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This study proposes a novel model that integrates the generative adversarial network 

(GAN) with the value at risk (VaR) measuring method. The objective is to investigate the 

efficacy of the VaR method in addressing the issue of excessive financialization in 

enterprises. Firstly, the related concepts and calculation principles of VaR in the financial 

field are explained, and the autoregressive conditional heteroscedastic (ARCH) family-

based VaR calculation method and the basic structure of GAN under the deep learning are 

introduced. Then, the GAN algorithm is employed to optimize and train the initialization 

network, transformation network, and structure network of the GAN algorithm. Finally, 

the optimized GAN is applied to the VaR measurement of 300 stocks in Shanghai and 

Shenzhen stock market. GAN demonstrates the ability to handle unbalanced data samples, 

sample minority data, and fit the overall distribution of minority samples. GAN introduces 

a groundbreaking method for data processing, and its integration with manual efforts yields 

significant improvements in practical applications. Moreover, GAN demonstrates a 

positive impact on data set training, offering reliable potential for advancement and serving 

as a valuable point of reference. In conclusion, the combination of GAN under deep 

learning with VaR showcases a dependable practicability in assessing the risks associated 

with excessive financialization. 
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1. INTRODUCTION 
 

With the advancement of economic globalization and integration, the high degree of 

financialization and capitalization of enterprises in various countries has brought wealth to 

social development, but also revealed the fragility of finance and the greed of capital de-

velopment [1, 2]. Financial risk control has also become the key point to current enterprise 

development. The traditional financial risk measurement method intelligently expresses 

the deviation degree of financial assets, but can’t explain the level of loss [3]. Since the 

continuous development of financial innovation in the 1950s, various financial tools have 

consistently emerged. Analyzing the “financialization of the economy” has become a more 

scientific method for observing modern economic operations and financial integration. 

Proper financialization has the potential to revitalize corporate assets, improve capital 

structure, and increase cash returns. However, the excessive financialization of enterprises 

introduces risks to their investments, diverts investment from operational assets, and leads 

to excessive corporate financing, causing the economy to become “detached from reality 
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and overly reliant on virtual financial activities.” Strengthening corporate supervision and 

improving the capital market are beneficial to the better development of enterprises. Fi-

nancial risk has become the core of modern financial management. With the complexity 

of financial markets and financial transactions, the measurement of financial market risks 

has developed into the current complex measurement technology. Value at risk (VaR) can 

directly express can calculate the financial risk, so it has been widely used in the financial 

risk measurement [4, 5]. The VaR calculation method is primarily based on its concepts 

and principles, lacking a specific calculation structure. As a result, there are certain 

deficiencies and limitations in using VaR as a measurement tool for financial risk. 

For the method of VaR calculation, scholars from various countries have developed 

a lot of researches. Melina et al. [6] used extreme value theory to measure the VaR and 

expected shortage of investment portfolios [6]. Asdrubali et al. [7] adopted a price reduc-

tion model to measure the VaR [7]. In addition, Storti et al. [8] proposed a dynamic semi-

parametric model to predict the VaR [8]. In recent years, VaR measuring methods based 

on the autoregressive conditional heteroscedastic (ARCH) family have been widely 

utilized. Scholars have made reliable advancements in the ARCH model, considering the 

characteristics of VaR. However, its prediction accuracy still fails to meet the requirements 

of the current financial market development [9-11]. As a new topic in machine learning 

methods, deep learning can build an artificial neural network (ANN) to learn relevant data 

characteristics, and finally get more accurate prediction results. Cao et al. [12] used the 

Bayesian network (BN) model to evaluate the liquidity risk of banks [12]. Li et al. [13] 

measured the credit risk of enterprises based on the ANN algorithm [13]. Lu et al. [14] 

adopted a method based on deep belief network (DBN) integration to measure the VaR of 

currency exchange rates [14]. Based on these studies, it is found that the applying the deep 

learning in financial market risk prediction can get good results. 

2. METHODS 

2.1 Related Concepts and Calculating Principles of VaR 

VaR reflects the maximum potential loss of financial assets in a certain period under 

a certain CI [15, 16]. Its expression is shown in Eq. (1). 

