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People “understand” the world via vision, hearing, tactile, and also the past experience.
Human experience can be learned through normal learning (we call it explicit knowledge),
or subconsciously (we call it implicit knowledge). These experiences learned through nor-
mal learning or subconsciously will be encoded and stored in the brain. Using these abun-
dant experience, as a huge database, human beings can effectively process data, even they
were unseen beforehand. In this paper, we propose a unified network to encode implicit
knowledge and explicit knowledge together, just like the human brain can learn knowl-
edge from normal learning as well as subconsciousness learning. The unified network can
generate a unified representation to simultaneously serve various tasks. We can perform
kernel space alignment, prediction refinement, and multi-task learning in a convolutional
neural network. The results demonstrate that when implicit knowledge is introduced into
the neural network, it benefits the performance of all tasks. We further analyze the im-
plicit representation learnt from the proposed unified network, and it shows great capability
on catching the physical meaning of different tasks. The source code of this work is at :
https://github.com/WongKinYiu/yolor.

Keywords: unified network, representation learning, multiple task learning, image classifi-
cation, object detection, multiple object tracking

1. INTRODUCTION

As shown in Fig. 1, humans can analyze the same piece of data from various angles.
However, a trained convolutional neural network (CNN) model can usually only fulfill
a single objective. Therefore, the features that can be extracted from a trained CNN
are usually poorly adaptable to other types of objectives. The main cause for the above
problem is that we only extract features from neurons. As to the implicit knowledge,
which is abundant in CNN, is not adequately used. In fact, when a real human brain
is operating, the aforementioned implicit knowledge can effectively assist the brain to
execute various tasks.
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=>What is this? = A Shiba Inu.
= Where is the Shiba Inu?=In a room.
=>Where is she? =In a room.
—What is she doing? =LOL.

=>What is her name? =Al

=Do you love her? —Yes! Sure! Of course!

Fig. 1. Human beings can answer different questions from a same input. Our aim is to use a single
deep neural network to execute multiple tasks.

Implicit knowledge refer to the knowledge learned in a subconscious manner. How-
ever, there is no systematic definition of how implicit learning operates and how to obtain
implicit knowledge. As an example in Fig. 1, if the ultimate goal of a certain task is
to ask “what kind of dog is in your photo?”, then the system will use the feature orga-
nization mechanism (e.g., by composing certain feature pyramid networks) to organize
features, and then tell you “it is a Shibu Inu.” But if the objective of another task is to
ask you “where is this Shibu Inu?”, then the system will seek the answer through an-
other combination of feature pyramid networks and answer “the Shibu Inu is in a room.”
The backbone of this system actually encodes a wealth of implicit knowledge, and these
implicit knowledge can support to organize different feature combinations for tasks with
different objectives. For the objective of a specific task, the features integrated by the sys-
tem to solve the problem are called explicit knowledge. Our system allows solving tasks
with different goals by combining features already present in the backbone networks.

In this paper, we propose a unified network to integrate implicit knowledge and ex-
plicit knowledge. The unified network enables the learned model to contain a general
representation, and this general representation can provide sub-representations suitable
for various tasks. Fig. 2 (c) illustrates the proposed unified network architecture. The way
to construct the unified networks is to combine compressive sensing and deep learning,
and the main theoretical basis can be found in our previous work [16—18]. The proposed
unified network can encode implicit knowledge and explicit knowledge together, just like
how the human brain learns various things from the external world, and such a learn-
ing mechanism can be conscious learning with specific goals or subconscious learning
without specific goals. The proposed network can generate a unified representation to
simultaneously serve multiple objectives. For example, this unified representation can be
used to execute kernel space alignment, prediction refinement, as well as multi-task learn-
ing. Experiment results demonstrate that when implicit knowledge is introduced into the
unified network, it benefits the performance of all tasks. Besides, we found the implicit
representation learnd from the proposed unified network shows great capability on catch-
ing the physical meaning of different tasks. The contribution of this work are summarized
as follows:

1. We propose a unified network that can simultaneously execute various tasks. It
learns a general representation by integrating implicit knowledge and explicit
knowledge, and one can complete various tasks through this general representa-
tion. The proposed network effectively improves the performance of the model
with a very small amount of additional cost. (less than one ten thousand of the
amount of parameters and calculations.)
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EXF{':.‘ i edge

Explicit Knowledge Existed Methods

Query

Selector

"Selector
re Transformer

Unified sft

Representation

Selector / -

reduce, I @ Sele
Expli yrer
— _t - > Selected Representation jective Kernel

(¢) Multi-purpose, single unified network.

