im-
provement may have an enormous influence on energy management and environmental 
protection issues. To bridge the gap between system engineering and data scientist/en- 
gineering teams, we proposed the concept of a configuration layer based on a big data 
platform, Hadoop. We built a configuration tuner, BigExplorer, to collect and preprocess 
data. Furthermore, we also created golden configurations for performance improvement. 
Based on the processed data, we used a semi-automatic feature engineering technique to 
provide more features for data engineers and developed the performance model using 
three different machine learning algorithms (i.e., random forest, gradient boosting ma-
chine, and support vector machine). Using the commonly used benchmarks of Word-
Count, TeraSort, and Pig workloads, our configuration tuner achieved a significant per-
formance improvement of 28%-51% for different workloads than using the rule-of- 
thumb configuration.    
 
Keywords: big data platform, machine learning, configuration optimization, learning by 
design, algorithms 
 
 

1. INTRODUCTION 
 

With the emergence of big data and machine learning, smart applications, such as 
Go with alphaGo [1], healthcare with Watson [2], and virtual voice-controlled assistants 
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such as Siri [2], are becoming part of our daily lives. Applications with human-like intel-
ligence have shown extraordinary achievement in three important aspects: data, algo-
rithms, and platforms. Data generated from social media, search history, and system logs 
not only make diverse applications practical but also make machine learning (i.e., algo-
rithms) more robust and accurate for these applications. 

In addition to data and algorithms, the selection of a platform plays an important 
role in such applications. Currently, there are many platform architectures (such as Ha-
doop [3], Spark [4], Flink [5], and H2O [5]) for different application requirements (such 
as high-volume data, and low-latency and high-frequency iteration data processing). 

Because platform architectures have become more complicated, knowledge workers 
(such as data scientists, data engineers, and system engineers) perform their tasks ac-
cording to a function-based division of labor. For instance, system engineers provide the 
infrastructure with computation and storage resources for data scientists and engineers. 
With their generous support, data engineers can focus on data pre-processing, whereas 
data scientists can focus on their domain problems and on designing intelligent modules 
(such as feature engineering, machine-learning module selection, and result validation). 

However, for big data platforms, there are gaps among system engineering, data en-
gineering, and data scientist teams. System engineers do not have adequate knowledge of 
the application domains and the purposes of an analytical program, while data scientists 
and engineers do not know the configuration of the computation and file systems as well 
as the database. Certain application performance issues are related to system configura-
tions. Generally, data scientists and data engineers do not have adequate information and 
knowledge regarding system properties. For instance, certain workloads might perform 
better (such as low latency or high throughput) if the platform system is adjusted to the 
proper configuration. Alternatively, a workload might crash because of misconfigura-
tion [6]. Using results obtained from our cluster, we observed the same workload with 
different configurations and discovered that certain workloads became strugglers (an 
execution time of > 1,000,000s) because of a misunderstanding of configuration proper-
ties. Fig. 1 shows such a situation. 

 

 
Fig. 1. Execution time for different configurations. 

Fig. 2 shows an overview of a big data platform with a configuration layer. Unlike 
traditional architectures, the configuration layer is added to fill the gap between the data 
engineering and data scientist teams. For example, the configuration layer can provide 
better parameters for various analytical applications and make the system learnable for 
performance improvement. In a learnable system, this is a key component as to be ex-
plained in detail on our system, BigExplorer, in Section 3. 
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Fig. 2. The overview of a big data platform with configuration layer. 

 

In a complex platform, there are often many optimization targets such as memory 
usage, disk storage, network bandwidth, and workload execution time. For smart appli-
cations such as gaming or voice-controlled assistants, the environment is often in a cloud 
or cluster. This indicates that the application needs to use on-demand hardware resources; 
therefore, the response time is critical for such applications. 

To validate the abovementioned claim using execution time optimization as an ex-
ample, we collected 648 samples (Fig. 3) running the same analytical workload with dif-
ferent configurations (nine properties) in our cluster. Using the same workload, we ob-
served that 17.90% of the configurations yielded better performance in terms of execu-
tion time than default configurations [1] (dotted line). Interestingly, for Internet-scale 
applications that have thousands of computing nodes or billions of Internet of Things 
devices, it is reported that even a slight improvement could have an enormous influence 
on energy management and environmental protection issues. For instance, to save energy, 
Google [7] and Facebook [8] manage their data centers using a data-driven approach. 

 

 
Fig. 3. Execution times of the sample workloads. 

 
Motivated from these results, we separated the configuration layer and built the con- 

figuration tuner to generate parameters for learning by design. The configuration tuner is 
a key learning component of big data platforms because it collects the observable and 
tunable data for training, builds machine learning models for simulation, and optimizes 
the simulation results for configuration tuning.  
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2. BACKGROUND 

In this section, we present a technical overview of the selected big data platform and 
benchmarks. Furthermore, we introduce relevant machine learning techniques and com-
putational optimization methods. 

2.1 Big Data Platform  

The characteristics of big data such as volume, velocity, and variety, pose new 
challenges, problems, and opportunities for the research community. For the high-vol- 
ume characteristic, data engineers use innovative system architectures to improve the 
system throughput. For the high-velocity characteristic, data engineers leverage special 
purpose software architectures, such as Storm [9] or Spark Streaming [10], to address 
possible challenges. For the high-variety characteristic, data are obtained from multiple 
sources with different formats. Data engineers collect data using new-generation data-
base systems (such as Mongo DB [11] or Titan [10]), and data scientists analyze differ-
ent datasets to gain insight.  