Prob(Yt < −VaR) =    (1) 

In Eq. (1), Yt refers to the rate of return (RR) of financial assets in period t, CI is re-

presented by 1 − θ. From a statistical perspective, it has been observed that VaR corre-

sponds to the left-tail quantile of the distribution of financial asset returns under specific 

confidence interval (CI) conditions [17]. The calculation of VaR involves determining the 

distribution of financial asset returns. 

In traditional approaches, the normal distribution is often employed to approximate 

the distribution of financial asset returns, simplifying the calculation process for VaR [18-

20]. However, contemporary studies have revealed that the returns on assets generally ex-

hibit non-normal distributions. Consequently, using traditional methods to calculate VaR 

can lead to deviations and inaccuracies [21]. 
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2.2 VaR Measuring Model based on ARCH Family 

To calculate VaR, an assumption about the distribution of the RR needs to be made. 

Initially, a common assumption is that it follows a normal distribution. However, in reality, 

risk fluctuations are constantly changing, and there is often an aggregation of these fluctua-

tions, known as heteroscedasticity. Therefore, the normal distribution fails to accurately 

capture such distribution characteristics. To provide a more precise description of the dis-

tribution characteristics of asset RR, scholars have proposed the ARCH model. The main 

concept behind this model is that the conditional heteroscedasticity of the disturbance term 

is influenced by its lagged values. 

The ARCH(q) model is represented with Eq. (2) in general, 

yt = t + t.     (2) 

Eq. (2) shows its mean value equation. 

2.3 Structure of GAN 

Models under deep learning include discriminative models and generative models. 

Since the gnerative adversarial network (GAN), it has become a very successful model in 

recent years and attracted more and more attention. The primary objective of machine 

learning is to train a model capable of predicting output values based on given input values. 

 Machine learning encompasses two main methods: generative methods and discri-

minant methods. The models learned using these methods are referred to as generative 

models and discriminative models, respectively. The discriminative model employs the 

discriminant method to predict the learned model through the learning decision function 

f(X) or the conditional probability distribution P(Y|X). The generative model learns the 

joint distribution P(X|Y) using the generated data, and subsequently predicts the condi-

tional probability distribution P(Y|X) of the predictive model. The equation representing 

this relationship is as follows, 

P(Y|X) = P(X, Y)P(X).    (3) 

In comparison to the discriminant method, the generative model places greater em-

phasis on capturing the internal relationships among the data and requires learning the joint 

distribution. Conversely, the discriminant model focuses more on the input variable X and 

aims to predict the corresponding output variable Y. In a GAN, the discriminator and gen-

erator networks engage in an adversarial relationship, whereby the generator aims to gen-

erate synthetic data that closely resembles real data, while the discriminator distinguishes 

between the generated data and real data. The noise input provided to the generator typi-

cally follows a uniform or normal distribution. The generator utilizes this noise to generate 

synthetic data, while the discriminator assesses and distinguishes the authenticity of the 

data. Through an iterative process of confrontation and improvement, the two networks 

strive for convergence. This convergence drives the generated data closer to reality (Fig. 

1). 
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Fig. 1. Schematic diagram of GAN. 

 

2.4 VaR Model Based on Deep Learning 

GAN is composed of two types of networks: generation and discrimination (Fig. 2). 

The input source represents the original input data, while the target denotes the real target 

data. The black dashed box and the yellow dashed box represent two components of the 

U-net architecture. The black box encompasses a convolution operation that extracts a 

multitude of data features, while the yellow dashed box is responsible for determining the 

consistency between the input original data and the generated data. The confrontation and 

game are generated here, and the Pair-loss loss updates G. The original data and the target 

data may have different appearances, but they share the same underlying characteristics. 

The original data generates a feature map in the black box, and then uses the F-loss loss 

among the multiple features to update the target domain in G. 
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Fig. 2. Schematic diagram of grid structure. 
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The pseudocode input steps of the algorithm are shown in Fig. 3. Firstly, the training 

set W = ((x1, y1)(x2, y2)…(xn, yn)). 