Fig. 2. Multi-purpose NN architectures; (a) distinct models for distinct tasks; (b) shared backbone:
different heads for different tasks; and (c) our proposed unified network: one representation with
explicit knowledge and implicit knowledge for serving multiple tasks.

2. We introduce kernel space alignment, prediction refinement, and multi-task learn-
ing into the implicit knowledge learning process, and verified their effectiveness.

3. We discuss the ways of using vector, neural network, or matrix factorization as a
tool to model implicit knowledge, and at the same time verified its effectiveness.

4. We confirm the learned implicit representation learned can accurately correspond
to a specific physical characteristic, and we also present it in a visual way. Besides,
we confirm that if operators that conform to the physical meaning of an objective
can be used to integrate implicit knowledge and explicit knowledge, it will have a
multiplier effect.

5. Combined with the state-of-the-art methods, our proposed unified network achieves
comparable accuracy as Scaled-YOLOv4-P7 [15] on object detection and improves
88% inference speed.

2. RELATED WORK

We conduct a review of the literature that is related to this research topic. This liter-
ature review is mainly divided into three aspects: (1) explicit deep learning: it will cover
some methods that can automatically adjust or select features based on the input data;
(2) implicit deep learning: it will cover the related literature of implicit deep knowledge
learning and implicit differential derivative; and (3) knowledge modeling: it will list sev-
eral methods that can be used to integrate implicit knowledge and explicit knowledge. We
briefly summarize them as follows.
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2.1 Explicit Deep Learning

Explicit deep learning can be carried out in several ways. Transformer [5, 14, 20]
is a commonly used one, and it mainly uses query, key, or value to obtain self-attention.
Non-local networks [4,21,24] is another way to obtain attention, and it mainly extracts
pair-wise attention in time and space. Another commonly used explicit deep learning
method [7,25] is to automatically select the appropriate kernel by input data.

2.2 Implicit Deep Learning

The methods that belong to the category of implicit deep learning are implicit neu-
ral representations [11] and deep equilibrium models [2, 3, 19]. The former is to obtain
the parameterized continuous mapping representation of discrete inputs to perform dif-
ferent tasks, while the latter is to transform implicit learning into a residual form neural
networks, and perform the equilibrium point calculation on it.

2.3 Knowledge Modeling

As for the methods belonging to the category of knowledge modeling, sparse repre-
sentation [1,23] and memory networks [12,22] are included. The former uses exemplar,
predefined over complete, or learned dictionary to perform modeling, while the latter re-
lies on combining various forms of embedding to form memory, and enable memory to
be dynamically added or changed.

3. HOW IMPLICIT KNOWLEDGE WORKS?

The main purpose of this research is to construct a unified network that can effec-
tively train implicit knowledge, so first we will focus on how to train implicit knowledge
and inference it quickly in the follow-up. Since implicit representation z; is irrelevant to
observation, we can think of it as a set of constant tensor Z = {z,2y,...,2}. We will
introduce how implicit knowledge as constant tensor can be applied to various tasks.

(1, 0) = pose estimation
V4
1

(0,1) = classification
z,

Fig. 3. Manifold space reduction.
3.1 Manifold Space Reduction

We believe that a good representation should be able to find an appropriate projection
in the manifold space to which it belongs, and facilitate the subsequent objective tasks to
succeed. For example, as shown in Fig. 3, if the target categories can be successfully
classified by the hyperplane in the projection space, that will be the best outcome. In
the above example, we can take the inner product of the projection vector and implicit
representation to achieve the goal of reducing the dimensionality of manifold space and
effectively achieving various tasks.
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Fig. 4. Kernel space alignment.