Hadoop is the most popular big data platform that has a complete ecosystem [12], 
including a distributed filesystem, distributed programming, NoSQL/NewSQL databases, 
data ingestion, job scheduling, security, and machine learning. Hadoop can process lar- 
ge-scale datasets across a cluster of distributed machines using the MapReduce pro-
gramming model. In this study, we used Hadoop to re-verify the concept of our proposed 
configuration layer.  

2.2 Resource Management Layer 

In an earlier version of Hadoop (i.e., version 0.23), the resource management design 
was closely coupled with the computational model, thus causing poor scalability [13]. To 
ameliorate the situation, both YARN [14] and Mesos [15] were proposed. 

Note that YARN incorporates a resource management center that coordinates vari-
ous applications and handles Hadoop system resources with node manager agents that 
monitor the operations (such as data processing) of individual nodes within the cluster. 
Among multiple tenants, the resource manager monitors resource usage and node status 
by separating the central resource allocator in the role of JobTracker. Note that this re-
sponsibility is delegated to the master node that coordinates the logical plan of a specific 
job by demanding resources from the resource manager, thus generating a physical plan 
from the resources it receives. 

Mesos is a lean management layer that allows various cluster computing frame-
works to efficiently share resources. Mesos includes two design components: a fine- 
grained sharing model and a distributed scheduling mechanism, known as resource offers. 
Using these components, Mesos can achieve high utilization, responsibility, and scalabil-
ity [15].  

2.3 Big Data Benchmarks 

There are many well-known big data benchmarks such as TPC-C [16], HiBench [17], 
Yahoo! Cloud Serving Benchmark (YCSB) [18], and Cloudsuite [19]. The purpose of 
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having distinct big data benchmarks is to reflect real-life use cases (such as data analytics, 
media streaming, data serving, and data searching) and involve numerous types of im-
plementation options (such as latency, throughput, scaling, and resource usage). Howev-
er, we focused on the configuration effects on various applications. We selected the 
Word Count and TeraSort benchmarks from HiBench because of their different charac-
teristics in terms of resource requirements. Note that Word Count is a CPU-bound bench- 
mark and TeraSort is mostly I/O-bound [20]. In addition to the TeraSort and Word Count 
benchmarks, we used the Business Intelligence analytic workload (i.e., Pig scripts [21]) 
for complicated cases. 

2.4 Machine Learning 

With the emergence of big data, machine learning can now play important roles for 
solving real-world problems. Typically, depending on the properties of their feedback to 
learning problems, machine learning algorithms are classified into four categories. 

 
1. Supervised learning  

The feedback is well-defined and can be obtained clearly from a learning system. 
2. Unsupervised learning 

The feedback is not well-defined and cannot be obtained from a learning system. 
3. Reinforcement learning  

The feedback can be presented as a specific goal without any explicit feedback. 
4. Semi-supervised learning 

The feedback is well-defined, and some feedback can be obtained from a learning 
system. Note that a learning algorithm might be intended to obtain the desired feed-
back by interactively querying the information source. 

 
Our domain problem is a supervised learning example of the regression type be-

cause the feedback data (execution times) are well defined. 

2.5 Computational Optimization 

Optimization is aimed at selecting the best element (i.e., maximum or minimum 
value) concerning specified constraints in the given data space. There are various com-
putational optimization techniques, such as iterative methods (Newton’s method [22, 
23]), gradient descent [24], and heuristics (evolutionary algorithms [25], genetic algo-
rithms [26], hill climbing [27], and particle swarm optimization (PSO) [28]). We used 
PSO as our optimization method in this study because it can search huge spaces of can-
didate solutions based on few assumptions regarding the problem [29]. 

3. SYSTEM DESIGN 

In this section, we introduce our configuration tuner design. In Section 3.1, we will 
discuss the overview of system design. Subsequently, we introduce data management, 
performance model, and configuration optimization designs in Sections 3.2, 3.3, and 3.4, 
respectively. 
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3.1 Overview of System Design 

We generalize the platform parameter tuning problem as follows. Given a platform 
with parameters and a corresponding performance index, we will produce a set of bet-
ter-fine-tuned configurations on the given platform. For data gathering and as a proof of 
concept, we used a big data platform (Hadoop) as a specific example. From abstract rep-
resentations to a big data platform, a platform behavior depends on a workload set W 
(such as input data, and source or binary programs to process the data), as shown in Eq. 
(1), and a parameter set P (e.g., hardware and software parameters), as shown in Eq. (2). 
Note that the HiBench [17] benchmark includes seven different purposes of programs 
such as Sort, WordCount, TeraSort, PageRank, K-means, Bayes classification, and Index. 
The other commonly-used benchmark for big data applications BigDataBench [30], co-
vers six applications with the different program sets such as micro utilities (sort, grep, 
WordCount, and BFS), datastore operations (read, write, and scan), relational query (i.e., 
select, aggregate, and join), search engine (index and PageRank), social network (i.e., K- 
means and connected components), and E-commerce (collaborative filtering and naïve 
Bayes).  