 

Number of training cycles N 

Learning algorithm (such as GAN network and decision tree) or classifier 

Output: combination classifier − compound model E* 

Step 1: for i = 1 to t do 

Step 2: there is a replay sampling training set W 

Step 3: training of the algorithm or a weak classifier, and there are K different classifiers 

E1, E2, …, En. 

Step 4: endfor 

Step 5: using a combined classifier and K models for Y classification, and then returning 

to majority voting. 

 

Deep learning networks are comprised of a multitude of neurons designed to mimic 

the neural structure of the human brain and carry out data processing tasks. ANN encom-

pass various types of neurons that differ based on their connection methods. Among them, 

the Multilayer Perceptron is a mathematical model formed by connecting multiple neurons 

together. Fig. 3 provides an illustration of the components of a perceptron. The input vector 

a is combined with the weight w to obtain the perceptron’s input. This input is processed 

using the transfer function b and the bias function f. The activation function h introduces 

nonlinear factors to map the output of the perceptron. 

 

ana1 a2

b

h
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Input layer
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wn

 
Fig. 3. The schematic diagram of the perceptron. 

2.5 Statistical Methods 

The SPSS21.0 is adopted for statistical processing of experimental data. Measurement 

data conforming to the normal distribution are expressed as mean  standard deviation (x 

 s), and independent sample t test is used for difference comparison. When P < 0.05, the 

difference is considered to be statistically significant. 
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3. RESULTS 

3.1 Analysis on Prediction Results of Simulating the Stock Data 

The RR data of 2,000 stocks are simulated in this study and 1,993 RR data are selected 

as the learning sample. The VaR prediction model is established with the help of the learn-

ing sample data to predict and analyze the remaining 7 data. The stock data with the 

ARCH(1) effect are simulated firstly by taking the ARCH(1) model as a reference to com-

pare the prediction accuracy of VaR under different confidential intervals (CIs). Then, the 

RR data with the ARCH(2) effect are simulated, and corresponding ARCH(2) model and 

the VaR model based on deep learning are established targeting to the simulated stock RR 

data. 

Deep learning is employed in this study to conduct time series prediction and regres-

sion prediction in order to investigate the VaR of stocks. The actual RR is averaged and 

squared to obtain the loss value for each period, which represents VaR. By lagging the loss 

series, different time series prediction models are constructed with varying lag periods. 

The lagged loss series serves as the dependent variable, while the series with one-period 

and two-period lags are used as independent variables. This framework enables the genera-

tion of FRPM for different lag periods, facilitating the analysis and estimation of VaR in 

the context of stock market risk. The prediction accuracy of VaR under different CIs is 

compared and analyzed based on the ARCH family model. The comparison results of the 

last 7 data are shown in Fig. 4 below. 
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Fig. 4. The prediction accuracy on VaR of the ARCH family under different CIs. 

 

Fig. 5 illustrates that the mean square error (MSE) for prediction accuracy of ARCH(1) 

on VaR is 0.122 and 0.275 when the CI is 95% and 99%, respectively. The prediction 

accuracy of ARCH(2) for VaR varies depending on the chosen CI. This observation in-

dicates that the CI value significantly affects the model’s prediction accuracy, with larger 

CI values resulting in higher MSE of prediction accuracy. The prediction accuracy of VaR 
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based on the time series prediction model under deep learning is compared and analyzed 

when the CI is 95% after different ARCH family models are used. The comparison results 

of the last 7 data are shown in Fig. 5. 
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Fig. 5. The prediction accuracy of VaR based on the time series prediction model under deep learning 

at 95% CI. 
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Fig. 6. The prediction accuracy of FRPM on VaR based on deep learning under 99% CI. 

 

Fig. 6 demonstrates that when the CI is set to 95%, the time series model based on 

deep learning achieves a MSE for prediction accuracy of approximately 0.087 and 0.157 

when compared to the ARCH(1) and ARCH(2) reference models, respectively. This sug-

gests that the prediction accuracy of the deep learning-based time series model is influenc-

ed by the model parameters of the ARCH family. The time series prediction model based 
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on deep learning outperforms the ARCH family model, delivering superior prediction re-

sults. Furthermore, the prediction accuracy of the FRPM for VaR based on deep learning 

under a 99% CI is analyzed and compared across different ARCH family models. The 

comparison results for the last 7 data points are depicted in Fig. 6. 