3.2 Kernel Space Alignment

In multi-task and multi-head neural networks, kernel space misalignment is a fre-
quent problem, Fig. 4 (a) illustrates an example of kernel space misalignment in multi-task
and multi-head NN. To deal with this problem, we can perform addition and multiplica-
tion of output feature and implicit representation, so that Kernel space can be translated,
rotated, and scaled to align each output kernel space of neural networks, as shown in
Fig. 4 (b). The above mode of operation can be widely used in different fields, such
as the feature alignment of large objects and small objects in feature pyramid networks
(FPN) [8], the use of knowledge distillation to integrate large models and small models,
and the handling of zero-shot domain transfer and other issues.

nm =h L

anss
wonswsen |l Jy S 1 =1l I
I G \UUQUHUH—’HDHHDDU

mask

(c) Feature selection

(b) Anchor refinement

Fig. 5. More functions.

3.3 More Functions

In addition to the functions that can be applied to different tasks, implicit knowledge
can also be extended into many more functions. As illustrated in Fig. 5, through introduc-
ing addition, one can make neural networks predict the offset of center coordinate. It is
also possible to introduce multiplication to automatically search the hyper-parameter set
of an anchor, which is very often needed by an anchor-based object detector. Besides, dot
multiplication and concatenation can be used, respectively, to perform multi-task feature
selection and to set pre-conditions for subsequent calculations.
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4. IMPLICIT KNOWLEDGE IN OUR UNIFIED NETWORKS

In this section, we shall compare the objective function of conventional networks
and the proposed unified networks, and to explain why introducing implicit knowledge is
important for training a multi-purpose network. At the same time, we will also elaborate
the details of the method proposed in this work.

4.1 Formulation of Implicit Knowledge
Conventional Networks:

For the objective function of conventional network training, we can use the equation
shown as follows:

y=fo(x)+¢ 0

minimize €
where x is observation, 0 is the set of parameters of a neural network, fy represents
operation of the neural network, € is error term, and y is the target of a given task.

In the training process of a conventional neural network, usually one will minimize
€ to make fg(x) as close to the target as possible. This means that we expect different
observations with the same target to be a single point in the sub-space obtained by fjy,
as illustrated in Fig. 6 (a). In other words, the solution space we expect to obtain is
discriminative only for the current task #; and invariant to tasks other than #; in various
potential tasks, T'\ #;, where T = {#1,t2,...,t,}.

For general-purpose neural network, we hope that the obtained representation can
serve all tasks belonging to T. Therefore, we need to relax € to make it possible to find
solution of each task at the same time on manifold space, as shown in Fig. 6 (b). However,
the above requirements make it impossible for us to use a trivial mathematical method,
such as maximum value of one-hot vector or threshold of Euclidean distance, to get the
solution of #;. In order to solve the problem, we must model the error term € to find
solutions for different tasks, as shown in Fig. 6 (c).

(b) Relax ¢

(¢) Modeling &

Fig. 6. Modeling error term.
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Unified Networks:

To train the proposed unified networks, we use explicit and implicit knowledge to-
gether to model the error term, and then use it to guide the multi-purpose network training
process. The corresponding equation for training is as follows:

y=fo (X) +E€+8¢ (eex(x)vgim(z))
minimize € + gy (€.x(X), €&m(2))

2

where €&, and g;,, are operations which modeling, respectively, the explicit error and im-
plicit error from observation x and latent code z. gy here is a task specific operation that
serves to combine or select information from explicit knowledge and implicit knowledge.
There are some existing methods to integrate explicit knowledge into fg, such as
attention mechanism and dynamic kernel, so we can rewrite Eq. (2) into Eq. (3).

y=fo(x)xg4(2) 3)

where x represents some possible operators that can combine fp and gy. In this work,
the operators introduced in Section 3 will be used, which are addition, multiplication, and
concatenation.

If we extend derivation process of error term to handling multiple tasks, we can get
the following equation:

F(x,0,Z,9,Y,¥)=0 4
where Z = {z1,2,,...,z7 } is a set of implicit latent codes of T different tasks. @ are the
parameters that can be used to generate implicit representation from Z. ¥ is used to cal-
culate the final output parameters from different combinations of explicit representation
and implicit representation.