Workload set W = {w1, w2, w3, …, wi} (1) 

Parameter set P = {p1, p2, p3, …, pj} (2) 

However, because it is difficult to understand and represent a platform behavior S, 
system engineers use a representative performance index set PX (including throughput, 
response time, latency, utilization, and saturation) to describe system behavior, as shown 
in Eqs. (3) and (4). 

S  PX (3) 

Performance Index set PX = {px1, px2, …, pxk} (4) 

In a learning system, we assume that the performance index behavior PX can be 
represented by a function F of the given parameter set P and workload W, as shown in 
Eq. (5). Then, we can employ a set of machine learning algorithms MFL to determine 
the best algorithm that minimizes the error between the outcome of F and the outcome of 
MFL as shown in Eqs. (5) and (6). 

PX = F(W, P) (5) 

Machine-Learning Algorithm set MFL = {a1, a2, a3, …, ak} (6) 

S  PX = MFLopt(W, P) (7) 

In the next section, we present the Hadoop platform as an example (Fig. 4). We 
used a performance index PX to represent the system behavior S, and we assumed PX 
(such as execution time or resource usage) could be represented by an unknown function 
F, which is related to the given parameter set P (such as configuration of MapReduce or 
HDFS) and workload W (such as TeraSort and WordCount). Based on a collection of 
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parameter set and workload, we evaluated all machine learning algorithms in MFL and 
selected the best algorithm that minimizes the error between the outcome of F and the 
outcome of MFL.        

platformworkload
Performance

index

parameters

 
Fig. 4. Performance model of the platform system. 

 
The system process is described in the following steps: 

1. Collecting and managing the platform data 
Platform data such as parameters, workload, and performance index can be obtained 
from the log or plug-in modules. We collected the data from distributed nodes into a 
unified data store. By doing so, the collected data quality can be measured by query-
ing with missing value, outlier, and irregular cardinality filters. 

2. Building and testing the performance model 
By unifying the data storage, we selected the target performance index and parameters 
as the training features based on their quality. Furthermore, we built the performance 
model using different machine learning algorithms with cross-validation [31] to ease 
the overfitting issue [32]. 

3. Generating and verifying the parameters  
Given the performance model, we used optimization technology (such as metaheuris-
tics) that can sufficiently provide good parameters to solve the platform perfor-
mance optimization problem. 

workload

performance index

sensors

data 
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filters

parameters

target 
performance 

Index
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data

 
Fig. 5. Data flow for data management. 

 
3.2 Data Management Design 

 
In the data management design stage (Fig. 5), there are two principal issues: (1) 

What type of data can be collected? and (2) How can the data quality be improved? Us-
ing extract-transform-load (ETL) tools, it is easy to aggregate data from distributed 
nodes into a unified data store for data collection. However, certain raw data may not be 
sufficient for representing the system’s performance, thereby possibly leading to sam-
pling bias [33]. To overcome this limitation, system engineers deploy more sensors for 
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gathering new features using the platform’s plug-in/add-on functions. Note that more 
sensors can not only be used to collect more data but also to create an impact on the sys-
tem’s performance. For instance, for a cluster’s performance, if the experimental raw 
data in Table 1 only contains features such as maximum memory allocation (i.e., all 
cluster physical memory bytes), it is not sufficient to represent the system performance 
for a fine-grained perspective. For the fine-grained perspective, system engineers deploy 
sensors for gathering new features such as run-time process memory usage (i.e., all 
map-reduce framework physical memory bytes and all map-reduce framework virtual 
memory bytes). Fig. 6 shows the lines for the three different features as a log axis scatter 
diagram. We determined that maximum memory allocation (i.e., all cluster physical 
memory bytes) is a stable line without variation and features of run-time process memory 
usage (i.e., all map-reduce framework physical memory bytes and all map-reduce frame- 
work virtual memory bytes) are more diverse compared to the actual run-time memory 
usage. 
 

Table 1. Features of the cluster memory. 
All map reduce framework 

Physical memory bytes 
All map reduce framework 

Virtual memory bytes 
All cluster physical 

memory bytes 
305303552 1397387264 305488396288 
326262784 1382666240 305488396288 
329830400 1382506496 305488396288 
347770880 1382518784 305488396288 
348684288 1383247872 305488396288 
349093888 1408602112 305488396288 
349839360 1383165952 305488396288 
353980416 1405599744 305488396288 

 

 
Fig. 6. Different features for cluster memory.     Fig. 7. Execution time for outliner. 

 

For improving data quality, we considered the logical cases of invalid data such as 
missing value, outlier, and irregular cardinality, and designed some filters for those cases 
when the data are used for analytics.  
 
 Outliner Case 

As shown in Fig. 7, the outliner case takes > 30,000,000s to complete the task. If we 
use the record for an experiment, it could affect the statistic properties of other normal 
samples. For such cases, the deletion filter is often employed. 
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 Missing Value Case  
As shown in Fig. 7, if certain missing value cases occurred, we often design filters 

such as mean substitution, regression, or clustering to impute the value.  
Furthermore, domain knowledge such as system specifications and physical rules 

must be considered for cases involving an in-depth analysis. For instance, if the data for 
maximum memory allocation is missing, it could be found from another history log. Us-
ing logical and domain filters, data can be exported as the target performance index and 
training features for performance model building. 

