
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 469-493 (2020)
DOI: 10.6688/JISE.202005_36(3).0001

469

Big Data Platform Configuration Using Machine Learning*

CHAO-CHUN YEH1,3, HAN-LIN LU1, JIAZHENG ZHOU3, SHENG-AN CHANG3,

XUAN-YI LIN3, YI-CHIAO SUN3 AND SHIH-KUN HUANG1,2
1Department of Computer Science

2Information Technology Service Center
National Chiao Tung University

Hsinchu, 300 Taiwan
3Computational Intelligence Technology Center

Industrial Technology Research Institute
Hsinchu, 300 Taiwan

E-mail: {avainyeh; zhou; changshengan; xylin; icsun}@itri.org.tw;
{luhl; skhuang}@cs.nctu.edu.tw

By ensuring well-developed complex big data platform architectures, data engineers

provide data scientists and analysts infrastructure with computational and storage re-
sources to perform their research. Based on such supports, data scientists are provided an
opportunity to focus on their domain problems and design the required intelligent mod-
ules (i.e., prepare the data; select, train, and tune the machine-learning modules; and val-
idate the results). However, there are still gaps between system engineering and data sci-
entist/engineering teams. Generally, system engineers have limited knowledge on the ap-
plication domains and the purposes of an analytical program. On the contrary, both data
scientists and engineers are usually unfamiliar with the configuration of a computational
system, file system, and database. However, the performance of an application can be af-
fected by a system’s configuration, and the data scientists and engineers have little in-
formation and knowledge about which of the system’s properties can affect the applica-
tion’s performance. As a typical example, for Internet-scale applications that have thou-
sands of computing nodes or billions of Internet of Things devices, even a slight im-
provement may have an enormous influence on energy management and environmental
protection issues. To bridge the gap between system engineering and data scientist/en-
gineering teams, we proposed the concept of a configuration layer based on a big data
platform, Hadoop. We built a configuration tuner, BigExplorer, to collect and preprocess
data. Furthermore, we also created golden configurations for performance improvement.
Based on the processed data, we used a semi-automatic feature engineering technique to
provide more features for data engineers and developed the performance model using
three different machine learning algorithms (i.e., random forest, gradient boosting ma-
chine, and support vector machine). Using the commonly used benchmarks of Word-
Count, TeraSort, and Pig workloads, our configuration tuner achieved a significant per-
formance improvement of 28%-51% for different workloads than using the rule-of-
thumb configuration.

Keywords: big data platform, machine learning, configuration optimization, learning by
design, algorithms

1. INTRODUCTION

With the emergence of big data and machine learning, smart applications, such as
Go with alphaGo [1], healthcare with Watson [2], and virtual voice-controlled assistants

Received August 14; revised June 18 & August 2, 2019; accepted September 18, 2019.
Communicated by Hung-Yu Kao.
* Part of this work was presented in TAAI 2016 Conference, Hsinchu, Taiwan, Nov, 2016.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

470

such as Siri [2], are becoming part of our daily lives. Applications with human-like intel-
ligence have shown extraordinary achievement in three important aspects: data, algo-
rithms, and platforms. Data generated from social media, search history, and system logs
not only make diverse applications practical but also make machine learning (i.e., algo-
rithms) more robust and accurate for these applications.

In addition to data and algorithms, the selection of a platform plays an important
role in such applications. Currently, there are many platform architectures (such as Ha-
doop [3], Spark [4], Flink [5], and H2O [5]) for different application requirements (such
as high-volume data, and low-latency and high-frequency iteration data processing).

Because platform architectures have become more complicated, knowledge workers
(such as data scientists, data engineers, and system engineers) perform their tasks ac-
cording to a function-based division of labor. For instance, system engineers provide the
infrastructure with computation and storage resources for data scientists and engineers.
With their generous support, data engineers can focus on data pre-processing, whereas
data scientists can focus on their domain problems and on designing intelligent modules
(such as feature engineering, machine-learning module selection, and result validation).

However, for big data platforms, there are gaps among system engineering, data en-
gineering, and data scientist teams. System engineers do not have adequate knowledge of
the application domains and the purposes of an analytical program, while data scientists
and engineers do not know the configuration of the computation and file systems as well
as the database. Certain application performance issues are related to system configura-
tions. Generally, data scientists and data engineers do not have adequate information and
knowledge regarding system properties. For instance, certain workloads might perform
better (such as low latency or high throughput) if the platform system is adjusted to the
proper configuration. Alternatively, a workload might crash because of misconfigura-
tion [6]. Using results obtained from our cluster, we observed the same workload with
different configurations and discovered that certain workloads became strugglers (an
execution time of > 1,000,000s) because of a misunderstanding of configuration proper-
ties. Fig. 1 shows such a situation.

Fig. 1. Execution time for different configurations.

Fig. 2 shows an overview of a big data platform with a configuration layer. Unlike
traditional architectures, the configuration layer is added to fill the gap between the data
engineering and data scientist teams. For example, the configuration layer can provide
better parameters for various analytical applications and make the system learnable for
performance improvement. In a learnable system, this is a key component as to be ex-
plained in detail on our system, BigExplorer, in Section 3.

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 471

Computation
System (e.g.,
MapReduce)

File System
(e.g., HDFS)

Database
System(e.g., Hbase,

Cassandra)

Application(e.g., retail, manufacture, finance…)

Analysis tools/programs(e.g., pig, hive..)

Configuration Tuner

Hardware Cluster

Application layer

Analysis layer

Configuration
layer

Platform
System layer

Resource
layer

Fig. 2. The overview of a big data platform with configuration layer.

In a complex platform, there are often many optimization targets such as memory
usage, disk storage, network bandwidth, and workload execution time. For smart appli-
cations such as gaming or voice-controlled assistants, the environment is often in a cloud
or cluster. This indicates that the application needs to use on-demand hardware resources;
therefore, the response time is critical for such applications.

To validate the abovementioned claim using execution time optimization as an ex-
ample, we collected 648 samples (Fig. 3) running the same analytical workload with dif-
ferent configurations (nine properties) in our cluster. Using the same workload, we ob-
served that 17.90% of the configurations yielded better performance in terms of execu-
tion time than default configurations [1] (dotted line). Interestingly, for Internet-scale
applications that have thousands of computing nodes or billions of Internet of Things
devices, it is reported that even a slight improvement could have an enormous influence
on energy management and environmental protection issues. For instance, to save energy,
Google [7] and Facebook [8] manage their data centers using a data-driven approach.

Fig. 3. Execution times of the sample workloads.

Motivated from these results, we separated the configuration layer and built the con-

figuration tuner to generate parameters for learning by design. The configuration tuner is
a key learning component of big data platforms because it collects the observable and
tunable data for training, builds machine learning models for simulation, and optimizes
the simulation results for configuration tuning.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

472

2. BACKGROUND

In this section, we present a technical overview of the selected big data platform and
benchmarks. Furthermore, we introduce relevant machine learning techniques and com-
putational optimization methods.