For different tasks, we can use the following formula to obtain prediction for all
zel.

d‘l’(f@(x)vgq)(z)>y):0 )

For all tasks we start with a common unified representation fj(x), go through task-
specific implicit representation ge(z), and finally complete different tasks with task-
specific discriminator dy.

4.2 Modeling Implicit Knowledge

The implicit knowledge we proposed can be modeled in the following ways:

Vector / Matrix / Tensor:
z (6)

Use vector z directly as the prior of implicit knowledge and the implicit representa-
tion. At this time, it must be assumed that each dimension is independent of each other.
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(a) Vector (b) Neural network (c) Matrix factorization

Fig. 7. We proposed to use three different ways for modeling implicit knowledge. The top row
shows the formation of these three different modeling approaches, and the bottom row shows their
corresponding mathematical attributes; (a) Vector: single base, and each dimension is independent
with another dimensions; (b) Neural Network: single or multiple basis, and each dimension is
dependent to another dimensions; and (c) Matrix factorization: multiple basis, and each dimension
is independent with another dimensions.

Neural Network:
Wz (7N

Use vector z as the prior of implicit knowledge, then use the weight matrix W to
perform linear combination or nonlinearization and then become an implicit representa-
tion. At this time, it must be assumed that each dimension is dependent on each other. We
can use more complex neural network to generate implicit representation, or use Markov
chain to simulate the correlation of implicit representation between different tasks.

Matrix Factorization:
yARS (3

Use multiple vectors as prior of implicit knowledge, and these implicit prior basis Z
and coefficient ¢ will form implicit representation. We can further do sparse constraint to
¢ and convert it into sparse representation form. In addition, we can impose non-negative
constraint on Z and ¢ to convert them into non-negative matrix factorization (NMF) form.

4.3 Training

Assuming that our model does not have any prior implicit knowledge at the begin-
ning, that is to say, it will not have any impact on explicit representation f (x). When the
combining operator x € {addition,concatenation}, the initial implicit prior z ~ N(0, 0),
and when the combining operator  is multiplication, z ~ N(1,0). Here, o is a very small
value which is close to zero. As for z and ¢, they both are trained with backpropagation
algorithm during the training process.
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4.4 Inference

Since implicit knowledge is irrelevant to observation X, no matter how complex the
implicit model gy is, it can be reduced to a set of constant tensors before the inference
phase is executed. In other words, the formation of implicit information has almost no
effect on the computational complexity of our algorithm. In addition, when the above
operator is multiplication, if the subsequent layer is a convolutional layer, then we use
Eq. (9) below to integrate. When one encounters an addition operator, and if the previous
layer is a convolutional layer and it has no activation function, then we use Eq. (10) shown
below to integrate.

X(41) = 0 (Wi(ge(2)x:) +by) N
= G(W; (%)) +by), where W, = Wigy(z)
X141y = Wi(xp) + b1 + 8¢ (2) ao)

=W(x)) er’,,where b; =b+g¢(z)

S. EXPERIMENTS

Our experiments adopted the MSCOCO dataset [9], because it provides ground truth
for many different tasks, including object detection, instance segmentation, panoptic
segmentation, keypoint detection, stuff segmentation, image caption, multi-label im-
age classification, and long tail object recognition. These data with rich annotation
content can help train a unified network that can support computer vision-related tasks as
well as natural language processing tasks.

5.1 Experimental Setup

In the experimental design, we chose to apply implicit knowledge to three aspects,
including feature alignment for FPN, prediction refinement, and multi-task learning
in a single model. The tasks covered by multi-task learning include object detection,
multi-label image classification, and feature embedding. We chose YOLOv4-CSP [15] as
the baseline model in the experiments, and introduce implicit knowledge into the model at
the position pointed by the arrow in Fig. 8. All the training hyper-parameters are compared
to default setting of Scaled-YOLOv4 [15].