 
3.3 Performance Model Design 

 
Fig. 8 shows the performance model design workflow, including learning algorithm 

selection, feature selection, and tuning of algorithm parameters. 
 

Learning Algorithms
Selection

Features 
Selection

Algorithm 
Parameters
Tuning

 
Fig. 8. Performance model design workflow. 

 

 Learning Algorithm Selection 
A learning algorithm that considers an approximation function to a system model 

requires different complexity, hyperparameters, and theories for the analyst’s selection. 
At this stage, we provide suggestions for different purposes. 
 
 Problem view 

A system problem can be a state decision (such as normal or abnormal) or system 
performance prediction (such as throughput, latency, and power consumption). Such a 
problem can be abstractly viewed as classification, clustering, regression, or dimension-
ality reduction; therefore, it can be solved using the proposed algorithms.  
 
 Explainable for human understanding 

The other important factor in selecting a candidate learning algorithm is its ex-
plainability or ability to be easily understood by a human being. Some algorithms resem-
ble black boxes with good performance (such as support vector machines (SVMs) or 
deep learning) and use hyperparameters (such as soft margin for SVMs and number of 
layers and number of epochs for deep learning). Other algorithms, such as regression, 
decision trees, k-nearest neighbors, k-means, and sequence pattern mining, are easy to 
understand and possess readily explainable properties.  
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 Algorithm theory view 
In machine learning, the No-Free-Lunch (NFL) theorem indicates that, if there are 

no prior assumptions, all algorithms perform equally. However, data scientists’ attempts 
to determine a suitable learning algorithm can lead to extraneous background infor-
mation such as assumptions and related work. This background information can suggest 
many learning algorithms, e.g., rule-based, entropy-based, probability-based, error-based, 
metaheuristic, or neural network (NN) algorithms. 
 
 Feature Selection 

For platform parameter tuning, feature selection (i.e., variable or attribute selection) 
is an important part of the analytical process. Feature selection involves selecting the 
most dominant features from the raw feature set for the learning algorithm to ensure bet-
ter performance, cost effectiveness, and understandability [33], as well as to remove re-
dundant and irrelevant features. In general, there are three types of feature selection al-
gorithms: filter, wrapper, and embedded. 

Without using machine learning algorithms, filter methods use a statistical measure 
(such as information gain, Chi-squared, or correlation coefficients) to obtain the feature 
score with the independent variable assumption. Note that features are selected to be 
retained or removed based on a score ranking. 

Unlike filter methods, wrapper methods incorporate a machine learning algorithm 
and use search techniques (such as best-first search, random hill-climbing, or forward 
and backward passes) in identifying the best feature combination set with a given predic-
tive model. Unlike filter and wrapper approaches, embedded methods combine the lear- 
ning algorithm and feature selection to perform feature selection while executing learn-
ing algorithms. The typical embedded methods are tree-based algorithms (such as CART, 
C4.5, and random forest) and regularization models with feature weights (such as Lasso 
and Elastic Net). 
 
 Model Tuning 

After the evaluation matrix (such as RMSE, AE, and ROC) is selected to represent 
how a model performs on training and testing data, the next key step is model tuning to 
improve the model and represent the original data without any bias. There are two typical 
approaches for model tuning: parameter-related and parameter-free. Parameters of the 
model (hyperparameters) such as learning rate, constraints, and weights must be tuned to 
minimize the predefined evaluation matrix on given training data using a grid, random, 
or gradient-based search and Bayesian-based or evolutionary optimization. To reduce 
model performance variability for overfitting or underfitting, we use regularization to 
produce reasonable solutions to ill-posed problems [34]. In addition to the original target 
function, regularization adds weight constraints for different norms (such as the L1- or 
L2-norm) to obtain better results. The L1-norm can retain important features but is un-
stable [35], while the L2-norm is more stable but not robust [36]. Dropout is a type of 
variant weight level regularization for NNs. It drops certain nodes and the related 
weights for these nodes in the training phase, resulting in the training of a subnetwork. 

Furthermore, parameter-free approaches focus on data. Note that cross-validation 
focuses on the data itself and adjusts the data partition for resampling, resulting in an 
effective approach when data collection is not high in terms of volume. Using the right 
problem of domain knowledge, data arguments use operations or transformations on data 



BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 479

to create new data representations without losing its essence. For instance, objects in 
image and video data must be identical when subjected to the rotation, resizing, and clip 
operations. Early stoppage is used to observe the error rate of training and testing data to 
select a suitable stopping point that helps avoid overfitting. The stopping condition is the 
beginning of increasing testing error when the training error starts to decrease [37]. 

After tuning, the model can be used for configuration optimization and the work-
flow can be re-executed if new data are available with new system components. 

3.4 Configuration Optimization 

The key concept of optimization is to identify suitable and available solutions of 
objective functions under specified constraints in predefined domains such as science, 
engineering, and management. Traditionally, mathematicians and scientists treat these 
types of problems as convex problems and use linear programming and gradient-based 
methods to solve them. However, real-world problems include many non-convex opti-
mization problems that mix different perspectives such as continuous and discrete, linear 
and nonlinear, and local and global. Determining whether an optimization problem is 
convex is an NP-hard problem. The strategy for solving non-convex problems is to relax 
the non-convex problem to a convex problem and leverage randomized techniques (such 
as stochastic optimization) for every sub-convex problem. 

