
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 385-411 (2017)

385

QR*-Tree: An Adaptive Space-Partitioning Index
for Monitoring Moving Objects

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM†

College of Information and Communication Engineering
Sungkyunkwan University

Jangan-gu, Suwon, 440-746 Korea
E-mail: {khoiphan; youn7147; ukim}@skku.edu; harim3826@gmail.com

A continuous range query over moving objects continually retrieves the moving ob-

jects that are currently within a given query region of interest. Most existing approaches
assume that moving objects continually communicate with the server to report their cur-
rent locations and the server updates the results of queries continuously. However, this
assumption degrades the system performance because the communication cost and the
server workload increase when the number of moving objects and queries becomes huge.
The QR-tree is a query indexing structure, which helps the server cooperate with the
moving objects efficiently by utilizing the available computational resources of the
moving objects to improve the overall system performance. In this paper, we propose a
variant of the QR-tree, namely, the QR*-tree, which helps reduce (i) the amount of loca-
tion-update stream generated from moving object and (ii) the server work load for query
evaluation. Through a series of comprehensive simulations, we verify the efficiency of
the QR*-tree in terms of the wireless communication cost and the server workload.

Keywords: moving objects, location sensing, location-update stream, location-based ser-
vices, range monitoring queries, query indexing, mobile/ubiquitous computing

1. INTRODUCTION

With the growing popularity of mobile devices equipped with location sensing
technology and the advances in wireless networks and navigation systems, location-
based services (LBSs) have been widely acknowledged to be the most promising appli-
cations in ubiquitous computing environments [1-18]. Many convenient LBSs are often
based on the functionality of evaluating continuous range queries (CRQs), each of which
continually retrieves the moving objects that are currently located within a spatial query
region of interest. For instance, a transportation company wants to track vehicles’ loca-
tions; a restaurant manager wants to send advertising messages to potential customers
who are surrounding his restaurant; a tour guide needs to monitor some groups in differ-
ent areas; a traffic management department wants to monitor the traffic conditions in
some areas. In such applications, the query results should be updated when the moving
objects exit or enter the regions of interest.

The studies on CRQ evaluation can be broadly categorized into two types which
depend on the movement of the queries. In the first category, the studies focus on sta-
tionary or quasi-stationary queries over moving objects [1, 5, 10, 15, 17, 18], while the
second category deals with moving queries over moving objects [2, 4, 6, 12-14]. Our
work belongs to the former category. The majority of existing solutions for CRQ evalua-

Received January 8, 2016; revised August 17, 2016; accepted September 16, 2016.
Communicated by Wen-Chih Peng.
† Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2017.33.2.7

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

386

tion assume that moving objects periodically send location-update to the server via wire-
less connections, and the server identifies the affected queries and updates their results if
necessary [10, 13, 17, 18]. However, if the number of moving objects (and queries) reg-
istered at the server becomes huge, the overall system performance may deteriorate con-
siderably because of the overwhelming server workload and the severe communication
bottleneck [19].

To address the above problem, the safe region technique was proposed in [5, 15].
The safe region, given to each moving object o, is the area that contains the current loca-
tion of o and does not overlap with any query boundary. As a result, o need not send its
location update to the server as long as it does not exit its safe region. Although the safe
region technique generally improves the system performance to a certain degree, due to
the fact that the size of a safe region allocated to each object o is relatively small, and
thus o easily exits its current safe region and contacts the server for receiving a new safe
region. As a result, the server must frequently determine o’s safe regions, leading to in-
tensive computational overhead.

Fig. 1. Example of workspace split in MQM.

The monitoring query management (MQM), which aims to reduce the communica-
tion cost and the server workload by utilizing the available capabilities of moving objects,
was introduced by Cai et al. in [1]. MQM partitions the rectangular workspace (or the
database domain) into a set of disjoint subdomains. When a query region overlaps with a
subdomain, the overlapping area is called a monitoring region. MQM uses the binary
partitioning tree (BP-tree) and additional data structure for indexing queries based on
monitoring regions. If the number of monitoring regions in a subdomain exceeds a pre-
defined split threshold t, the subdomain is split into two smaller equal subdomains. This
split process recursively continues until there is no subdomain that contains more than t
monitoring regions. Fig. 1 shows an example of the workspace split for query regions
q1.R ~ q5.R, assuming t = 2. In MQM, each moving object o is assigned (i) a rectangular
subspace of the entire workspace, named the resident domain, which contains o; and (ii)

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 387

all monitoring regions that overlap with o’s resident domain. The size of o’s resident
domain is determined by o’s capability, o.Cap, which indicates the maximum number of
(nearby) monitoring regions o can load and process at a time. Assuming the capability
o.Cap of the moving object o in Fig. 1 is 4, for instance, o is assigned (i) the red-dotted
rectangle, which includes two subdomains N11 and N12, as its resident domain and (ii)
four monitoring regions R11, R12, R2, and R41, which overlap with o’s resident domain. In
MQM, the moving object o will contact the server to receive a new resident domain (to-
gether with new monitoring regions) or to let the server update the corresponding query
result, respectively, only when o exits its resident domain or crosses any of the boundary
of its assigned monitoring regions. As a result, the moving objects and the server share
the CRQ evaluation, which helps the server workload degrade. The communication cost
also decreases because the moving objects know exactly when they should send the
messages to server. However, when a query region overlaps with many subdomains, the
number of monitoring regions may increase rapidly. This leads MQM to assign a small
resident domain to the moving object o; accordingly, o has to frequently contact to the
server to receive a new resident domain. In addition, because o checks its movement
against the monitoring regions instead of the original query regions, o may unnecessarily
contact the server. As shown in Fig. 1, when the moving object o moves from monitoring
region R11 to monitoring region R12, it sends two messages to the server in order to notify
that it exited R11 and entered R12. Nevertheless, the query result of q1 does not change
because o is still in the query region q1.R.