In Sections 5.2, 5.3, and 5.4, we used the simplest vector implicit representation and
addition operator to verify the positive impact on various tasks when implicit knowledge
is introduced. In Section 5.5, we will use different operators on different combinations of
explicit knowledge and implicit knowledge, and discuss the effectiveness of these combi-
nations. In Section 5.6, we shall model implicit knowledge by using different approaches.
In Section 5.7, we analyze the model with and without the introduction of implicit knowl-
edge. Finally in Section 5.8, we shall train object detectors with implicit knowledge and
then compare the performance with state-of-the-art methods.
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Fig. 8. Base architecture. We introduce implicit knowledge modeling for doing feature alignment,
prediction refinement, and multi-task learning.
5.2 Feature Alignment for FPN

We add implicit representation into the feature map of each FPN for feature align-
ment, and the corresponding experiment results are illustrated in Table 1. From the results
shown in Table 1 we can say: After using implicit representation for feature space align-
ment, all performances, including APs, APy, and AP;, have been improved by about
0.5%, which is a very significant improvement.

Table 1. Ablation study of feature alignment.

Model AP APYW AP AP AP AP

baseline 47.8% 663% 52.1% 30.1% 52.5% 62.0%
+iFA 479% 66.6% 523% 30.6% 531% 62.6%

* baseline is YOLOv4-CSP-fast, tested on 640 x 640 input resolution.
" FA: feature alignment.

5.3 Prediction Refinement for Object Detection

Implicit representations are added to YOLO output layers for prediction refinement.
As illustrated in Table 2, we see that almost all indicator scores have been improved. Fig. 9
shows how the introduction of implicit representation affects the detection outcome. In
the object detection case, even we do not provide any prior knowledge for implicit rep-
resentation, the proposed learning mechanism can still automatically learn (x,y), (w,h),
(obj), and (classes) patterns of each anchor.

Table 2. Ablation study of prediction refinement.

Model AP APYW AP APY AP AP

baseline 47.8% 663% 52.1% 30.1% 52.5% 62.0%
+iPR 478% 66.5% 521% 303% 533% 61.5%

" baseline is YOLOv4-CSP-fast, tested on 640x 640 input resolution.
* PR: prediction refinement.
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Fig. 9. Value of learned implicit representation for prediction refinement. The learned implicit
knowledge could automatically mapping [(x,y), (w,h),0b],cls] information of different anchors.

5.4 Canonical Representation for Multi-Task

When one wants to train a model that can be shared by many tasks at the same time,
since the joint optimization process on loss function must be executed, multiple parties
often pull each other during the execution process. The above situation will cause the
final overall performance to be worse than training multiple models individually and then
integrating them. In order to solve the above problem, we propose to train a canonical
representation for multi-tasks. Our idea is to augment the representation power by in-
troducing implicit representation to each task branch, and the effect it causes is listed
in Table 3. As the data illustrated in Table 3, without the introduction of implicit rep-
resentation, some index scores improved after multi-task training, and some dropped.
After introducing implicit representation to joint detection and classification (JDC), in the
model category corresponding to + iJDC, we can clearly see that the overall index score
has increased significantly, and it has surpassed the performance of single-task training
model. Compared to when implicit representation was not introduced, the performance
of our model on medium-sized objects and large-sized objects has also been improved by
0.3% and 0.7%, respectively. In the experiment of joint detection and embedding (JDE),
because of the characteristic of implicit representation implied by feature alignment, the
effect of improving the index score is more significant. Among the index scores corre-
sponding to JDE and + iJDE listed in Table 3, all index scores of + iJDE surpass the index
that does not introduce implicit representation. Among them, the AP for large objects
even increased by 1.1%.

Table 3. Ablation study of multi-task joint learning.

Model AP APY  APY  APY AP AP

baseline 48.0% 66.8% 523% 30.0% 53.0% 62.7%

JDC 477% 668% 51.9% 308% 524% 61.6%
+iJDC 481% 671% 522% 311% 52.7% 62.3%

JDE 481% 66.7% 524% 30.7% 532% 61.9%
+iJDE  483% 668% 52.6% 30.7% 53.4% 63.0%

" baseline is YOLOv4-CSP [15], tested on 640x 640 input resolution.
* JID{C, E}: joint detection & {clssification, embedding}.
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(a) Input pair  (b) ‘+’ addition (c) ‘%’ multiplication (d) ‘®’ concatenation

Fig. 10. Implicit modeling with (b) addition, (c) multiplication, and (d) concatenation operators.