When considering optimization problems from a configurational perspective, con-
figuration optimization involves selecting the best configuration in connection while 
considering constraints (such as workload properties, configuration parameters, and re-
source limitation) affecting the system model. In the previous step, we obtained the sys-
tem model, MFLopt(W, P), which can be used to select training data from a collection of 
data to represent the system behavior S, as shown in Eq. (7). 

For a given model F with fixed W, the parameter set could be discrete and nonlinear 
(such as memory size and max task), and their combination could be discrete. Therefore, 
the configuration optimization aim is to identify a feasible P with discrete and nonlinear 
constraints. Traditionally, these types of problems are NP-hard [38]. Metaheuristics [39] 
are techniques for obtaining a global optimization strategy with discrete and nonlinear 
properties. For complex learning procedures, they are efficient search approaches for 
exploring near-optimal solutions in the search space and adaptive strategies from simple 
local search procedures. They can be classified into two principal categories: single solu-
tion-based (such as trajectory methods, simulated annealing, Tabu search, GRASP 
methods, iterated local search, and guided local search) and population-based methods. 
Population-based metaheuristics can be used to generate a set (i.e., a population) of solu-
tions rather than a single solution. These approaches are inspired by natural phenomena 
such as Darwinian evolution and the social interaction of living creatures. For optimiza-
tion of the configuration tuner, we used PSO, which is based on swarm intelligence, in-
cluding multiple simple entities for executing uncomplicated tasks and interacting locally 
with one another and with the environment. 

4. SYSTEM IMPLEMENTATION 

BigExplorer was developed on a 2.7 GHz i7 CPU with 32 GB RAM machine and 
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Ubuntu 16.04 64-bit desktop edition and was written in Python 2.7. We employed the 
machine learning library scikit-learn 1.8 and the evolutionary optimization package py- 
swarm 0.6 [40]. Hadoop 2.6.0 was deployed with a 10-node cluster size with each node 
having 12 cores (2.4 GHz/core) and 128 GB RAM. Fig. 9 shows the architecture of Big- 
Explorer with its three modules. 
 
 Data collection module 

This module collects data from a big data platform (such as Hadoop), cleans the data 
(such as missing values or data formats), and stores the data as plain text in the file 
system. 

 Performance model module  
To build the performance prediction model, this module provides potential features for 
data scientists to select, use machine-learning algorithms with the training data, as well 
as store the model for the next stage. 

 Configuration optimization module 
This module leverages the optimization algorithm to generate parameters and then use 
them as inputs toward the performance simulator and obtain various simulation results. 
The parameter validator was used to select candidate parameters as the new configura-
tion and validate the simulation results. 

 

Data Collection
Module

Performance Model
Module

Cluster
(e.g., Hadoop)

Collector
Agent

Pre‐processorLogs

Data
Store

Feature
Management

Model 
Builder

Model
Store

Parameter
Generator

Performance 
Simulator

Parameter
Validator

Configuration Optimizing
Module

configurations

 
Fig. 9. BigExplorer architecture.  

 

4.1 Data Collection Module 
 
The data collection module has three components. Collector Agent collects logs 

from nodes in the cluster. For a Hadoop cluster environment, the agent collects the 
MapReduce workload log (i.e., job history), system log (i.e., YARN container execution 
history), and cluster configuration (i.e., config.xml). Both logs and configurations are 
stored in the data store with the workload information (such as application type and com- 
pletion time). The pre-processor rearranges the files on the data store, processes them 
using different filters (such as missing value, min–max, and invalid execution time filters) 
and saves the results in a plain text format. 

 
4.2 Performance Model Module 

 
The performance model module has three components. The feature management 
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component uses a random forest (RF) algorithm to provide potential features for data 
scientists. Based on the selected features, the model builder component divides the col-
lected data into training (70%) and testing (30%) sets for the machine learning algo-
rithms to build the performance model. The machine learning algorithms considered are 
as follows: 
 
 Random Forest 

RF [41], one of the algorithms widely used in big data competitions [27], is an en-
semble learning method that generates many independent decision trees for classification 
of tasks and fits them to assorted sub-samples of the data (i.e., bootstrap aggregating or 
bagging). To avoid the effects of over-fitting, it uses the averaging generalization error 
(such as out-of-bag error) to improve predictive accuracy. For regression problems, it 
outputs the average prediction of the trees rather than that of the class, as shown in Eq. (8) 
[42].  

1
1

ˆ ( ) ( )
BB

RF bB b
f x T x


      (8) 

 Gradient Boosting Machines (GBM) 
Gradient boosting machines (GBM) [43, 44], another algorithm that is extensively 

used in big data competitions [27], is an ensemble learning method that is based on bag-
ging technique. Unlike RF, gradient tree boosting sequentially builds sub-trees by opti-
mizing the loss function. To solve a regression problem, it fits a regression subtree to the 
negative gradient of the given loss function, as shown in Eq. (9) [42, 44].  

2

1
arg min ( ( ; ))

N

ii
g T x


 
       (9) 

 Support vector regression (SVR)  
SVMs [45] are used to solve various real-world problems (such as text and hyper-

text categorization, image segmentation, and hand-written characters) by building hyper-
planes according to a functional margin in high- or infinite-dimensional space. The best 
separation of the margin is the largest area that is closest to the training data surface of 
any class data. 