2.1 Big Data Platform

The characteristics of big data such as volume, velocity, and variety, pose new
challenges, problems, and opportunities for the research community. For the high-vol-
ume characteristic, data engineers use innovative system architectures to improve the
system throughput. For the high-velocity characteristic, data engineers leverage special
purpose software architectures, such as Storm [9] or Spark Streaming [10], to address
possible challenges. For the high-variety characteristic, data are obtained from multiple
sources with different formats. Data engineers collect data using new-generation data-
base systems (such as Mongo DB [11] or Titan [10]), and data scientists analyze differ-
ent datasets to gain insight.

Hadoop is the most popular big data platform that has a complete ecosystem [12],
including a distributed filesystem, distributed programming, NoSQL/NewSQL databases,
data ingestion, job scheduling, security, and machine learning. Hadoop can process lar-
ge-scale datasets across a cluster of distributed machines using the MapReduce pro-
gramming model. In this study, we used Hadoop to re-verify the concept of our proposed
configuration layer.

2.2 Resource Management Layer

In an earlier version of Hadoop (i.e., version 0.23), the resource management design
was closely coupled with the computational model, thus causing poor scalability [13]. To
ameliorate the situation, both YARN [14] and Mesos [15] were proposed.

Note that YARN incorporates a resource management center that coordinates vari-
ous applications and handles Hadoop system resources with node manager agents that
monitor the operations (such as data processing) of individual nodes within the cluster.
Among multiple tenants, the resource manager monitors resource usage and node status
by separating the central resource allocator in the role of JobTracker. Note that this re-
sponsibility is delegated to the master node that coordinates the logical plan of a specific
job by demanding resources from the resource manager, thus generating a physical plan
from the resources it receives.

Mesos is a lean management layer that allows various cluster computing frame-
works to efficiently share resources. Mesos includes two design components: a fine-
grained sharing model and a distributed scheduling mechanism, known as resource offers.
Using these components, Mesos can achieve high utilization, responsibility, and scalabil-
ity [15].

2.3 Big Data Benchmarks

There are many well-known big data benchmarks such as TPC-C [16], HiBench [17],
Yahoo! Cloud Serving Benchmark (YCSB) [18], and Cloudsuite [19]. The purpose of

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 473

having distinct big data benchmarks is to reflect real-life use cases (such as data analytics,
media streaming, data serving, and data searching) and involve numerous types of im-
plementation options (such as latency, throughput, scaling, and resource usage). Howev-
er, we focused on the configuration effects on various applications. We selected the
Word Count and TeraSort benchmarks from HiBench because of their different charac-
teristics in terms of resource requirements. Note that Word Count is a CPU-bound bench-
mark and TeraSort is mostly I/O-bound [20]. In addition to the TeraSort and Word Count
benchmarks, we used the Business Intelligence analytic workload (i.e., Pig scripts [21])
for complicated cases.

2.4 Machine Learning

With the emergence of big data, machine learning can now play important roles for
solving real-world problems. Typically, depending on the properties of their feedback to
learning problems, machine learning algorithms are classified into four categories.

1. Supervised learning

The feedback is well-defined and can be obtained clearly from a learning system.
2. Unsupervised learning

The feedback is not well-defined and cannot be obtained from a learning system.
3. Reinforcement learning

The feedback can be presented as a specific goal without any explicit feedback.
4. Semi-supervised learning

The feedback is well-defined, and some feedback can be obtained from a learning
system. Note that a learning algorithm might be intended to obtain the desired feed-
back by interactively querying the information source.

Our domain problem is a supervised learning example of the regression type be-

cause the feedback data (execution times) are well defined.

2.5 Computational Optimization

Optimization is aimed at selecting the best element (i.e., maximum or minimum
value) concerning specified constraints in the given data space. There are various com-
putational optimization techniques, such as iterative methods (Newton’s method [22,
23]), gradient descent [24], and heuristics (evolutionary algorithms [25], genetic algo-
rithms [26], hill climbing [27], and particle swarm optimization (PSO) [28]). We used
PSO as our optimization method in this study because it can search huge spaces of can-
didate solutions based on few assumptions regarding the problem [29].

3. SYSTEM DESIGN

In this section, we introduce our configuration tuner design. In Section 3.1, we will
discuss the overview of system design. Subsequently, we introduce data management,
performance model, and configuration optimization designs in Sections 3.2, 3.3, and 3.4,
respectively.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

474

3.1 Overview of System Design

We generalize the platform parameter tuning problem as follows. Given a platform
with parameters and a corresponding performance index, we will produce a set of bet-
ter-fine-tuned configurations on the given platform. For data gathering and as a proof of
concept, we used a big data platform (Hadoop) as a specific example. From abstract rep-
resentations to a big data platform, a platform behavior depends on a workload set W
(such as input data, and source or binary programs to process the data), as shown in Eq.
(1), and a parameter set P (e.g., hardware and software parameters), as shown in Eq. (2).
Note that the HiBench [17] benchmark includes seven different purposes of programs
such as Sort, WordCount, TeraSort, PageRank, K-means, Bayes classification, and Index.
The other commonly-used benchmark for big data applications BigDataBench [30], co-
vers six applications with the different program sets such as micro utilities (sort, grep,
WordCount, and BFS), datastore operations (read, write, and scan), relational query (i.e.,
select, aggregate, and join), search engine (index and PageRank), social network (i.e., K-
means and connected components), and E-commerce (collaborative filtering and naïve
Bayes).

Workload set W = {w1, w2, w3, …, wi} (1)

Parameter set P = {p1, p2, p3, …, pj} (2)

However, because it is difficult to understand and represent a platform behavior S,
system engineers use a representative performance index set PX (including throughput,
response time, latency, utilization, and saturation) to describe system behavior, as shown
in Eqs. (3) and (4).

S PX (3)

Performance Index set PX = {px1, px2, …, pxk} (4)

In a learning system, we assume that the performance index behavior PX can be
represented by a function F of the given parameter set P and workload W, as shown in
Eq. (5). Then, we can employ a set of machine learning algorithms MFL to determine
the best algorithm that minimizes the error between the outcome of F and the outcome of
MFL as shown in Eqs. (5) and (6).

PX = F(W, P) (5)

Machine-Learning Algorithm set MFL = {a1, a2, a3, …, ak} (6)

S PX = MFLopt(W, P) (7)

In the next section, we present the Hadoop platform as an example (Fig. 4). We
used a performance index PX to represent the system behavior S, and we assumed PX
(such as execution time or resource usage) could be represented by an unknown function
F, which is related to the given parameter set P (such as configuration of MapReduce or
HDFS) and workload W (such as TeraSort and WordCount). Based on a collection of

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 475

parameter set and workload, we evaluated all machine learning algorithms in MFL and
selected the best algorithm that minimizes the error between the outcome of F and the
outcome of MFL.

platformworkload
Performance

index

parameters

Fig. 4. Performance model of the platform system.