5.5 Implicit Modeling with Different Operators

Table 4 shows the experimental results of using different operators shown in Fig. 10
to combine explicit representation and implicit representation. In the implicit knowledge
for feature alignment experiment, we see that addition and concatenation both improve
performance, while multiplication actually degrades performance. The experimental re-
sults of feature alignment are in full compliance with its physical characteristics, because
it must deal with the scaling of global shift and all individual clusters. In the implicit
knowledge for prediction refinement experiment, since the operator of concatenation will
change the dimension of output, we only compare the effects of using addition and mul-
tiplication operators in the experiment. In this set of experiments, the performance of
applying multiplication is better than that of applying addition. Analyzing the reason, we
found that center shift uses addition decoding when executing prediction, while anchor
scale uses multiplication decoding. Because center coordinate is bounded by grid, the
impact is minor, and the artificially set anchor owns a larger optimization space, so the
improvement is more significant.

Table 4. Ablation study of different operators.

Model AP APYW AP AP AP AP

baseline 47.8% 663% 52.1% 30.1% 525% 62.0%

+iFA 479% 66.6% 523% 30.6% 53.1% 62.6%
x iFA 474% 658% 51.6% 29.6% 522% 62.1%
@ iFA 478% 66.5% 522% 303% 52.9% 62.3%

+iPR 478% 665% 521% 303% 53.3% 61.5%
x iPR 480% 66.7% 523% 298% 53.4% 61.8%

* baseline is YOLOv4-CSP-fast, tested on 640 x 640 input resolution.
* {+, x, @}: {addition, multiplication, concatenation }.

Based on the above analysis, we designed two other sets of experiments — { x iFA*,
x iPR*}. In the first set of experiments — x iFA*, we split feature space into anchor
cluster level for combination with multiplication, while in the second set of experiments —
x iPR*, we only performed multiplication refinement on width and height in prediction.
The results of the above experiments are illustrated in Table 5. From the figures shown
in Table 5, we find that after corresponding modifications, the scores of various indices
have been comprehensively improved. The experiment shows that when designing how
to combine explicit and implicit knowledge, we must first consider the physical meaning
of the combined layers to achieve a multiplier effect.
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Table S. Ablation study of different operators.

Model AP APX  APY APy AP AP

baseline 47.8% 663% 52.1% 30.1% 52.5% 62.0%

x iFA*  479% 66.6% 52.0% 305% 52.6% 62.3%
x iPR*  481% 66.5% 521% 301% 533% 61.9%

* baseline is YOLOv4-CSP-fast, tested on 640 x 640 input resolution.

5.6 Modeling Implicit Knowledge in Different Ways

We tried to model implicit knowledge in different ways, including vector, neural
networks, and matrix factorization. When modeling with neural networks and matrix fac-
torization, the default value of implicit prior dimension is twice that of explicit represen-
tation dimension. The results of this set of experiments are shown in Table 6. We can see
that whether it is to use neural networks or matrix factorization to model implicit knowl-
edge, it will improve the overall effect. Among them, the best results have been achieved
by using matrix factorization model, and it upgrades the performance of AP, APsy, and
AP75 by 0.2%, 0.4%, and 0.5%, respectively. In this experiment, we demonstrated the ef-
fect of using different modeling ways. Meanwhile, we confirmed the potential of implicit
representation in the future.

Table 6. Ablation study of different modeling approaches.

Model AP AP APY  APY AP AP/

baseline 47.8% 663% 52.1% 30.1% 525% 62.0%

+iFA 479% 66.6% 523% 30.6% 53.1% 62.6%
+wiFA  478% 664% 52.0% 308% 528% 61.9%
+icFA 48.0% 66.7% 52.6% 303% 532% 62.5%

* baseline is YOLOv4-CSP-fast, tested on 640 x 640 input resolution.
* {i, wi, ic}: {vector, neural network, matrix factorization}, see 4.2.

5.7 Analysis of Implicit Models

We analyze the number of parameters, FLOPs, and learning process of model
with/without implicit knowledge, and show the results in Table 7 and Fig. 11, respec-
tively. From the experimental data, we found that in the model with implicit knowledge
set of experiments, we only increase the amount of parameters and calculations by less
than one ten thousandth, but significantly improve the performance of the model, and the
training process can converge quickly and correctly.