To overcome the limitations of MQM, Jung et al. proposed the query region-tree
method (QRT) [20]. QRT uses the Query Region tree (QR-tree) for indexing queries based
on the original query regions instead of the monitoring regions. This helps the QRT assign
a much larger resident domain to the moving object o. Consequently, in QRT, the number
of communications between the moving objects and the server is reduced. Similarly to
MQM, QRT also partitions the workspace into a set of subdomains. Each leaf node in the
QR-tree corresponds to a subdomain and is associated with a list of queries, which have the
query regions overlap with the subdomain. When a leaf node is overflow (i.e., the number
of queries overlapped with its corresponding subdomain exceeds the threshold t), the sub-
domain of this leaf node is split into two new equal-sized subdomains vertically or hori-
zontally. This split method is called the center split method [1].

Fig. 2. Example of center split in QR-tree.

Fig. 2 shows an example of center split method in the QR-tree, assuming t = 2. The
example is similar to the one in Fig. 1, except the size of query region q3.R is larger. This

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

388

small difference obliges the QRT to divide the subdomains N11, N12, and N22 to {N111,
N112}, {N121, N122} and {N221, N222}, respectively. It is easy to observe that the center split
method incurs unnecessary splits. In particular, the QR-tree has the following drawbacks:

 First, the size of subdomains in the QR-tree is small. This leads the QRT to assign

small resident domain to moving object o. As a consequence, o may have to frequently
contact the server to receive a new resident domain.

 Second, when inserting a query, the recursive method SplitNode (See Algorithm 3 in
[20]) can be invoked many times, this increases the server workload.

 Third, as the workspace is split into many subdomains, the size of QR-tree becomes
large (i.e., the number of nodes in QR-tree is much). Therefore, there will be more
time consuming in order to search for a resident domain, or to insert/delete a query re-
gion in the QR-tree.

In this paper, we introduce a new variant of QR-tree, namely, the QR*-tree, to over-

come the above drawbacks of the QR-tree. The QR*-tree uses a new splitting node
method, called the SmartSplit method, which helps build a QR*-tree with large subdo-
mains, and the number of nodes in the QR*-tree is less than that in the QR-tree. Because
the insert/delete query operations of QR*-tree is similar to that of QR-tree, in this work,
we focus on describing the SmartSplit splitting node method.

The reminder of this paper is organized as follows. In Section 2, the QRT is sum-
marized. In Section 3, the details of the SmartSplit method are described. In Section 4 the
results of simulation experiments are presented. In Section 5, some related work is re-
viewed. Finally, Section 6 concludes the paper.

2. THE QUERY REGION TREE METHOD (QRT)

2.1 System Overview

In the QRT, the server and moving objects share the evaluation process of CRQs. In
order to achieve this, QRT uses the resident domain concept. Similar to the models pre-
sented in most existing work [1, 5, 6, 15, 17, 18], the system model QRT considers in-
cludes a set of moving objects, the central server, and clients who issue queries (See Fig.
3).

Fig. 3. System overview [20].

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 389

The moving objects and the clients communicate through the server. Each moving
object o is conscious of its location (e.g., is equipped with a GPS receiver), and has some
available (memory and computational) capability, o.Cap. It is assumed that each moving
object o has heterogeneous capability o.Cap, which is measured by the number of query
regions it can load and process at a time, and that o.Cap ≥ θ, where θ is a system param-
eter that indicates the minimum number of query regions each moving object should be
capable of processing; accordingly, a moving object with dominant capability is assigned
a larger resident domain together with a bigger number of original query regions. Each
moving object sends a message to the server via a wireless connection only when (i) it
exits its current resident domain or (ii) it crosses any of its assigned query regions q.R.
While the former is for receiving a new resident domain, the latter is to allow the server
to update the result of the corresponding query q. Each client can issue multiple queries
to the server and receives the results of these queries from the server via high-speed
wired or wireless connections. The moving objects and the queries registered at the serv-
er are assumed to be identified by their unique identifiers.

The server maintains (i) a query table, hashed on query identifiers and (ii) the QR-
tree. The query table stores, for each query q, an identifier qid, a query region q.R, and
the result. Three main tasks are performed by the server as follows:

 Query registration (or de-registration): the task of query registration (or de-regis-

tration) is performed when a new query q is issued (or q is terminated) by a client,
consisting of inserting q into (or deleting q from) the query table, updating the QR-tree,
and broadcasting a message to all the moving objects in order to notify them of these
changes.

 Resident domain assignment: when the registration of a new moving object or the
message sent by a moving object that exits its current resident domain, the task of res-
ident domain assignment is performed. A new resident domain is searched by travers-
ing the QR-tree. Then, it is broadcast with a number of nearby query regions and an
object identifier oid.

 Query result update: mainly in response to the message sent by a moving object
whose movement crosses one of its assigned query regions q.R. The result of the cor-
responding query q is updated. This task may also be performed when o contacts the
server to receive a new resident domain.