The system process is described in the following steps:

1. Collecting and managing the platform data
Platform data such as parameters, workload, and performance index can be obtained
from the log or plug-in modules. We collected the data from distributed nodes into a
unified data store. By doing so, the collected data quality can be measured by query-
ing with missing value, outlier, and irregular cardinality filters.

2. Building and testing the performance model
By unifying the data storage, we selected the target performance index and parameters
as the training features based on their quality. Furthermore, we built the performance
model using different machine learning algorithms with cross-validation [31] to ease
the overfitting issue [32].

3. Generating and verifying the parameters
Given the performance model, we used optimization technology (such as metaheuris-
tics) that can sufficiently provide good parameters to solve the platform perfor-
mance optimization problem.

workload

performance index

sensors

data
store

filters

parameters

target
performance

Index

training
data

Fig. 5. Data flow for data management.

3.2 Data Management Design

In the data management design stage (Fig. 5), there are two principal issues: (1)

What type of data can be collected? and (2) How can the data quality be improved? Us-
ing extract-transform-load (ETL) tools, it is easy to aggregate data from distributed
nodes into a unified data store for data collection. However, certain raw data may not be
sufficient for representing the system’s performance, thereby possibly leading to sam-
pling bias [33]. To overcome this limitation, system engineers deploy more sensors for

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

476

gathering new features using the platform’s plug-in/add-on functions. Note that more
sensors can not only be used to collect more data but also to create an impact on the sys-
tem’s performance. For instance, for a cluster’s performance, if the experimental raw
data in Table 1 only contains features such as maximum memory allocation (i.e., all
cluster physical memory bytes), it is not sufficient to represent the system performance
for a fine-grained perspective. For the fine-grained perspective, system engineers deploy
sensors for gathering new features such as run-time process memory usage (i.e., all
map-reduce framework physical memory bytes and all map-reduce framework virtual
memory bytes). Fig. 6 shows the lines for the three different features as a log axis scatter
diagram. We determined that maximum memory allocation (i.e., all cluster physical
memory bytes) is a stable line without variation and features of run-time process memory
usage (i.e., all map-reduce framework physical memory bytes and all map-reduce frame-
work virtual memory bytes) are more diverse compared to the actual run-time memory
usage.

Table 1. Features of the cluster memory.
All map reduce framework

Physical memory bytes
All map reduce framework

Virtual memory bytes
All cluster physical

memory bytes
305303552 1397387264 305488396288
326262784 1382666240 305488396288
329830400 1382506496 305488396288
347770880 1382518784 305488396288
348684288 1383247872 305488396288
349093888 1408602112 305488396288
349839360 1383165952 305488396288
353980416 1405599744 305488396288

Fig. 6. Different features for cluster memory. Fig. 7. Execution time for outliner.

For improving data quality, we considered the logical cases of invalid data such as
missing value, outlier, and irregular cardinality, and designed some filters for those cases
when the data are used for analytics.

 Outliner Case

As shown in Fig. 7, the outliner case takes > 30,000,000s to complete the task. If we
use the record for an experiment, it could affect the statistic properties of other normal
samples. For such cases, the deletion filter is often employed.

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 477

 Missing Value Case
As shown in Fig. 7, if certain missing value cases occurred, we often design filters

such as mean substitution, regression, or clustering to impute the value.
Furthermore, domain knowledge such as system specifications and physical rules

must be considered for cases involving an in-depth analysis. For instance, if the data for
maximum memory allocation is missing, it could be found from another history log. Us-
ing logical and domain filters, data can be exported as the target performance index and
training features for performance model building.

3.3 Performance Model Design

Fig. 8 shows the performance model design workflow, including learning algorithm

selection, feature selection, and tuning of algorithm parameters.

Learning Algorithms
Selection

Features
Selection

Algorithm
Parameters
Tuning

Fig. 8. Performance model design workflow.

 Learning Algorithm Selection
A learning algorithm that considers an approximation function to a system model

requires different complexity, hyperparameters, and theories for the analyst’s selection.
At this stage, we provide suggestions for different purposes.

 Problem view

A system problem can be a state decision (such as normal or abnormal) or system
performance prediction (such as throughput, latency, and power consumption). Such a
problem can be abstractly viewed as classification, clustering, regression, or dimension-
ality reduction; therefore, it can be solved using the proposed algorithms.

 Explainable for human understanding

The other important factor in selecting a candidate learning algorithm is its ex-
plainability or ability to be easily understood by a human being. Some algorithms resem-
ble black boxes with good performance (such as support vector machines (SVMs) or
deep learning) and use hyperparameters (such as soft margin for SVMs and number of
layers and number of epochs for deep learning). Other algorithms, such as regression,
decision trees, k-nearest neighbors, k-means, and sequence pattern mining, are easy to
understand and possess readily explainable properties.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

478

 Algorithm theory view
In machine learning, the No-Free-Lunch (NFL) theorem indicates that, if there are

no prior assumptions, all algorithms perform equally. However, data scientists’ attempts
to determine a suitable learning algorithm can lead to extraneous background infor-
mation such as assumptions and related work. This background information can suggest
many learning algorithms, e.g., rule-based, entropy-based, probability-based, error-based,
metaheuristic, or neural network (NN) algorithms.

 Feature Selection

For platform parameter tuning, feature selection (i.e., variable or attribute selection)
is an important part of the analytical process. Feature selection involves selecting the
most dominant features from the raw feature set for the learning algorithm to ensure bet-
ter performance, cost effectiveness, and understandability [33], as well as to remove re-
dundant and irrelevant features. In general, there are three types of feature selection al-
gorithms: filter, wrapper, and embedded.

Without using machine learning algorithms, filter methods use a statistical measure
(such as information gain, Chi-squared, or correlation coefficients) to obtain the feature
score with the independent variable assumption. Note that features are selected to be
retained or removed based on a score ranking.

Unlike filter methods, wrapper methods incorporate a machine learning algorithm
and use search techniques (such as best-first search, random hill-climbing, or forward
and backward passes) in identifying the best feature combination set with a given predic-
tive model. Unlike filter and wrapper approaches, embedded methods combine the lear-
ning algorithm and feature selection to perform feature selection while executing learn-
ing algorithms. The typical embedded methods are tree-based algorithms (such as CART,
C4.5, and random forest) and regularization models with feature weights (such as Lasso
and Elastic Net).

 Model Tuning

After the evaluation matrix (such as RMSE, AE, and ROC) is selected to represent
how a model performs on training and testing data, the next key step is model tuning to
improve the model and represent the original data without any bias. There are two typical
approaches for model tuning: parameter-related and parameter-free. Parameters of the
model (hyperparameters) such as learning rate, constraints, and weights must be tuned to
minimize the predefined evaluation matrix on given training data using a grid, random,
or gradient-based search and Bayesian-based or evolutionary optimization. To reduce
model performance variability for overfitting or underfitting, we use regularization to
produce reasonable solutions to ill-posed problems [34]. In addition to the original target
function, regularization adds weight constraints for different norms (such as the L1- or
L2-norm) to obtain better results. The L1-norm can retain important features but is un-
stable [35], while the L2-norm is more stable but not robust [36]. Dropout is a type of
variant weight level regularization for NNs. It drops certain nodes and the related
weights for these nodes in the training phase, resulting in the training of a subnetwork.