Box Objectness Classification
I —— baseline |
3 implicit )
w ¥ |t ©
1’4 | g D e
ol o\ S
% | %
\ \\\\ \
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epoch epoch epoch

Fig. 11. Learning curve of model with and without implicit knowledge.
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Table 7. Information of model with/without implicit knowledge.

Model AP # parameters MFLOPs

baselinel  47.8% 52908989 117517.2952
implicit1  48.0% 52911546 (+0.005%)  117519.4372 (+0.002%)

baseline 2 51.4% 37262204 326256.1624
implicit2  51.9% 37265016 (+0.008%)  326264.7304 (+0.003%)

* baseline 1 is YOLOv4-CSP-fast, tested on 640x 640 input resolution.
* baseline 2 is YOLOv4-P6-light, tested on 1280 x 1280 input resolution.
* implicit {1, 2} are baseline {1, 2} with + iFA, x iPR.

5.8 Implicit Knowledge for Object Detection

We compare the effectiveness of the proposed method with object detection’s state-
of-the-art methods. The benefits of introducing implicit knowledge are shown in Table 8.
For the entire training process, we follow the scaled-YOLOvV4 [15] training process, that
is, train from scratch 300 epochs first, and then fine-tune 150 epochs. Table 9 illustrates
the comparisons with the state-of-the-art methods. One thing worth noting is that our
proposed method does not have additional training data and annotations, and it achieves
comparable accuracy as Scaled-YOLOv4 and improves 88% inference speed in the same
condition. By introducing the unified network of implicit knowledge, we still achieve
results that are sufficient to match the state-of-the-art methods.

Table 8. Benefit from implicit knowledge.

Model AP APY APY APY AP AP
baseline 514% 69.5% 56.4% 35.2% 55.8% 64.6%
implicit 51.9% 69.8% 56.8% 36.0% 56.3% 65.0%

fine-tuned implicit 52.5% 70.5% 57.6% 37.1% 57.2% 65.4%

* baseline is YOLOv4-P6-light, tested on 1280 x 1280 input resolution.
* implicit is baseline with + iFA, x iPR.

Table 9. Comparion of state-of-the-art.

Method pre. seg. add. AP'“' AP AP FPSY100
YOLOR (ours) 55.4% 73.3% 60.6% 30
ScaledYOLOV4 [15] 55.5%73.4% 60.8% 16
YOLOR (ours) V' 582%75.8% 63.8% 30
EfficientDet [13] v 55.1%74.3% 59.9% 6.5
SwinTransformer [10] v V 577% - - -
CenterNet2 [26] v V' 56.4%74.0%61.6%  —
CopyPaste [6] v Vv Vv 5713% - - -

* pre. : large dataset image classification pre-training.
* seg. : training with segmentation ground truth.
*add. : training with additional images.
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Fig. 12. Multimodal unified netwrok.

5.9 Implicit Knowledge for Different Methods

Finally, we apply proposed implict knowledge model on different methods. The
performance is shown in Table 10. We can find that the proposed unified network can
benefits the performance of all methods, especially for high quality prediction.

Table 10. Implicit knowledge for different methods.

Model APPor  APOX APhY APTask Apmask Apmask
Faster R-CNN [27] 37.4% 58.1% 404% - - -
+ implicit 37.6% 58.5% 40.8% - - -
Mask R-CNN [28] 38.2% 58.8% 41.4% 34.7% 55.7% 37.2%
+ implicit 383% 59.1% 41.9% 34.8% 558% 37.3%
Sparse R-CNN [29] 37.9% 56.0% 40.5% - - -
+ implicit 38.0% 56.3% 40.5% - - -
FCOS [30] 36.6% 56.0% 38.8% - - -
+ implicit 36.6% 56.1% 39.1% - - -
ATSS [31] 394% 57.6% 428% - - -
+ implicit 39.6% 51.8% 428% - - -

6. CONCLUSIONS

In this paper, we show how to construct a unified network that integrates implicit
knowledge and explicit knowledge, and prove that it is still very effective for multi-task
learning under the single model architecture. In the future, we shall extend the training to
multi-modal and multi-task, as shown in Fig. 12.
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