2.2 The Query Region Tree (QR-Tree)

In the QRT, there are four categories about the overlap relationship between a query
region q.R and a (sub) domain N as shown in Fig. 4: covers (Fig. 4 (a)), is covered by
(Fig. 4 (b)), partially intersects (Fig. 4 (c)), and equals (Fig. 4 (d)). The QR-tree built by
splitting the entire workspace recursively is a binary tree index of queries. Given a set of
query regions on the workspace that corresponds to the root, if the number of these query
regions is greater than the split threshold t, it is split into two subdomains, each of which
corresponds to a child node of the root. This process recursively lasts until every subdo-
main has no more than t query regions that are covered by or partially intersect the sub-
domain, and it corresponds to a leaf node. Note that the moving object with the minimum
capability among all the moving objects registered at the server determines the threshold

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

390

value t (≥ θ).
A leaf node of the QR-tree stores at most t query identifiers, each of which refers to

a query q in the query table. A non-leaf node stores two entries of the form (ptr, N),
where ptr is a pointer to a child node (i.e., leaf or non-leaf node) and N is a subdomain of
the child node pointed to by ptr. From now, the symbol ‘N’ denotes both a tree node and
its corresponding (sub) domain. Each (leaf or non-leaf) node additionally stores a varia-
ble Count and is associated with a special list, called the covering list (CL). The QR-tree
fulfills the following properties:

1. A leaf node N stores a query identifier qid of a query q only if q.R is covered by or

partially intersects N. It is important to note that although q.R overlaps with N, qid is
not stored in N if q.R covers or equals N.

2. A query identifier qid of a query q can be redundantly stored in several leaf nodes if
q.R partially intersects these leaf nodes.

3. For each entry (ptr, Ń) stored in a non-leaf node N; Ń represents one of the equal
halves of N’s domain.

4. For each (leaf and non-leaf) node N, N.Count records the total number of query re-
gions that are covered by or partially intersect N.

5. For each (leaf and non-leaf) node N, its associated covering list N.CL keeps every
query identifier qid of a query q whose query region q.R covers or equals to N.

Fig. 5 shows an example of the QR-tree for the query regions q1.R ~ q5.R shown in

Fig. 2.

(a) q.R covers N (b) q.R is covered N (c) q.R partially intersects N (d) q.R equals N

Fig. 4. Classification of the overlap relationship.

Fig. 5. Example of QR-tree with center split method.

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 391

3. THE SMARTSPLIT METHOD

In this section, we present a new splitting node method, called SmartSplit, which helps
build a QR*-tree with less number of nodes and larger subdomains than the QR-tree.

3.1 Split Strategy

We assume that a (sub) domain N is split into two subdomains, N1 and N2, and we
call the line ℓ that splits N the splitting line (SL). The SL ℓ can be horizontal (ℓ.y is the
y-coordinate of ℓ) or vertical (ℓ.x is the x-coordinate of ℓ). Our split strategy is based on
four rules:

First, the subdomains must have an overlap relationship with at least one query re-
gion, i.e., N1.Count > 0 and/or N1.CLnull, and N2.Count > 0 and/or N2.CLnull. If N1
does not overlap with any query region, the query regions in N2 are the same with that in
N and the split is therefore inefficacious. Figs. 6 (a) and (b) show examples of vertical
SLs and horizontal SLs, respectively. In the figures, ℓ1, ℓ5, ℓ6 and ℓ8 are invalid SLs,
while ℓ2, ℓ3, ℓ4 and ℓ67 are valid SLs in accordance with the first rule.

Second, the number of SLs should be minimized. If there are more SLs, the smaller
size of subdomains will be obtained. This rule helps maintain the size of subdomains as
large as possible.

 (a) Vertical SLs. (b) Horizontal SLs.

Fig. 6. Examples of SLs.

Definition 1: (Suboptimal SL). A suboptimal SL is a SL, which makes N1.Count ≤ t and
N2.Count ≤ t.

 (a) One suboptimal SL. (b) Uncountable suboptimal SLs.

Fig. 7. Examples of suboptimal SLs.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

392

It is clear that the suboptimal SL helps make only one split. Fig. 7 shows two exam-
ples of splitting (sub) domains with the threshold t being equal to 1. In Fig. 7 (a), there is
one suboptimal SL ℓ, while in Fig. 7 (b), there are uncountable suboptimal SLs ℓi be-
tween [ℓ1, ℓ2] (i.e., ℓ1.x ≤ ℓi.x ≤ ℓ2.x). If there is one suboptimal SL in the (sub) domain
(e.g., Fig. 7 (a)), it is chosen to split the (sub) domain. On the other hand, if there is no
suboptimal SL (e.g., Fig. 6), the third rule and the fourth rule will be evaluated. In case
that there are more than one suboptimal SL (e.g., Fig. 7 (b)), the third rule and the fourth
rule will be considered among them.