Furthermore, parameter-free approaches focus on data. Note that cross-validation
focuses on the data itself and adjusts the data partition for resampling, resulting in an
effective approach when data collection is not high in terms of volume. Using the right
problem of domain knowledge, data arguments use operations or transformations on data

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 479

to create new data representations without losing its essence. For instance, objects in
image and video data must be identical when subjected to the rotation, resizing, and clip
operations. Early stoppage is used to observe the error rate of training and testing data to
select a suitable stopping point that helps avoid overfitting. The stopping condition is the
beginning of increasing testing error when the training error starts to decrease [37].

After tuning, the model can be used for configuration optimization and the work-
flow can be re-executed if new data are available with new system components.

3.4 Configuration Optimization

The key concept of optimization is to identify suitable and available solutions of
objective functions under specified constraints in predefined domains such as science,
engineering, and management. Traditionally, mathematicians and scientists treat these
types of problems as convex problems and use linear programming and gradient-based
methods to solve them. However, real-world problems include many non-convex opti-
mization problems that mix different perspectives such as continuous and discrete, linear
and nonlinear, and local and global. Determining whether an optimization problem is
convex is an NP-hard problem. The strategy for solving non-convex problems is to relax
the non-convex problem to a convex problem and leverage randomized techniques (such
as stochastic optimization) for every sub-convex problem.

When considering optimization problems from a configurational perspective, con-
figuration optimization involves selecting the best configuration in connection while
considering constraints (such as workload properties, configuration parameters, and re-
source limitation) affecting the system model. In the previous step, we obtained the sys-
tem model, MFLopt(W, P), which can be used to select training data from a collection of
data to represent the system behavior S, as shown in Eq. (7).

For a given model F with fixed W, the parameter set could be discrete and nonlinear
(such as memory size and max task), and their combination could be discrete. Therefore,
the configuration optimization aim is to identify a feasible P with discrete and nonlinear
constraints. Traditionally, these types of problems are NP-hard [38]. Metaheuristics [39]
are techniques for obtaining a global optimization strategy with discrete and nonlinear
properties. For complex learning procedures, they are efficient search approaches for
exploring near-optimal solutions in the search space and adaptive strategies from simple
local search procedures. They can be classified into two principal categories: single solu-
tion-based (such as trajectory methods, simulated annealing, Tabu search, GRASP
methods, iterated local search, and guided local search) and population-based methods.
Population-based metaheuristics can be used to generate a set (i.e., a population) of solu-
tions rather than a single solution. These approaches are inspired by natural phenomena
such as Darwinian evolution and the social interaction of living creatures. For optimiza-
tion of the configuration tuner, we used PSO, which is based on swarm intelligence, in-
cluding multiple simple entities for executing uncomplicated tasks and interacting locally
with one another and with the environment.

4. SYSTEM IMPLEMENTATION

BigExplorer was developed on a 2.7 GHz i7 CPU with 32 GB RAM machine and

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

480

Ubuntu 16.04 64-bit desktop edition and was written in Python 2.7. We employed the
machine learning library scikit-learn 1.8 and the evolutionary optimization package py-
swarm 0.6 [40]. Hadoop 2.6.0 was deployed with a 10-node cluster size with each node
having 12 cores (2.4 GHz/core) and 128 GB RAM. Fig. 9 shows the architecture of Big-
Explorer with its three modules.

 Data collection module

This module collects data from a big data platform (such as Hadoop), cleans the data
(such as missing values or data formats), and stores the data as plain text in the file
system.

 Performance model module
To build the performance prediction model, this module provides potential features for
data scientists to select, use machine-learning algorithms with the training data, as well
as store the model for the next stage.

 Configuration optimization module
This module leverages the optimization algorithm to generate parameters and then use
them as inputs toward the performance simulator and obtain various simulation results.
The parameter validator was used to select candidate parameters as the new configura-
tion and validate the simulation results.

Data Collection
Module

Performance Model
Module

Cluster
(e.g., Hadoop)

Collector
Agent

Pre‐processorLogs

Data
Store

Feature
Management

Model
Builder

Model
Store

Parameter
Generator

Performance
Simulator

Parameter
Validator

Configuration Optimizing
Module

configurations

Fig. 9. BigExplorer architecture.

4.1 Data Collection Module

The data collection module has three components. Collector Agent collects logs

from nodes in the cluster. For a Hadoop cluster environment, the agent collects the
MapReduce workload log (i.e., job history), system log (i.e., YARN container execution
history), and cluster configuration (i.e., config.xml). Both logs and configurations are
stored in the data store with the workload information (such as application type and com-
pletion time). The pre-processor rearranges the files on the data store, processes them
using different filters (such as missing value, min–max, and invalid execution time filters)
and saves the results in a plain text format.

4.2 Performance Model Module

The performance model module has three components. The feature management

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 481

component uses a random forest (RF) algorithm to provide potential features for data
scientists. Based on the selected features, the model builder component divides the col-
lected data into training (70%) and testing (30%) sets for the machine learning algo-
rithms to build the performance model. The machine learning algorithms considered are
as follows:

 Random Forest

RF [41], one of the algorithms widely used in big data competitions [27], is an en-
semble learning method that generates many independent decision trees for classification
of tasks and fits them to assorted sub-samples of the data (i.e., bootstrap aggregating or
bagging). To avoid the effects of over-fitting, it uses the averaging generalization error
(such as out-of-bag error) to improve predictive accuracy. For regression problems, it
outputs the average prediction of the trees rather than that of the class, as shown in Eq. (8)
[42].

1
1

ˆ () ()
BB

RF bB b
f x T x

 (8)

 Gradient Boosting Machines (GBM)
Gradient boosting machines (GBM) [43, 44], another algorithm that is extensively

used in big data competitions [27], is an ensemble learning method that is based on bag-
ging technique. Unlike RF, gradient tree boosting sequentially builds sub-trees by opti-
mizing the loss function. To solve a regression problem, it fits a regression subtree to the
negative gradient of the given loss function, as shown in Eq. (9) [42, 44].

2

1
arg min ((;))

N

ii
g T x

 (9)

 Support vector regression (SVR)
SVMs [45] are used to solve various real-world problems (such as text and hyper-

text categorization, image segmentation, and hand-written characters) by building hyper-
planes according to a functional margin in high- or infinite-dimensional space. The best
separation of the margin is the largest area that is closest to the training data surface of
any class data.