Fig. 7 discloses that when CI is 99%, the FRPM based on deep learning has a MSE 

of prediction accuracy of 0.088 with ARCH(1) taken as the reference model, and it is 0.159 

when ARCH(2) is taken as the reference model. Thus, the prediction accuracy of FRPM 

based on deep learning is also affected by the parameters of the ARCH family model, and 

the FRPM based on deep learning has a better prediction effect in contrast to the ARCH 

family model. Based on the ARCH(1) model, the prediction accuracy of the deep learning-

based time series prediction model and the deep learning-based FRPM is analyzed and 

compared under different CIs. The comparison results of the last 7 data are given in Fig. 7. 
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Fig. 7. The prediction accuracy of the deep learning-based prediction models taking ARCH(1) as re-

ference. 

  

Fig. 8 reveals that when ARCH(1) is undertaken as the reference model, the time 

prediction model and the FRPM based on deep learning have better prediction effects than 

the ARCH model. In addition, the prediction accuracy of the deep learning-based time 

series prediction model and the deep learning-based FRPM is analyzed and compared 

under different CIs based on the ARCH(2) model. The results of the last 7 data are illus-

trated in Fig. 8. 

Fig. 9 demonstrates that when ARCH(2) is employed as the reference model, the 

prediction models based on deep learning consistently exhibit superior prediction results. 

The results of the comparative analysis of prediction models on simulated stock RR data 

indicate that the FRPM based on deep learning achieves the highest prediction accuracy, 

as evidenced by the MSE of prediction accuracy. When applying deep learning to directly 

predict the loss sequence itself, the accuracy surpasses that of traditional methods. This 

suggests that the VaR model based on deep learning exhibits superior predictive ability in 

financial VaR prediction. The findings support the conclusion that deep learning is an 

effective approach for improving the accuracy of VaR prediction in the financial domain. 
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Fig. 8. The prediction accuracy of the deep learning-based prediction models taking ARCH(2) as re-

ference. 

3.2 Empirical Analysis of Different ARCH Family Calculation Models 

To analyze and validate the proposed calculation model, the closing prices of the 

Shanghai and Shenzhen 300 index in the stock market are selected as the research objects. 

The stock price index is a widely used indicator to assess the overall price fluctuation and 

trend in the stock market. By selecting high-frequency data, the model avoids potential 

parameter changes that may occur when using low-frequency data, and it ensures an ade-

quate sample size for model construction. This selection of high-frequency data enables a 

more accurate and reliable analysis of the forecasting model. The model constructed in this 

study is applied smoothly. The data selected contains the closing price data of the 300 

index of Shanghai and Shenzhen stock markt from November 1, 2018 to February 15, 2019. 

There are 2,407 closing price data, the first 2,400 prices are included in the sample set, and 

the corresponding VaR model is established based on the sample set. The last 7 pieces data 

are considered as the testing set to verify the proposed VaR model. 

Based on certain distribution assumptions, the ARCH(1) and ARCH(2) models are 

constructed based on the 300 index log RR sequence in the Shanghai and Shenzhen stock 

market. The parameter estimation table of the ARCH(1) model is shown in Table 1. 

 

Table 1. The parameter estimation table of the ARCH(1) model. 

Parameter estimation t distribution Normal distribution 
Generalized error  

distribution 

 

 

v 

 

SC 

AIC 

0.196541 

7.72E-07 

3.686945 

4.52E-07 

−11.2913 

−11.2946 

0.148517 

8.2E-07 

− 

−7.15E-06 

−11.013 

−11.0542 

0.181524 

7.31E-07 

1.068451 

6.44E-08 

−11.2574 

−11.2694 
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Table 1 presents the estimated values of the parameter  for the three different models, 

all of which fall within the range of 0 to 1. This indicates that the models exhibit stability. 

Based on the SC and AIC criteria, it can be concluded that the ARCH(1) model provides 

the best fit under the assumption of a t-distribution, followed by the generalized error dis-

tribution and the normal distribution. 