Third, the number of queries in two subdomains N1 and N2 should be equal to the
threshold value t or smaller than t. The best case is: N1.Count = N2.Count = N.Count/2. This
rule helps the probability of splitting N1 and/or N2 into new subdomains when a new query
is registered become low. To evaluate this rule, the variance of queries in N1 and N2 (de-
noted by VarQ of ℓ) is considered foremost; the smaller VarQ, the better. If there are many
SLs with the same VarQ, the total number of queries in N1 and N2 (denoted by SumQ of ℓ)
is considered subsequently; the smaller SumQ, the better. If VarQs of the SLs are equal, the
fourth rule is evaluated. VarQ and SumQ of the SL ℓ are defined as follows:

VarQ(ℓ) = (N1.Count N.Count/2)2 + (N2.Count N.Count/2)2, (1)
SumQ(ℓ) = N1.Count + N2.Count. (2)

Fig. 8 (a) shows an example of splitting the domain N with the threshold t being
equal to 3. In the example, there are many suboptimal SLs between [ℓ1, ℓ2] and [ℓ3, ℓ4].
However, the SL ℓ3 is chosen to split N because its VarQ is minimum (i.e., 0). In Fig. 8
(b), assuming t = 2, there are two suboptimal SLs, ℓ1 and ℓ2. Because VarQ(ℓ1) =
VarQ(ℓ2) = 0.5, SumQ is computed. The SL ℓ2 is chosen to split N because SumQ(ℓ1) = 4
and SumQ(ℓ2) = 3.

 (a) Choose SL with VarQ. (b) Choose SL with SumQ.

Fig. 8. Examples of choosing SLs based one VarQ and SumQ.

Fourth, the area of two subdomains N1 and N2 tends to be equal. The best case is:
N1.Area = N2.Area = N.Area/2, where N.Area is the area of N. The fourth rule aims to
create the subdomains with the relatively equal areas. This helps avoid the case of some
too small subdomains and some too large subdomains. The variance of the areas of N1
and N2 (denoted by VarA of ℓ) is used to evaluate the fourth rule; the smaller VarA, the
better. VarA of a SL ℓ is defined as:

VarA(ℓ) = (N1.Area N.Area/2)2 + (N2.Area N.Area/2)2. (3)

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 393

In the example in Fig. 7 (b), there are many suboptimal SLs between [ℓ1, ℓ2]. Chec-
king the third rule, these suboptimal SLs have the same SumQ and VarQ (i.e., 0 and 2,
respectively). Then, the fourth rule is considered and the SL ℓ2 is chosen, because its
VarA is minimum.

3.2 The SmartSplit Algorithm

The SmartSplit algorithm has two phases, (i) sweeping the (sub) domain to find the
horizontal and vertical SLs and (ii) evaluating the SLs to find the best SL based on the
rules mentioned in Section 3.1.

3.2.1 The sweeping domain phase

In this section, we present the method to find the vertical SLs on a domain N (the
horizontal SLs on N are found similarly). Let us assume that there is an imaginary verti-
cal SL ℓ that sweeps from the left edge to the right edge of N. It is clear that when ℓ
passes over the left edge or the right edge of a query region q.R, the number of queries on
the subdomains created by ℓ may be changed. In particular, if ℓ passes over the left edge
of q.R (or ℓ enters q.R), the number of queries in the left subdomain (i.e., N1) created by ℓ is increased. If ℓ passes over the right edge of q.R (or ℓ exits q.R), the number of que-
ries in the right subdomain (i.e., N2) is decreased. We call the SLs at the left edge and the
right edge of the query regions in N the candidate SLs, and the x-coordinates of the can-
didate SLs are called the candidate positions.

 (a) Candidate SLs. (b) Coverting query region candidate.

Fig. 9. Examples of candidate SLs and covering query region.

In Fig. 9 (a), assuming t = 1, ℓ1, ℓ2, ℓ3 and ℓ4 are the candidate SLs, while x1, x2, x3

and x4 are the candidate positions that correspond to the candidate SLs. In the figure,
because the left edge of q1.R is out of N, the SL ℓ1 at the left edge of N becomes the can-
didate SL. It can be observed that every vertical SL ℓi between two continuous SLs ℓ2
and ℓ3 can split N into two subdomains N1 and N2, where N1.Count = 1 and N2.Count = 1.
Fig. 9b shows an example of splitting the domain N with t = 1. For every SL ℓi between
[ℓ3, ℓ4], the right subdomain N2 is covered by q2.R. We call q2.R the covering query re-
gion. It is important to note that if q2.R covers or equals to N2, the query identifier of q2 is
added to the covering list of N2.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

394

Lemma 1: Given two continuous candidate SLs ℓi and ℓj, VarQ(ℓi) ≤ VarQ(ℓk) or VarQ
(ℓj) ≤ VarQ(ℓk), where ℓk is a SL between (ℓi, ℓj) (i.e., ℓi.x < ℓk.x < ℓj.x).

Proof: We prove this lemma by contradiction. Let us assume that VarQ(ℓk) VarQ(ℓi) <
0 and VarQ(ℓk) VarQ(ℓj) < 0.

The subdomains are created by ℓi, ℓj and ℓk are (Ni1, Ni2), (Nj1, Nj2) and (Nk1, Nk2),

respectively. Without the loss of generality, we define:

Ni1.Count = x, Ni2.Count = y,

then, we have:

Nk1.Count = x + a, Nk2.Count = y
Nj1.Count = x + a, Nj2.Count = y b,

where a is the number of query regions that have the left edges overlap with ℓi and b is
the number of query regions that have the right edges overlap with ℓj. Because we do not
consider the covering query regions in this lemma, the effect of the covering query re-
gions will be verified later.

From Eq. (1) we have:

VarQ(ℓk) VarQ(ℓi) = a(a + 2x N)
VarQ(ℓk) VarQ(ℓj) = b(b + 2y N).