SVR [46] employs the SVM approach to regression problems. To solve a regression
problem, we minimize the bound on infeasible constraints and a generalized error that
considers a regularization term rather than only a minimizing function of the errors on
the training set as shown in Eq. (10) [46]. Moreover, we used a sequential minimal opti-
mization algorithm to solve the SVM optimization problem [47]. By constructing a La-
grange function from the object function, we can reformulate the available solution with
a kernel function, as shown in Eq. (11). In this study, we use a radial basis function (RBF)
as the default kernel with SVR.

2

1,

1
min || || (())

2

m

i iiw b
C l f x y

 (10)

where l denotes insensitive loss.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

482

1
ˆ() () (,)

m

i i ii
f x x x b

 (11)

where (x, xi) denotes a kernel function.
During the performance model building stage, we used the model with threefold

cross-validation. After performing cross-validation, the models trained with different
algorithms were stored in the model store in the PMML format.

4.3 Configuration Optimizing Module

The parameter generator produces parameters based on the given constraints and
uses the parameters as input to the performance simulator. The performance simulator is
based on the performance model and obtains the simulated results with the given input
while the parameter validator uses certain top-ranking configurations to validate the sim-
ulation results.

In this module, we used PSO as our optimization algorithm. PSO is a type of swarm
intelligence technique that optimizes a domain problem by attempting to improve a pop-
ulation of candidate solutions in an interactive manner using the given environmental
measure. PSO moves the particles in the search space according to the particle’s position
X and velocity V, and the movement of each particle can be influenced by its local
best-known position Pid and the best-known position Pgd in the global search space. Note
that the velocity and position are updated according to Eqs. (12) and (13), respectively.

Vid (t + 1) = Vid (t) + C11(Pid (t) Xid (t)) + C22(Pad (t) Xid (t)) (12)

1 and 2: random numbers with uniform distribution in [0,1]
C1 and C2: acceleration coefficients

Xid (t + 1) = Xid (t) + Vid (t + 1). (13)

In Section 5.4, we present the design of the PSO experiment to compare its perfor-
mance under different parameter settings because PSO does not guarantee a globally
optimal solution. The purpose of the experiment is to identify the impact of different
parameters of the particle number and the max-iteration on the performance of the sys-
tem.

5. SYSTEM EVALUATION

In this section, we first explore the experimental data and list the features we se-
lected to build our performance model. Using this model, we compare the simulation and
validation results using different machine learning algorithms.

5.1 Explorer Data

We collected three application workloads (i.e., TeraSort with 11,657 records, Word

Count with 16,035 records, and Pig script with 11,675 records) from our cluster and used

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 483

them for our system evaluation. Fig. 10 shows the execution time of the three applica-
tions. From the box plot, we determined that Word Count takes more time with more
variation than TeraSort. There are certain outliers because of misconfiguration, which
resulted in certain failed jobs. To determine the baseline of the performance improve-
ment, we measured the system background noise by repeating the workload with the
same configuration. The deviation ranges from 0.04% to 3.06%.

Fig. 10. Box plot of WordCount, TeraSort, and Pig.

5.2 Feature Selection

Originally, there were ~190 configuration parameters associated with the Hadoop

system configuration. We used RF algorithm for ranking feature importance [48] and
then divided them into three groups such as high (feature importance greater than 0.04),
medium (feature importance between 0.04 and 0.01), and low (feature importance of <
0.01). With the three groups, we selected the high group for feature engineering, 24 of
which (15 relate to Word Count and TeraSort and nine relate to Pig) are shown in Table
2. The feature types include Boolean (MapOutputCompress, OutputCompress, PigCom-
bination, and PigFileCompression), number (ShuffleMergePer, ReduceCopyNum, and
PigBytePerReducer), and categorical (PigCodec). Certain feature constraints are related
to software (JVMReuse for Java virtual machine design) or hardware (SortMB for mem-
ory size).

5.3 Model Performance Results

We used the mean absolute percentage error (MAPE) [49], as shown in Eq. (14), to

evaluate the accuracy of the model. In the abovementioned formula, n denotes the total
number of experimental cases, Ai denotes the actual value, and Fi denotes the forecast
value.

1

1
n

i i

i i
n

A F
MAPE

A

 (14)

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

484

Table 2. Parameter abbreviation and feature importance of word count, terasort, and pig.
Abbreviation Parameter in Hadoop Configuration Feature Importance

SplitSize mapreduce.input.fileinputformat.split.minsize 0.053
HttpThread mapreduce.tasktracker.http.threads 0.042
JVMReuse mapreduce.job.jvm.numtasks 0.058

ShuffleMergePer mapreduce.reduce.shuffle.merge.percent 0.061
ReduceSlowstart mapreduce.job.reduce.slowstart.completedmaps 0.063

InMemMergeThreshold mapreduce.reduce.merge.inmem.threshold 0.065
SortPer mapreduce.map.sort.spill.percent 0.056

ShuffleInputPer mapreduce.reduce.shuffle.input.buffer.percent 0.059
ReduceCopyNum mapreduce.reduce.shuffle.parallelcopies 0.082

SortMB mapreduce.task.io.sort.mb 0.063
MapOutputCompress mapreduce.map.output.compress 0.084

MapTasksMax mapreduce.tasktracker.map.tasks.maximum 0.044
RduceTasksMax mapreduce.tasktracker.reduce.tasks.maximum 0.051

SortFactor mapreduce.task.io.sort.factor 0.058
OutputCompress mapreduce.output.fileoutputformat.compress 0.047

PigCacheMemusage pig.cachedbag.memusage 0.048
PigMapPartAgg pig.exec.mapPartAgg 0.056

PigMinReduction pig.exec.mapPartAgg.minReduction 0.063
PigBytePerReducer pig.exec.reducers.bytes.per.reducer 0.051

PigReducersMax pig.exec.reducers.max 0.046
PigReduceMemusage pig.skewedjoin.reduce.memusage 0.045

PigCombination pig.splitCombination 0.056
PigFileCompression pig.tmpfilecompression 0.062

PigCodec pig.tmpfilecompression.codec 0.042

Table 3. MAPE of different models.
Model Name MAPE

GBM 0.29
RF 0.37

SVR 0.27

As shown in Table 3, the GBM and SVR models perform well at the same level and

yield better MAPE results than the result obtained using the RF model.
However, based on the time of model building and cross-validation, we used RF as

the basic unit and compared the time (i.e., model building and cross-validation) with that
of the other two models. In Tables 4 and 5, the GMB and SVR models are approximately
one and five orders of magnitude, respectively, significant as RF in terms of time. In
general, the SVR model produced the best results, but with extremely high training costs.