SVR [46] employs the SVM approach to regression problems. To solve a regression 
problem, we minimize the bound on infeasible constraints and a generalized error that 
considers a regularization term rather than only a minimizing function of the errors on 
the training set as shown in Eq. (10) [46]. Moreover, we used a sequential minimal opti-
mization algorithm to solve the SVM optimization problem [47]. By constructing a La-
grange function from the object function, we can reformulate the available solution with 
a kernel function, as shown in Eq. (11). In this study, we use a radial basis function (RBF) 
as the default kernel with SVR. 

2

1,

1
min || ||  ( ( ) )

2

m

i iiw b
C l f x y


      (10) 

where l denotes insensitive loss. 
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       (11) 

where (x, xi) denotes a kernel function. 
During the performance model building stage, we used the model with threefold 

cross-validation. After performing cross-validation, the models trained with different 
algorithms were stored in the model store in the PMML format. 

 
4.3 Configuration Optimizing Module 

The parameter generator produces parameters based on the given constraints and 
uses the parameters as input to the performance simulator. The performance simulator is 
based on the performance model and obtains the simulated results with the given input 
while the parameter validator uses certain top-ranking configurations to validate the sim-
ulation results.  

In this module, we used PSO as our optimization algorithm. PSO is a type of swarm 
intelligence technique that optimizes a domain problem by attempting to improve a pop-
ulation of candidate solutions in an interactive manner using the given environmental 
measure. PSO moves the particles in the search space according to the particle’s position 
X and velocity V, and the movement of each particle can be influenced by its local 
best-known position Pid and the best-known position Pgd in the global search space. Note 
that the velocity and position are updated according to Eqs. (12) and (13), respectively.  

Vid (t + 1) = Vid (t) + C11(Pid (t)  Xid (t)) + C22(Pad (t)  Xid (t))      (12) 

1 and 2: random numbers with uniform distribution in [0,1] 
C1 and C2: acceleration coefficients 

Xid (t + 1) = Xid (t) + Vid (t + 1).       (13) 

In Section 5.4, we present the design of the PSO experiment to compare its perfor-
mance under different parameter settings because PSO does not guarantee a globally 
optimal solution. The purpose of the experiment is to identify the impact of different 
parameters of the particle number and the max-iteration on the performance of the sys-
tem.  

5. SYSTEM EVALUATION 

In this section, we first explore the experimental data and list the features we se-
lected to build our performance model. Using this model, we compare the simulation and 
validation results using different machine learning algorithms. 

 
5.1 Explorer Data 

 
We collected three application workloads (i.e., TeraSort with 11,657 records, Word 

Count with 16,035 records, and Pig script with 11,675 records) from our cluster and used 
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them for our system evaluation. Fig. 10 shows the execution time of the three applica-
tions. From the box plot, we determined that Word Count takes more time with more 
variation than TeraSort. There are certain outliers because of misconfiguration, which 
resulted in certain failed jobs. To determine the baseline of the performance improve-
ment, we measured the system background noise by repeating the workload with the 
same configuration. The deviation ranges from 0.04% to 3.06%. 

 

 
Fig. 10. Box plot of WordCount, TeraSort, and Pig. 

 

5.2 Feature Selection 
 
Originally, there were ~190 configuration parameters associated with the Hadoop 

system configuration. We used RF algorithm for ranking feature importance [48] and 
then divided them into three groups such as high (feature importance greater than 0.04), 
medium (feature importance between 0.04 and 0.01), and low (feature importance of < 
0.01). With the three groups, we selected the high group for feature engineering, 24 of 
which (15 relate to Word Count and TeraSort and nine relate to Pig) are shown in Table 
2. The feature types include Boolean (MapOutputCompress, OutputCompress, PigCom-
bination, and PigFileCompression), number (ShuffleMergePer, ReduceCopyNum, and 
PigBytePerReducer), and categorical (PigCodec). Certain feature constraints are related 
to software (JVMReuse for Java virtual machine design) or hardware (SortMB for mem- 
ory size). 
 
5.3 Model Performance Results  

 
We used the mean absolute percentage error (MAPE) [49], as shown in Eq. (14), to 

evaluate the accuracy of the model. In the abovementioned formula, n denotes the total 
number of experimental cases, Ai denotes the actual value, and Fi denotes the forecast 
value. 

1

1
n

i i

i i
n

A F
MAPE

A


      (14) 
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Table 2. Parameter abbreviation and feature importance of word count, terasort, and pig. 
Abbreviation Parameter in Hadoop Configuration Feature Importance 

SplitSize mapreduce.input.fileinputformat.split.minsize 0.053 
HttpThread mapreduce.tasktracker.http.threads 0.042 
JVMReuse mapreduce.job.jvm.numtasks 0.058 

ShuffleMergePer mapreduce.reduce.shuffle.merge.percent 0.061 
ReduceSlowstart mapreduce.job.reduce.slowstart.completedmaps 0.063 

InMemMergeThreshold mapreduce.reduce.merge.inmem.threshold 0.065 
SortPer mapreduce.map.sort.spill.percent 0.056 