By combining with our assumption, we obtain:

N > a + 2x (4)
N > b + 2y. (5)

With the SLs ℓi and ℓj, we have:

x ≥ N – y (6)
x + a ≥ N y + b. (7)

By combining Eqs. (4) and (5), we obtain:

2N > 2x + 2y + a – b. (8)

By combining (6) and (7), we obtain:

2N ≤ 2x + 2y + a – b. (9)

Because of Eqs. (8) and (9), our assumption becomes wrong, and thus VarQ(ℓi) ≤
VarQ(ℓk) or VarQ(ℓj) ≤ VarQ(ℓk).

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 395

 (a) Continuous candidate SLs. (b) The central SL.

Fig. 10. Examples of two continuous SLs and central SL.

Fig. 10 (a) shows an example of two continuous SLs, ℓi and ℓj, assuming t = 5. In this

example, N = 6, x = 4, y = 4, a = 1, b = 2, and VarQ(ℓi) = 2, VarQ(ℓk) = 5, VarQ(ℓj) = 5.

Lemma 2: Given two continuous candidate SLs ℓi and ℓj, SumQ(ℓi) ≤ SumQ(ℓk) and
SumQ(ℓj) ≤ SumQ(ℓk), where ℓk is a SL between (ℓi, ℓj).

Proof: Similarly to the proof of Lemma 1, without the loss of generality, we define:

Ni1.Count = x, Ni2.Count = y.

We have:

Nk1.Count = x + a, Nk2.Count = y
Nj1.Count = x + a, Nj2.Count = y b.

Then, SumQ(ℓi) = x + y, SumQ(ℓk) = x + a + y, SumQ(ℓj) = x + a + y b. It is easy

to observe that SumQ(ℓi) ≤ SumQ(ℓk) and SumQ(ℓj) ≤ SumQ(ℓk).

Lemma 3: Given two continuous candidate SLs ℓi and ℓj, the best SL between [ℓi, ℓj] is ℓi or ℓj or ℓc, where ℓc is called central SL and ℓc.x = (N.Left + N.Right)/2, ℓi.x < ℓc.x < ℓj.x.1

Proof: We only consider the scenario of VarQ(ℓi) = VarQ(ℓk) = VarQ(ℓj) and SumQ(ℓi)
= SumQ(ℓk) = SumQ(ℓj), for other cases, from Lemma 1 and Lemma 2, ℓi and/or ℓj is the
best SL based on the third rule. The fourth rule is considered with three situations. First,
the central SL ℓc is between [ℓi, ℓj], ℓc is the best SL because VarA(ℓc) = 0. Second, ℓc is
on the left of [ℓi, ℓj], ℓi is the best SL because its VarA is minimum (ℓi is the nearest SL
to ℓc). Third, ℓc is on the right of [ℓi, ℓj], ℓj is the best SL.

In Fig. 10 (b), assuming t = 3, ℓc is a central SL between two continuous candidate

SLs, ℓi and ℓj.

1 In this paper, we use N.Left and N.Right, the x-coordinates of the left edge and the right edge of N, respec-
tively; N.Bottom, N.Top are the y-coordinates of the bottom edge and the top edge of N, respectively.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

396

(a) Covering query regions cover [ℓi, ℓj]. (b) Covering query regions touch [ℓi, ℓj].

Fig. 11. Effect of covering query regions to SLs.

Fig. 11 (a) shows an example of covering query regions overlap two continuous
candidate SLs, ℓi and ℓj (t = 3). In this case, q1.R and q3.R cover all SLs between [ℓi, ℓj].
We can see that q1.R and q3.R do not effect to the values VarQ, SumQ of the SLs between
[ℓi, ℓj]. In Fig. 11 (b), assuming t = 3, q1.R and q3.R touch the candidates SLs, ℓi and ℓj,
respectively. It is clear that the covering query regions help reduce the Count value of
subdomains created by ℓi and ℓj (i.e., Ni1 and Nj2). The covering query regions have more
positive influence on the candidate SLs than the SLs between candidate SLs.

As such, in the finding the SLs on the domain phase, the algorithm only needs to
seek the candidate SLs and the central SL. The Algorithm 1, denoted by SweepDomain,
describes the process of finding the SLs.

Algorithm 1: SweepDomain
Input N: a domain
Output SLlist: a list of splitting lines
1. Initialize CQRlist, SLlist, binary search tree BST
2. for each query region QR of each qid stored in N do
3. if(QR.Left ≤ N.Left) then
4. create new candidate position p = <N.Left, 1, 0>
5. if(QR.Bottom ≤ N.Bottom and QR.Top ≥ N.Top)
6. insert QR to CQRlist
7. else
8. create new candidate position p = <QR.Left, 1, 0>
9. if(p is not in BST) then
10. insert p into BST
11. else
12. increase LeftCount of p in BST by 1
13. if(QR.Right ≥ N.Right) then
14. create new candidate position ṕ = <N.Right, 0, 1>
15. if(QR.Bottom ≤ N.Bottom and QR.Top ≥ N.Top)
16. insert QR to CQRlist
17. else
18. create new candidate position ṕ = <QR.Right, 0, 1>
19. if (ṕ is not in BST) then
20. insert ṕ into BST
21. else
22. increase RightCount of ṕ in BST by 1
23. for each candidate position cp in BST in in-order traversal do
24. if(pre_cp is null) then
25. num_left = cp.LeftCount
26. num_right = cp.RightCount
27. else
28. if(pre_cp.Pos < (N.Left + N.Right)/2 < cp.Pos) then
29. create a new SL ℓc = <v, (N.Left + N.Right)/2, num_left, N.Count num_right>