Table 4. Ratios of model building times.
Model Name Time Ratio

GBM 7.38
RF 1

SVR 66,0731.42

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 485

Table 5. Ratios of cross-validation times.
Model Name Time Ratio

GBM 8.87
RF 1

SVR 212604.73

5.4 Simulation Results

From the performance simulation conducted using the generated parameters, we

obtained the simulation results using PSO with 300 particles and five iterations for vari-
ous models. For straightforward comparison, we used RF as the basic unit and compared
the prediction results (i.e., execution time) between the models built from distinct ma-
chine learning algorithms. From Table 6, it is obvious that SVR produces better predic-
tion results than RF and GBM and improves the TeraSort performance over that of Word
Count. However, for Pig workloads, GBM shows better prediction results than the other
two models.

Table 6. Ratio of prediction of execution times.

Model App. TeraSort WordCount Pig

GBM 1.02 1.30 0.98
RF 1.00 1.00 1.00

SVR 0.75 0.89 1.07

Table 7. Ratio of prediction of execution times with different particles iterations settings.
 App

 TeraSort WordCount Pig

 i p 200 300 400 200 300 400 200 300 400

M
od

el
s

s

GBM
3 2.76 1.75 1.43 3.73 2.57 1.83 2.92 2.16 1.11
5 1.57 1.00 1.00 1.90 1.00 1.00 1.94 1.00 0.99
10 1.06 1.00 1.00 1.00 1.00 1.00 1.41 0.99 0.98

RF
3 3.24 1.83 1.40 2.93 1.98 1.27 3.13 1.94 1.51
5 1.75 1.00 1.00 1.85 1.00 1.00 2.11 1.00 1.00
10 1.01 1.00 1.00 1.21 1.00 1.00 1.40 1.00 1.00

SVR
3 3.57 1.85 1.25 2.86 1.46 1.31 3.53 1.80 1.25
5 1.53 1.00 0.96 1.65 1.00 0.99 1.93 1.00 1.00
10 0.99 0.92 0.89 0.99 0.99 0.98 1.26 1.00 1.00

Table 7 shows (1) 200, 300, and 400 particles and (2) 3, 5, and 10 iterations for

each model and application to observe the impact of different parameters of the particle
number and the max-iteration on the performance. For a straightforward comparison, we
used RF with 300 particles and 5 iterations as the basic unit to compare the prediction
results (i.e., execution time) between models built from distinct machine learning algo-
rithms. From the result obtained for each model and app experiment, we observed per-
formance improvement from 2.76 with 200 particles and 3 iterations to the basic unit to
3.57 with 300 particles and 5 iterations. With an increase in the number of particles and

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

486

iterations, there are six leading cases (i.e., TeraSort with GBM and RF, WordCount with
GBM and RF, and Pig with RF and SVR) going to stable solutions without improvement.
Three cases (i.e., TeraSort with SVR, WordCount for SVR, and Pig for GBM) showed
room for improvement and TeraSort with SVR with 400 particles and 10 iterations even
led to an 11% improvement.

5.5 Simulation Validation

To validate the simulation results, we used the normalized workload execution time,
which was calculated as shown in Eq. (15), to compare the actual execution time with the
performance of the rule of the thumb models that were tuned with respect to the Hadoop
references [50-52] by our platform operation team, including five to seven system ex-
perts having at least 7 years of experience, as shown in Table A1 of Appendix.

Execution time of the specific model
Normalized workload execution time =

Execution time of Rule of Thumb
 (15)

For comparison, we used the rule of thumb as the basic unit (Table 8 and Fig. 11).
For TeraSort and Word Count workloads, the improvement rankings are as follows: SVR,
RF, and GBM. The configuration of the TeraSort application produced better improve-
ment than the Word Count application. However, for Pig workloads, GBM produced the
best results among the three models. Compared with the simulator results (Table 6), the
validation ranking results are in the same order (i.e., SVR, RF, and GBM) for TeraSort
and Word Count. However, the results obtained using the Pig technique with RF and
SVR are the opposite of the simulator and validation results.

Table 8. Validation results.
 App.
Model

Normalized workload execution time
TeraSort WordCount Pig

GBM 0.57 1.21 0.78
RF 0.50 0.97 0.85

SVR 0.49 0.72 0.80
Rule of thumb 1 1 1

0
.5
7

1
.2
1

0
.7
8

0
.5

0
.9
7

0
.8
5

0
.4
9

0
.7
2 0
.8

1 1 1

T ERASORT WORDCOUNT P IG

N
O
R
M
A
LI
ZE
D
 W

O
R
K
LO

A
D
 E
XE
C
U
T
IO
N
 T
IM

E

WORKLOAD APP.

GBM RF SVR Rule of thumb

Fig. 11. Normalized workload execution times of different models and workloads.

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 487

(16)

6. RELATED WORK

Traditionally, there are two main fields of system performance optimization [12]:

one is based on implementation (i.e., source code or architecture design) to enhance the
subsystems [53], and the other is based on the configuration of the application (i.e., pa-
rameters), the hardware and the software platforms without incurring changes at the im-
plementation level. For parameter configuration tuning, heuristic [21, 54] and machine
learning-based methods [20, 32, 55] have been proposed to handle different constraints
and assumptions. For virtualization environments, Chen et al. [56] used deep learning to
predict the Hadoop configuration with analytical workloads in a cloud platform built
using OpenStack. For homogeneous workloads, Jamshidi et al. [57] enhanced transfer
learning to build performance modeling by applying a linear transformation with effi-
cient sampling.

To show that SVR has high accuracy and efficient computation ability, Yigitbasi et
al. [20] used five Hadoop parameters with multiple linear regression, parameter interac-
tions and quadratic effects, artificial neural networks, model trees, and SVR. We com-
pared our system with an auto-tuning system developed by Yigitbasi et al. using the
same benchmark (i.e., WordCount and TeraSort) and the results are shown in Table 9
and Fig. 12. Our tuned configuration achieved better improvement than the rule-of-
thumb configuration and auto-tuning system. In particular, our configuration tuner
achieved 28%-51% improvement over the rule-of-thumb configuration as calculated by
the following formula.

Normalized workload execution time of BigExplorer
Improvement = 1 100%.

Normalized workload execution time of Rule of Thumb

Table 9. Normalized workload execution times of other work.
App

Configuration
Normalized workload execution time

TeraSort WordCount
BigExplorer 0.49 0.72

Auto-tuning System 0.6 0.95
Rule of Thumb 1 1

Fig. 12. Normalized workload execution times for BigExplore and other work.

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

488

7. CONCLUSIONS

Because systems have become more complicated on big data platforms, it is essen-

tial to develop means of self-improvement for such systems, i.e., designing a learning
component for different purposes such as system performance or job scheduling. To en-
sure learning by design, we proposed a configuration layer as a learning component on a
widely-used big data platform (Hadoop) and built the configuration tuner to collect data,
pre-process data, and obtain feedbacks on golden configurations. Based on the processed
data, we used a semi-automatic feature engineering technique to provide features for data
engineers and built a performance model using three different machine learning algo-
rithms (RF, GBM, and SVR).