ShuffleInputPer mapreduce.reduce.shuffle.input.buffer.percent 0.059 
ReduceCopyNum mapreduce.reduce.shuffle.parallelcopies 0.082 

SortMB mapreduce.task.io.sort.mb 0.063 
MapOutputCompress mapreduce.map.output.compress 0.084 

MapTasksMax mapreduce.tasktracker.map.tasks.maximum 0.044 
RduceTasksMax mapreduce.tasktracker.reduce.tasks.maximum 0.051 

SortFactor mapreduce.task.io.sort.factor 0.058 
OutputCompress mapreduce.output.fileoutputformat.compress 0.047 

PigCacheMemusage pig.cachedbag.memusage  0.048 
PigMapPartAgg pig.exec.mapPartAgg 0.056 

PigMinReduction pig.exec.mapPartAgg.minReduction 0.063 
PigBytePerReducer pig.exec.reducers.bytes.per.reducer 0.051 

PigReducersMax pig.exec.reducers.max 0.046 
PigReduceMemusage pig.skewedjoin.reduce.memusage 0.045 

PigCombination pig.splitCombination 0.056 
PigFileCompression pig.tmpfilecompression 0.062 

PigCodec pig.tmpfilecompression.codec 0.042 
 

Table 3. MAPE of different models. 
Model Name MAPE 

GBM 0.29 
RF 0.37 

SVR 0.27 

 
As shown in Table 3, the GBM and SVR models perform well at the same level and 

yield better MAPE results than the result obtained using the RF model. 
However, based on the time of model building and cross-validation, we used RF as 

the basic unit and compared the time (i.e., model building and cross-validation) with that 
of the other two models. In Tables 4 and 5, the GMB and SVR models are approximately 
one and five orders of magnitude, respectively, significant as RF in terms of time. In 
general, the SVR model produced the best results, but with extremely high training costs. 

 

Table 4. Ratios of model building times. 
Model Name Time Ratio 

GBM 7.38 
RF 1 

SVR 66,0731.42 
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Table 5. Ratios of cross-validation times. 
Model Name Time Ratio  

GBM 8.87 
RF 1 

SVR 212604.73 
 

5.4 Simulation Results 
 
From the performance simulation conducted using the generated parameters, we 

obtained the simulation results using PSO with 300 particles and five iterations for vari-
ous models. For straightforward comparison, we used RF as the basic unit and compared 
the prediction results (i.e., execution time) between the models built from distinct ma-
chine learning algorithms. From Table 6, it is obvious that SVR produces better predic-
tion results than RF and GBM and improves the TeraSort performance over that of Word 
Count. However, for Pig workloads, GBM shows better prediction results than the other 
two models. 

 
Table 6. Ratio of prediction of execution times. 

Model     App. TeraSort WordCount Pig 

GBM 1.02 1.30 0.98 
RF 1.00 1.00 1.00 

SVR 0.75 0.89 1.07 
 

Table 7. Ratio of prediction of execution times with different particles iterations settings. 
   App 

    TeraSort WordCount Pig 

  i   p 200 300 400 200 300 400 200 300 400 

M
od

el
s 

  
  

  
 

s

GBM 
3 2.76 1.75 1.43 3.73 2.57 1.83 2.92 2.16 1.11 
5 1.57  1.00  1.00  1.90  1.00  1.00  1.94  1.00  0.99  
10 1.06  1.00  1.00  1.00  1.00  1.00  1.41  0.99  0.98  

RF 
3 3.24  1.83  1.40  2.93  1.98  1.27  3.13  1.94  1.51  
5 1.75  1.00  1.00  1.85  1.00  1.00  2.11  1.00  1.00  
10 1.01  1.00  1.00  1.21  1.00  1.00  1.40  1.00  1.00  

SVR 
3 3.57  1.85  1.25  2.86  1.46  1.31  3.53  1.80  1.25  
5 1.53  1.00  0.96  1.65  1.00  0.99  1.93  1.00  1.00  
10 0.99  0.92  0.89  0.99  0.99  0.98  1.26  1.00  1.00  

 
Table 7 shows (1) 200, 300, and 400 particles and (2) 3, 5, and 10 iterations for 

each model and application to observe the impact of different parameters of the particle 
number and the max-iteration on the performance. For a straightforward comparison, we 
used RF with 300 particles and 5 iterations as the basic unit to compare the prediction 
results (i.e., execution time) between models built from distinct machine learning algo-
rithms. From the result obtained for each model and app experiment, we observed per-
formance improvement from 2.76 with 200 particles and 3 iterations to the basic unit to 
3.57 with 300 particles and 5 iterations. With an increase in the number of particles and 
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iterations, there are six leading cases (i.e., TeraSort with GBM and RF, WordCount with 
GBM and RF, and Pig with RF and SVR) going to stable solutions without improvement. 
Three cases (i.e., TeraSort with SVR, WordCount for SVR, and Pig for GBM) showed 
room for improvement and TeraSort with SVR with 400 particles and 10 iterations even 
led to an 11% improvement. 

5.5 Simulation Validation 

To validate the simulation results, we used the normalized workload execution time, 
which was calculated as shown in Eq. (15), to compare the actual execution time with the 
performance of the rule of the thumb models that were tuned with respect to the Hadoop 
references [50-52] by our platform operation team, including five to seven system ex-
perts having at least 7 years of experience, as shown in Table A1 of Appendix. 