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 397

30. insert ℓc into SLlist
31. num_right = num_right + cp.RightCount
32. create a new SL ℓ = <v, cp.Pos, num_left, N.Count - num_right>
33. insert ℓ into SLlist
34. num_left = num_left + cp.LeftCount
35. pre_cp = cp
36. remove the last SL in SLlist
37. for each SL ℓ in SLlist do
38. for each query region QR in CQRlist do
39. if(QR covers ℓ and QR.Left ≤ N.Left) then
40. decrease ℓ.Count1 by 1
41. else if(QR covers ℓ and QR.Right ≥ N.Light) then
42. decrease ℓ.Count2 by 1
43. return SLlist

The SweepDomain has three steps as follows. First, SweepDomain collects infor-
mation of candidate positions, from the query regions of queries stored in N. For each
query region QR, SweepDomain creates the candidate position at the left edge first (lines
3-12). If the left edge of QR is out of N, SweepDomain creates a new candidate position
at the left edge of N (line 4). The candidate position has the format of the form <Pos,
LeftCount, RightCount>, where Pos is the x-coordinate of the candidate position, Left-
Count is the number of query regions that have the x-coordinate of the left edge being
equal to Pos, RightCount is the number of query regions that have the x-coordinate of the
right edge being equal to Pos. SweepDomain also collects all covering query regions,
and stores them in a list called CQRlist (line 6). SweepDomain uses a binary search tree
(called BST) to store the candidate positions efficiently (lines 9-12). If there is an existing
candidate position at the same position in BST, SweepDomain increases LeftCount of the
existing candidate position in BST by 1 (line 12). SweepDomain does the similar way to
the right edge of QR (lines 13-22).

Second, SweepDomain creates SLs at candidate positions by sweeping the domain
N from the left to the right. When traversing BST in in-order traversal, the candidate po-
sitions are visited in the ascending order of their positions. At the first candidate position
(the last candidate position), there is no query region overlap with the left subdomain N1
(the right subdomain N2) of the SL at this position, then SweepDomain does not create a
SL at this position, following the first rule (lines 24 and 36). The SL has the format of the
form <Type, Pos, Count1, Count2>, where Type states the SL horizontally or vertically
(h indicates the horizontal SL, v indicates the vertical SL), Pos is the coordinate of SL,
Count1 is the number of query regions that overlap N1, Count2 is the number of query
regions that overlap N2. SweepDomain calculates Count1 and Count2 based on LeftCount
value and RightCount value of the candidate positions that it meets when sweeping N.
SweepDomain also creates a SL at the center of the domain (lines 28-30). All SLs are
stored in a list called SLlist (lines 30 and 33).

Third, SweepDomain uses the covering query region list CQRlist in the first step to
check the covering list of the subdomains of all SLs in SLlist. For each SL ℓ in SLlist, if
there is a query region QR that covers or equalizes to the subdomain N1, SweepDomain
decreases ℓ.Count1 by 1 (lines 39-40). If QR covers or equalizes to the subdomain N2,
SweepDomain decreases ℓ.Count2 by 1 (lines 40-41). After the third step, the value ℓ.Count1 (or ℓ.Count2) is equal to the value N1.Count (or N2.Count); accordingly, the SL ℓ can be used in the evaluating SLs phase.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

398

Lemma 4: SweepDomain runs in O(t log t + ct) time, where c is the number of covering
query regions.

Proof: The number of query region is t + 1 and the number of candidate positions is at
most 2t + 2. Then, the time to finish the first step is O(t log t). The time to finish the sec-
ond step and third step is O(t) and O(ct), respectively. Therefore, SweepDomain finishes
in O(t log t + ct) time.

3.2.2 The evaluating splitting lines phase

The process of evaluating the SLs is presented in the Algorithm 2, denoted by
EvaluateSL. EvaluateSL is fairly simple and intuitive. For each SL ℓ, if there is no tem-
porary best SL, ℓ becomes a temporary best SL (lines 2-3). Otherwise, EvaluateSL
checks if ℓ is a suboptimal SL. First, if ℓ is a suboptimal SL and there is no suboptimal
SL earlier, ℓ is chosen as the temporary best SL (lines 5-7). In case there is a suboptimal
SL (temporary best SL) earlier, EvaluateSL compares two suboptimal SLs based on the
rules in Section 3.1. The order of comparative values is VarQ-SumQ-VarA. If ℓ is better
than the old one, ℓ replaces the old one to become the new temporary best SL (lines
9-16). Second, ℓ is not a suboptimal SL, EvaluateSL only evaluates ℓ if there is no
suboptimal SL earlier because of the second rule. The evaluation is similar to the case of
suboptimal SL with three comparative values, VarQ-SumQ-VarA (lines 18-26). Evalu-
ateSL returns the best SL in accordance with the rules in Section 3.1.