Our work focused on configuration parameter tuning using machine learning-based
methods. Currently, there are two existing related research work to this study. Rizvandi
et al. designed a performance predictor technique using linear regression models [17].
The model contained two parameters (i.e., map tasks and reduce tasks) as features;
moreover, it can be used to predict the tested application execution time with an average
error of < 5%. Yigitbasi et al. proposed an end-to-end machine learning-based auto-
tuning flow that uses five parameters selected by domain experts, and their work shows
that machine learning techniques can perform better than domain experts (i.e., rule-of-
thumb configuration). We believe that with complicated system design, a learning com-
ponent must be considered necessary for self-improvement rather than relying complete-
ly on human involvement.

APPENDIX: Table A1. Parameter default and rule-of-thumb values.

 Default value Rule of Thumb
SplitSize 0 0

HttpThread 40 40
JVMReuse 1 1

ShuffleMergePer 0.66 0.66
ReduceSlowstart 0.05 0.8

InMemMergeThreshold 1000 1000
SortPer 0.80 0.80

ShuffleInputPer 0.70 0.70
ReduceCopyNum 5 10

SortMB 100 256
MapOutputCompress False True

MapTasksMax 2 2
ReduceTasksMax 2 2

SortFactor 10 64
OutputCompress False False

PigCacheMemusage 0.2 0.5
PigMapPartAgg True True

PigMinReduction 10 2
PigBytePerReducer 1000000000 1024000000

PigReducersMax 999 500
PigReduceMemusage 0.5 0.64

PigCombination True True
PigFileCompression False False

PigCodec GZ GZ

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 489

ACKNOWLEDGEMWNTS

This work was supported in part by the Taiwan Information Security Center (TWISC),
Academia Sinica, the Ministry of Science and Technology, and the Ministry of Econom-
ic Affairs, Taiwan under the grant 107-2218-E-009-044, 107-2221-E-009-030-MY3, and
107-EC-17-A-02-S5-007 and is a partial result of Project No J36784200 conducted by
Industrial Technology Research Institute and Ministry of Economic Affairs(Contract No.
108-EC-17-A-21-1516).

REFERENCES

1. D. Ormerod, “AlphaGo defeats Lee Sedol 4-1,” in Google DeepMind Challenge Match,
Go Game Guru, 2016, pp. 3-16.

2. D. Pogue, “Super Siri,” Scientific American, Vol. 313, 2015, p. 31.
3. Apache Spark, “Lightning-fast cluster computing,” http://spark.apache.org/.
4. Apache Flink, “Scalable batch and stream data processing,” https://flink.apache.org/.
5. A. Candel, V. Parmar, E. LeDell, and A. Arora, “Deep learning with H2O,” H2O.ai,

2015.
6. A. S. Rabkin, “Using program analysis to reduce misconfiguration in open source

systems software,” Ph.D. Thesis, Department of Computer Science, University of
California, Berkeley, 2012.

7. J. Gao, “Machine learning applications for data center optimization,” Google White
Paper, 2014.

8. Facebook, “Sustainable data centers,” https://sustainability.fb.com/innovation-for-our-
world/sustainable-data-centers/.

9. W. Yang, X. Liu, L. Zhang, and L. T. Yang, “Big data real-time processing based on
storm,” in Proceedings of the 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, 2013, pp. 1784-1787.

10. M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams:
Fault-tolerant streaming computation at scale,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles, 2013, pp. 423-438.

11. E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan, “Perfor-
mance evaluation of a mongodb and hadoop platform for scientific data analysis,” in
Proceedings of the 4th ACM Workshop on Scientific Cloud Computing, 2013, pp.
13-20.

12. H. H. Liu, Software Performance and Scalability: A Quantitative Approach, Vol. 7.
John Wiley and Sons, CA, 2011.

13. K. Wang, N. Liu, I. Sadooghi, X. Yang, X. Zhou, T. Li, and I. Raicu, “Overcoming
hadoop scaling limitations through distributed task execution,” in Proceedings of
IEEE International Conference on Cluster Computing, 2015, pp. 236-245.

14. V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, and
B. Saha, “Apache hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th Annual ACM Symposium on Cloud Computing, 2013, pp. 1-16.

15. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, and I.
Stoica, “Mesos: A platform for fine-grained resource sharing in the data center,” in

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

490

Proceedings of the 9th USENIX Symposium on Networked Systems Design and Im-
plementation, 2011, p. 22.

16. Y. Chen, F. Raab, and R. Katz, “From tpc-c to big data benchmarks: A functional
workload model,” in Specifying Big Data Benchmarks, 2014, Springer, pp. 28-43.

17. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench benchmark suite:
Characterization of the MapReduce-based data analysis,” in New Frontiers in In-
formation and Software as Services, 2011, Springer, pp. 209-228.

18. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-
ing cloud serving systems with YCSB,” in Proceedings of the 1st ACM Symposium
on Cloud Computing, 2010, pp. 143-154.

19. A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of the data analyt-
ics workload in cloudsuite,” in Proceedings of IEEE International Symposium on
Workload Characterization, 2014, pp. 202-211.

20. N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, “Towards machine learning-
based auto-tuning of mapreduce,” in Proceedings of IEEE 21st International Sym-
posium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, 2013, pp. 11-20.

21. S. B. Joshi, “Apache hadoop performance-tuning methodologies and best practices,”
in Proceedings of the 3rd ACM/SPEC International Conference on Performance En-
gineering, 2012, pp. 241-242.

22. D. P. Bertsekas, “Nonlinear programming,” Athena Scientific Belmont, 1999, p. 334.
23. L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line search technique for

Newton’s method,” SIAM Journal on Numerical Analysis, Vol. 23, 1986, pp. 707-716.
24. L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the

Trade, 2012, Springer, pp. 421-436.
25. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Vol. 16, John

Wiley & Sons, NY, 2001.
26. D. E. Goldberg, Genetic Algorithms, Pearson Education, India, 2006.
27. S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large

phylogenies by maximum likelihood,” Systematic Biology, Vol. 52, 2003, pp. 696-704.
28. J. Kennedy, Particle Swarm Optimization, in Encyclopedia of Machine Learning,

Springer, Berlin, 2011, pp. 760-766.
29. W. Pedrycz and S.-M. Chen, Social Networks: A Framework of Computational In-

telligence, Vol. 526, Springer, 2013.
30. L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, and C. Zheng, “Bigdatabench: A

big data benchmark suite from internet services,” in Proceedings of IEEE 20th In-
ternational Symposium on High Performance Computer Architecture, 2014, pp.
488-499.

31. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and
model selection,” International Joint Conference on Artificial Intelligence, 1995.
Stanford, CA.

32. Wikipedia, “Overfitting,” https://en.wikipedia.org/wiki/Overfitting.
33. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

Journal of Machine Learning Research, Vol. 3, 2003, pp. 1157-1182.
34. A. N. Tikhonov, “On the solution of ill-posed problems and the method of regulari-

zation,” in Doklady Akademii Nauk, Russian Academy of Sciences, 1963.