Under the assumption of a t-distribution, the thickness of the tail of the distribution 

varies with changes in the degree of freedom v. A smaller value of v corresponds to a 

thicker tail, while a larger value of v results in a thinner tail. As v approaches infinity, the 

t-distribution approaches a normal distribution. In this study, the degree of freedom in the 

t-distribution is estimated to be 3.686945, indicating that the fluctuation of the sequence 

exhibits sharp peaks and thick tails. 

Under the assumption of generalized error distribution, the value of the parameter v 

also controls the thickness of its tail. When v > 2, the generalized error distribution has 

lower kurtosis than the normal distribution, and its tail is thinner. When v < 2, the gener-

alized error distribution has higher kurtosis and thicker tails than the normal distribution. 

When v = 2, the error distribution shows a normal distribution trend. In the model assump-

tion, the degree of freedom v is 1.068451, which proves that the fluctuation of the sequence 

presents a characteristic of a relatively obvious peak and thick tail. The parameter estima-

tion table of the ARCH(2) model is shown in Table 2. 

 

Table 2. The parameter estimation table of the ARCH(2) model. 

Parameter estimation t distribution Normal distribution 
Generalized error  

distribution 

β 

ω 

λ 

v 

 

SC 

AIC 

0.166821 

6.73E-07 

0.138684 

3.686945 

2.21E-07 

−11.2954 

−11.3013 

0.130819 

7.24E-07 

0.131954 

− 

−1.03E-06 

−11.0636 

−11.0742 

0.147568 

6.42E-07 

0.129653 

1.068451 

−1.98E-06 

−11.2672 

−11.2754 

 

Table 2 reveals that the estimated values of the parameters  and  in the three models 

are all greater than 0, and the sum of  and  is less than 1. It proves that the model is 

relatively stable. Under such a premise, it is concluded based on the SC and AIC criteria 

that the ARCH(2) model under the t distribution assumption presents the best fitting effect 

on the sample data. 

Under the assumption of t distribution, v in the model is 3.814856; and it is 1.064851 

under the generalized error distribution. It proves that the sequence is featured with obvi-

ous sharp peak and thick tail. Based on the above analysis, the ARCH(1) and ARCH(2) 

models are constructed under the assumptions of t distribution. In addition, the 300 index 

from the Shanghai and Shenzhen stock market is selected to model its logarithmic RR 

sequence, and the VaR is calculated using this model. 

Due to the small values of stock RR, the variance calculation can result in values 

around a.bcE-08. When performing data processing on a computer, rounding calculations 

can introduce significant errors. To facilitate intuitive and comparative analysis of the cal-

culation results without altering the statistical characteristics of the original data, it is com-
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mon practice to scale all the data simultaneously. To avoid processing errors, the RR data 

in this study are multiplied by a factor of 1,000, thereby allowing for more meaningful and 

accurate comparisons of the corresponding calculation results. 

The ARCH(1) model is undertaken as a reference model to compare and analyze the 

accuracy of VaR predicted by the VaR model based on deep learning under different CIs. 

The prediction accuracy comparison of the last 7 data is shown in Fig. 9. 
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Fig. 9. The prediction accuracy comparison at different Cis taking ARCH(1) as reference. 
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Fig. 10. The prediction accuracy comparison at different Cis taking ARCH(2) as reference. 

 

Fig. 10 discloses that when the CI is 95% or 99%, the prediction accuracy of VaR 

calculated by the time series prediction model based on deep learning is higher than that 

of ARCH(1), and the MSE of its prediction accuracy is 0.871. When the VaR of the loga-

rithmic return of the 300 Index in Shanghai and Shenzhen stock market is predicted, the 

value of CI does not have a great impact on the model prediction results, but the prediction 

model based on the deep learning shows a significantly higher prediction accuracy in con-

trast to the ARCH(1) model. 



BIN-TAO SHAO 

 

860 

 

The ARCH(2) model is undertaken as a reference model to compare and analyze the 

accuracy of VaR predicted by the VaR model based on deep learning under different CIs. 

The prediction accuracy comparison of the last 7 data is shown in Fig. 10 below. 