Algorithm 2: EvaluateSL
Input N: a domain, SLlist: a SLs list
Output best_sl: the best splitting line
1. for each SL ℓ in SLlist do
2. if(best_sl is null) then
3. best_sl = ℓ
4. else
5. if(ℓ.Count1 ≤ t and ℓ.Count2 ≤ t) then
6. if(best_sl.Count1 > t or best_sl.Count2 > t) then
7. best_sl = ℓ
8. else
9. if(VarQ(ℓ) < VarQ(best_sl)) then
10. best_sl = ℓ
11. else if (VarQ(ℓ) = VarQ(best_sl)) then
12. if(SumQ(ℓ) < SumQ(best_sl)) then
13. best_sl = ℓ
14. else if (SumQ(ℓ) = SumQ(best_sl)) then
15. if(VarA(ℓ) < VarA(best_sl)) then
16. best_sl = ℓ
17. else
18. if((best_sl.Count1 > t or best_sl.Count2 > t) then
19. if(VarQ(ℓ) < VarQ(best_sl)) then
20. best_sl = ℓ
21. else if (VarQ(ℓ) = VarQ(best_sl)) then
22. if(SumQ(ℓ) < SumQ(best_sl)) then
23. best_sl = ℓ
24. else if (SumQ(ℓ) = SumQ(best_sl)) then
25. if(VarA(ℓ) < VarA(best_sl)) then
26. best_sl = ℓ

27. return best_sl

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 399

3.2.3 The overall algorithm

The overall algorithm SmartSplit is presented in Algorithm 3. SmartSplit sweeps the
domain from left to right to get vertical SLs first, then sweeps the domain from bottom to
top to get horizontal SLs (lines 1-2). After that, SmartSplit evaluates the SLs by invoking
the function EvaluateSL in order to choose the best SL (lines 3-4). Depending on the type
of this best SL, the suitable subdomains are created (lines 5-10). Fig. 12 shows the
workspace split with SmartSplit splitting node method and the QR*-tree of the example
in Fig. 2. The size of the QR*-tree is much smaller and the area of subdomains is larger
than that of QR-tree in Fig. 5.

Algorithm 3: SmartSplit
Input N: a domain
Output <N1, N2>: two subdomains N1 and N2
1. v_SLlist = invoke SweepDomain to sweep from left to right of N
2. h_SLlist = invoke SweepDomain to sweep from bottom to top of N
3. SLlist = h_SLlist merge with v_SLlist
4. best_sl = EvaluateSL(SLlist)
5. if(best_sl.Type = v) then
6. create a subdomain N1 = <N.Left, N.Bottom, best_sl.Pos, N.Top>
7. create a subdomain N2 = <best_sl.Pos, N.Bottom, N.Right, N.Top>
8. else
9. create a subdomain N1 = <N.Left, N.Bottom, N.Right, best_sl.Pos>
10. create a subdomain N2 = <N.Left, best_sl.Pos, N.Right, N.Top>
11. return <N1, N2>

Because the operations of searching for resident domains, inserting/deleting queries

and merging nodes of QR*-tree are similar to that of QR-tree, we omit the details of these
operations.

Fig. 12. QR*-tree with SmartSplit method.

4. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance of the QR*-tree (denoted

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

400

by QRT*) with that of QR-tree [20] (denoted by QRT) and MQM [1] for CRQ evaluation
in terms of the server workload and communication cost. The server workload was
measured concerning the CPU-time that the server takes for CRQ evaluation. On the
other hand, the communication cost was measured by the total number of messages
transmitted between the server and moving objects. The simulations were conducted on
dual Intel Xeon x5860 6-core processors with 8 GB RAM running on the Linux system.

4.1 Simulation Setup

Our simulations were based on two sets of queries, Uniform and Skewed, with the
workspace fixed at 25km 25km square. In Uniform, query regions are uniformly placed
on the workspace. On the other hand, in Skewed, the distribution of query regions on the
workspace follows the Zipf distribution with skew coefficient = 0.8. Each query region
in both Uniform and Skewed is a square. The movements of the moving objects generated
follow the random waypoint model (RWM) [21], which is one of the most widely used
mobility models: each moving object chooses a random point of destination on the
workspace and moves to the destination at a constant speed distributed uniformly from 0
to maximum speed. Upon reaching the destination, it remains stationary for a certain
period of time. When this period expires, the moving object chooses a new destination
and repeats the same process during the simulation time steps. The computational capa-
bility of each moving object was randomly selected from the range between 10 and 100
query regions (or monitoring regions), and thus the threshold value t of QR*-tree,
QR-tree, and BP-tree (used in MQM) was set to 10. The total number of subdomains
directly affects the performances of MQM, QRT, and QRT*, because (i) if the number of
subdomains is large, the size of subdomains is small, as a result, the size of resident do-
mains assigned to moving objects is small; (ii) if the number of subdomains is large, the
index tree (i.e., BP-tree, QR-tree and QR*-tree) is large, and it takes more time to search
resident domains or insert/delete queries. We measured the number of subdomains of
MQM, QRT and QRT* for Uniform and Skewed according to the number of query re-
gions (Fig. 13). As shown in the figure, the number of subdomains in QRT* is much
smaller than that in MQM and QRT.

 (a) Uniform. (b) Skew.

Fig. 13. Number of subdomains vs. number of queries.

We list the set of used parameters and their default values (stated in boldface) in the

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 401

simulations in Table 1. In each simulation, we evaluated the effect of one parameter
while the others were fixed at their default values. We ran each simulation for 1000 sim-
ulation time steps and measured the average of the CPU-time (in second) and total num-
ber of messages.