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 491

35. D. L. Donoho, “For most large underdetermined systems of linear equations the mi-
nimal,” Communications on Pure and Applied Mathematics, Vol. 59, 2006, pp. 797-
829.

36. Differences between the L1-norm and the L2-norm (Least Absolute Deviations and
fLeast Squares), http://www.chioka.in/differences-between-the-l1-norm-and-the-l2-
norm-least-absolute-deviations-and-least-squares/.

37. L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of the Trade,
1998, Springer. p. 55-69.

38. P. Belotti, T. Berthold, and K. Neves, “Algorithms for discrete nonlinear optimiza-
tion in FICO Xpress,” in Proceedings of IEEE International Conference on Sensor
Array and Multichannel Signal Processing Workshop, 2016, pp. 1-5.

39. I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,”
Information Sciences, Vol. 237, 2013, pp. 82-117.

40. “Particle swarm optimization (PSO) with constraint support,” http://pythonhosted.org/
pyswarm/.

41. L. Breiman, “Random forests,” Machine Learning, Vol. 45, 2001, pp. 5-32.
42. J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, Vol.

1, 2001, Springer, NY.
43. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” arXiv preprint

arXiv:1603.02754, 2016.
44. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals

of Statistics, 2001, pp. 1189-1232.
45. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal mar-

gin classifiers,” in Proceedings of the 5th ACM Annual Workshop on Computational
Learning Theory, 1992, pp. 144-152.

46. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics
and Computing, Vol. 14, 2004, pp. 199-222.

47. J. Platt, “Sequential minimal optimization: A fast algorithm for training support vec-
tor machines,” Technical Report MSR-TR-98-14, Microsoft, 1998.

48. K. J. Archer and R. V. Kimes, “Empirical characterization of random forest variable
importance measures,” Computational Statistics & Data Analysis, Vol. 52, 2008, pp.
2249-2260.

49. E. Mahmoud, “Accuracy in forecasting: A survey,” Journal of Forecasting, Vol. 3,
1984, pp. 139-159.

50. K. Tannir, Optimizing Hadoop for MapReduce, Packt Publishing Ltd., UK, 2014.
51. A. Holmes, Hadoop in Practice, Manning Publications Co., NY, 2012.
52. T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., MA, 2012.
53. H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu,

“Starfish: A self-tuning system for big data analytics,” in Proceedings of Conference
on Innovative Data Systems Research, 2011, pp. 261-272.

54. X. Ding, Y. Liu, and D. Qian, “JellyFish: Online performance tuning with adaptive
configuration and elastic container in Hadoop yarn,” in Proceedings of IEEE 21st
International Conference Parallel and Distributed Systems, 2015, pp. 831-836.

55. M. A. Rahman, J. Hossen, C. Venkataseshaiah, C. Ho, K. G. Tan, A. Sultana, and F.
Hossain, “A survey of machine learning techniques for self-tuning Hadoop perfor-

C.-C. YEH, H.-L. LU, J. ZHOU, S.-A. CHANG, X.-Y. LIN, Y.-C. SUN, S.-K. HUANG

492

mance,” International Journal of Electrical and Computer Engineering, Vol. 8,
2018, p. 1854.

56. C. C. Chen, Y. T. Hasio, C. Y. Lin, S. Lu, H. T. Lu, and J. Chou, “Using deep
learning to predict and optimize Hadoop data analytic service in a cloud platform,”
in Proceedings of IEEE 3rd International Conference on Big Data Intelligence and
Computing, 2017, pp. 909-916.

57. P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agarwal, “Trans-
fer learning for performance modeling of configurable systems: An exploratory
analysis,” in Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering, 2017, pp. 497-508.

Chao-Chun Yeh (葉肇鈞) is a Senior Engineer in Computa-
tional Intelligence Technology Center at Industrial Technology
Research Institute. He received his B.S. degree in Computer Sci-
ence from National Chiao Tung University in 2000, M.S. degree in
Computer Science from National Tsing Hua University in 2002.
He is currently Ph.D. candidate at Institute of Computer Science
and Engineering, National Chiao Tung University, Taiwan. His
research interests include software security, software testing and
systems engineering for machine learning and big data applications.

Han-Lin Lu (呂翰霖) received the B.S. degree in the De-
partment of Transportation Technology and Management, and M.S.
degree in Computer Science and Engineering from National Chiao
Tung University, Taiwan in 2010, and 2012 respectively. He is
currently pursuing the Ph.D. degree at the Institute of Science in
Computer Science and Engineering of National Chiao Tung Uni-
versity. His research interests include software quality, network
security, and software security.

 Jiazheng Zhou (周嘉政) is a Senior Engineer in Computa-

tional Intelligence Technology Center, Industrial Technology Re-
search Institute. He received his B.S. degree in Computer Science
from National Chengchi University in 2002, M.S. degree and Ph.D.
degree in Computer Science from National Tsing Hua University
in 2004 and 2011. He was a Postdoc at National Tsing Hua Uni-
versity from 2011 to 2015. His research interests include machine
learning, big data, cloud computing, parallel and distributed com-
puting, storage systems, interconnection networks, and high-per-
formance computing.

BIG DATA PLATFORM CONFIGURATION USING MACHINE LEARNING 493

Sheng-An Chang (張聖安) is a Senior Engineer in Computa-
tional Intelligence Technology Center, Industrial Technology Re-
search Institute. He received his B.S. and M.S. degree in Engi-
neering Science from National Cheng Kung University in 2005
and 2007. His research interests include artificial intelligence, ma-
chine learning, cloud computing, distributed computing, optimiza-
tion, and middleware.

Xuan-Yi Lin (林軒毅) is a Senior Engineer in Computational

Intelligence Technology Center at Industrial Technology Research
Institute. He received his Ph.D. degree in Computer Science from
National Tsing Hua University in 2013. His research interests in-
clude cluster systems, cloud computing, many-core platforms, par-
allel and distributed computing, and high-performance computing.
Recently, his research focuses on systems engineering for machine
learning and big data applications.

Yi-Chiao Sun (孫逸樵) is an Engineer in Computational In-
telligence Technology Center at Industrial Technology Research
Institute. He completed his master’s degree in Computer Science
from National Chiao Tung University in 2000. His research inter-
ests include network security, operating systems, parallel and dis-
tributed computing, and high-performance computing. Recently,
his research focuses on systems engineering for machine learning
and big data applications.

Shih-Kun Huang (黃世昆) received his B.S. (1989), M.S.
(1991), and Ph.D. (1996) in Computer Science and Information
Engineering from National Chiao Tung University, and he was an
Assistant Research Fellow at the Institute of Information Science,
Academia Sinica, between 1996 and 2004. Currently, he is the
Deputy Director of the Information Technology Service Center,
and jointly with the Department of Computer Science, National
Chiao Tung University. Dr. Huang’s research integrates software
engineering and programming languages to study cyber security
and software attacks.