Fig. 11 indicates when ARCH(2) is considered as the reference model, the MSE of 

the prediction accuracy of the time series prediction model based on deep learning is 0.87, 

while that of the ARCH(2) model is 1.629. Thus, it means that the MSE of the time series 

prediction model based on deep learning to predict the VaR is significantly less than that 

of ARCH(2), suggesting that the prediction model based on deep learning has better pre-

diction effect. The prediction model proposed can be applied in the risk measurement of 

300 index logarithmic RR in the in the Shanghai and Shenzhen stock market well. 

3.3 Error Fitting Comparison on the Data Set 

Deep learning is a learning algorithm that extracts meaningful features from raw data. 

Through training and learning processes, the discriminator network enhances its ability to 

distinguish and discriminate by improving feature representation. As a result, the model’s 

classification performance improves, leading to a better fit of the error on the dataset. A 

smaller error signifies a closer approximation to the true value. Fig. 11 provides a visual 

comparison of the fitting results on different datasets. Following the testing and training of 

the GAN network, the prediction error in the data is substantially reduced, resulting in 

more accurate evaluation values. 
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Fig. 11. Comparison on fitting of various data sets. 

 

The GAN is utilized to compare the up-sampling and down-sampling methods with 

the few data samples generated by the sample set. The results are presented in Table 3. The 

superiority of GAN in terms of stability and evaluation accuracy is clearly apparent 

compared to up-sampling and down-sampling techniques. The generation process of GAN 

involves sampling from the root of the original sample, leading to generated samples that 

possess greater representativeness of the common characteristics and saliency present in 
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the original sample. In contrast to random sampling, the utilization of GAN yields more 

favorable outcomes and enhanced stability. 

 

Table 3. Different evaluation results of different sample processing methods. 

 Accuracy Stability 

Up-sampling  56.0% 66.2% 

Down-sampling 58.0% 57.0% 

GAN 63%* 78.3%* 

Note: * indicates statistically obvious difference (P < 0.05). 

4. DISCUSSION 

In addition to the data set, GAN primarily leverages simulated data to augment its 

applicability to real-world scenarios. Occasionally, the collection of real data poses sig-

nificant challenges, and training models solely on simulated data may not effectively 

generalize to real tasks. Within this study, the utilization of GAN in conjunction with the 

VaR measurement method in deep learning aims to optimize data training. Notably, the 

evaluation accuracy rate of the GAN network reaches 63%, surpassing the performance of 

up-sampling and down-sampling techniques. GAN training learning shows relative better 

error fitting in contrast to the GAN-training and GAN evaluation. When the CI is 99%, the 

MSE of the ARCH(1) model when predicting VaR is 3.242. The time series prediction 

model based on deep learning has a MES of 0.87 in predicting the VaR. The FRPM based 

on deep learning has a MSE of 0.828 in predicting VaR. When the ARCH(2) model pre-

dicts VaR, the MSE is 3.069. 

5. CONCLUSION 

This study endeavors to tackle the prevalent problem of excessive financialization in 

enterprises and puts forth a VaR measurement model utilizing GAN within the realm of 

deep learning. The reported evaluation metrics for GAN encompass an accuracy of 63% 

and a stability level of 78.3%. GAN exhibits remarkable aptitude in handling imbalanced 

data samples, effectively sampling minority data, and precisely capturing the overall 

distribution of such minority samples. The MSE stands at 3.069 when VaR is predicted 

using the ARCH model. Conversely, the MSE for the GAN network, which leverages deep 

learning in conjunction with VaR for time series prediction, is computed to be 0.871. The 

integration of GAN network with VaR demonstrates a dependable practicability in asses-

sing excessive financialization risks. GAN represents a novel approach to data processing, 

effectively enhancing real-world applications when combined with manual efforts, and 

exhibiting reliable potential for data set training and advancement. Nevertheless, certain 

limitations exist within this study. The practical application of the proposed model remains 

restricted and lacks the support of hands-on experience. Therefore, it necessitates further 

application to a wider range of authentic financial data sets in the future, along with com-

parison and verification against traditional financial risk assessment methods. Additionally, 

in order to enhance the reliability of the model, collaborative efforts with industry practi-
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tioners are essential to refine and validate it through their professional expertise and ex-

perience. 
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