Execution time of the specific model
Normalized workload execution time = 

Execution time of Rule of Thumb
    (15) 

For comparison, we used the rule of thumb as the basic unit (Table 8 and Fig. 11). 
For TeraSort and Word Count workloads, the improvement rankings are as follows: SVR, 
RF, and GBM. The configuration of the TeraSort application produced better improve-
ment than the Word Count application. However, for Pig workloads, GBM produced the 
best results among the three models. Compared with the simulator results (Table 6), the 
validation ranking results are in the same order (i.e., SVR, RF, and GBM) for TeraSort 
and Word Count. However, the results obtained using the Pig technique with RF and 
SVR are the opposite of the simulator and validation results. 

 

Table 8. Validation results. 
       App.  
Model        

Normalized workload execution time 
TeraSort WordCount Pig 

GBM 0.57 1.21 0.78 
RF 0.50 0.97 0.85 

SVR 0.49 0.72 0.80 
Rule of thumb  1 1 1 
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Fig. 11. Normalized workload execution times of different models and workloads. 
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(16) 

6. RELATED WORK 
 
Traditionally, there are two main fields of system performance optimization [12]: 

one is based on implementation (i.e., source code or architecture design) to enhance the 
subsystems [53], and the other is based on the configuration of the application (i.e., pa-
rameters), the hardware and the software platforms without incurring changes at the im-
plementation level. For parameter configuration tuning, heuristic [21, 54] and machine 
learning-based methods [20, 32, 55] have been proposed to handle different constraints 
and assumptions. For virtualization environments, Chen et al. [56] used deep learning to 
predict the Hadoop configuration with analytical workloads in a cloud platform built 
using OpenStack. For homogeneous workloads, Jamshidi et al. [57] enhanced transfer 
learning to build performance modeling by applying a linear transformation with effi-
cient sampling.  

To show that SVR has high accuracy and efficient computation ability, Yigitbasi et 
al. [20] used five Hadoop parameters with multiple linear regression, parameter interac-
tions and quadratic effects, artificial neural networks, model trees, and SVR. We com-
pared our system with an auto-tuning system developed by Yigitbasi et al. using the 
same benchmark (i.e., WordCount and TeraSort) and the results are shown in Table 9 
and Fig. 12. Our tuned configuration achieved better improvement than the rule-of- 
thumb configuration and auto-tuning system. In particular, our configuration tuner 
achieved 28%-51% improvement over the rule-of-thumb configuration as calculated by 
the following formula. 

Normalized workload execution time of BigExplorer
Improvement = 1 100%.

Normalized workload execution time of Rule of Thumb
   
 

   

  

Table 9. Normalized workload execution times of other work. 
App 

Configuration 
Normalized workload execution time 

TeraSort WordCount 
BigExplorer 0.49 0.72 

Auto-tuning System 0.6 0.95 
Rule of Thumb 1 1 

 

 
Fig. 12. Normalized workload execution times for BigExplore and other work. 
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7. CONCLUSIONS 
 
Because systems have become more complicated on big data platforms, it is essen-

tial to develop means of self-improvement for such systems, i.e., designing a learning 
component for different purposes such as system performance or job scheduling. To en-
sure learning by design, we proposed a configuration layer as a learning component on a 
widely-used big data platform (Hadoop) and built the configuration tuner to collect data, 
pre-process data, and obtain feedbacks on golden configurations. Based on the processed 
data, we used a semi-automatic feature engineering technique to provide features for data 
engineers and built a performance model using three different machine learning algo-
rithms (RF, GBM, and SVR).  

Our work focused on configuration parameter tuning using machine learning-based 
methods. Currently, there are two existing related research work to this study. Rizvandi 
et al. designed a performance predictor technique using linear regression models [17]. 
The model contained two parameters (i.e., map tasks and reduce tasks) as features; 
moreover, it can be used to predict the tested application execution time with an average 
error of < 5%. Yigitbasi et al. proposed an end-to-end machine learning-based auto- 
tuning flow that uses five parameters selected by domain experts, and their work shows 
that machine learning techniques can perform better than domain experts (i.e., rule-of- 
thumb configuration). We believe that with complicated system design, a learning com-
ponent must be considered necessary for self-improvement rather than relying complete-
ly on human involvement. 

 
APPENDIX: Table A1. Parameter default and rule-of-thumb values. 

 Default value Rule of Thumb 
SplitSize 0 0 

HttpThread 40 40 
JVMReuse 1 1 

ShuffleMergePer 0.66 0.66 
ReduceSlowstart 0.05 0.8 

InMemMergeThreshold 1000 1000 
SortPer 0.80 0.80 

ShuffleInputPer 0.70 0.70 
ReduceCopyNum 5 10 

SortMB 100 256 
MapOutputCompress False True 

MapTasksMax 2 2 
ReduceTasksMax 2 2 

SortFactor 10 64 
OutputCompress False False 

PigCacheMemusage 0.2 0.5 
PigMapPartAgg True True 

PigMinReduction 10 2 
PigBytePerReducer 1000000000 1024000000 

PigReducersMax 999 500 
PigReduceMemusage 0.5 0.64 

PigCombination True True 
PigFileCompression False False 

PigCodec GZ GZ 
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