Besides RWM, we also used the network-based generator (NBG) [22] to generate
moving objects. We generated the moving objects on the road network of San Joaquin
County (18263 nodes, 23874 edges), scaled to fit the workspace 25km 25km.

Table 1. Simulation parameters and their values.

Simulation parameter Value used (Default)
Cardinality of Uniform/Skewed 1000 - 10,000 (5000)

Side length of query regions 0.4 - 4 km (2.0 km)
Number of moving objects 5,000 - 50,000 (25,000)

Update rates of queries 1 - 10% (0%)
Maximum speed of moving objects 10 - 100 km/h (50 km/h)

 (a) Number messages. (b) CPU time (second).

Fig. 14. Performances on RWM and NBG.

Fig. 14 shows the performance comparison, among three methods MQM, QRT, and

QRT*, for RWM and NBG in terms of (a) the number of messages and (b) the server
work load (CPU time). The simulation run on Uniform with the default values of param-
eters (i.e., Cardinality of Uniform: 5000, Side length of query regions: 2.0km, Number of
moving objects: 25,000, Update rates of queries: 0%, Maximum speed of moving ob-
jects: 50 km/h). Because the performances on RWM and NBG are similar, we only pre-
sent the simulation results using RWM.

4.2 Simulation Results

4.2.1 Effect of the number of query regions

In this simulation, we varied the cardinalities of Uniform and Skewed from 1000 to
10,000, then studied the effect of the number of query regions on the server workload
and communication cost. The purpose of this simulation was to show the scalability of
QR*-tree with regard to the number of queries. Fig. 15 shows the effect of the number of
query regions on the CPU-time the server takes to perform CRQ evaluation. In MQM,
QRT, and QRT*, the CPU-time performance is affected mainly by the search process for
assigning resident domains to moving objects.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

402

(a) Uniform. (b) Skew.

Fig. 15. CPU-time vs. number of queries.

As shown in the figure, QRT performs better than MQM for Uniform and Skewed.
This is due to the fact that, as the number of query regions increases in MQM, the num-
ber of monitoring regions increases, which leads the server to assign small resident do-
mains to moving objects. As a result, the server has to search a new resident domain fre-
quently to assign each moving object that exits its current small resident domain. The
BP-tree in MQM is built based on monitoring regions instead of the original query re-
gions, subsequently the capabilities of moving objects are measured against the huge
number of monitoring regions. On the other hand, the QR-tree is built based on the orig-
inal query regions directly and the capabilities of moving objects are measured against
only the number of original query regions that are covered by or partially intersect each
QR-tree node. However, the QRT performance is not as effective as QRT*. In other
words, with the SmartSplit splitting node method, the size of the subdomains and the
number of nodes in QR*-tree are respectively larger and smaller than that of QR-tree.
Accordingly, it is less time required for the server in QRT* to assign larger resident do-
mains to the moving objects than that in QRT. This reduces the frequency at which a new
resident domain is searched for each moving object. QRT* takes 50.3%, and 73.3% of the
server workload, as compared to MQM and QRT, respectively, for Uniform. Meanwhile,
QRT* takes 61.7% and 78.4% of the server workload, as compared to MQM and QRT,
respectively, for Skewed.

(a) Uniform. (b) Skew.

Fig. 16. Number of messages vs. number of queries.

Fig. 16 shows the effect of the number of query regions on the total number of mes-
sages transmitted between the server and moving objects. As the number of query re-

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 403

(a) Uniform. (b) Skew.
Fig. 17. CPU-time vs. size of query regions.

gions increases, the performances of all the methods degrade. However, QRT and QRT*
outperform MQM for Uniform and Skewed. This is because, in MQM, the server assigns
small resident domains to moving objects because of the tremendous number of moni-
toring regions produced. On the other hand, in QRT and QRT*, the server can assign
moving objects large resident domains. This leads to a reduction not only in the frequen-
cy at which the moving objects contact the server to receive new resident domains, but
also in the number of messages the server sends to the moving objects to assign new res-
ident domains. Notably, because the QR-tree and the QR*-tree index queries based on the
original query regions instead of monitoring regions, a situation where moving objects
send unnecessary messages to update the corresponding query results can be avoided in
QRT and QRT*. The communication cost of QRT* is less than that of QRT because the
size of subdomains in QRT* is larger, hence the resident domains assigned to moving obj-
ect are larger than that in QRT, consequently reducing the number of messages to require
a new resident domain in QRT*. As shown in Fig. 16, QRT* performs the best in all the
cases. As compared to MQM and QRT, QRT* incurs 38.6% and 84.4%, respectively, of
the communication cost for Uniform. On the other hand, QRT* incurs 49.9% and 79.8%
of the communication cost as compared to MQM and QRT, respectively, for Skewed.

4.2.2 Effect of the size of query regions

In this simulation, we varied the side length of query regions from 0.4 km to 4 km to
examine how the size of query regions affects the performances of MQM, QRT, and
QRT*. QRT* performs better and are less sensitive to this parameter than MQM and QRT
for Uniform and Skewed (Fig. 17). As the side length of each query region becomes
longer (i.e., the size of each query region becomes larger), an excessive overlap among
query regions occurs. This increases the number of monitoring regions in MQM and causes
the BP-tree to be split until all the common areas among the query regions are partitioned
into a huge number of distinct monitoring regions. As a result, the server in MQM fre-
quently searches a new resident domain for each moving object o that exits its small resi-
dent domain. The excessive overlap among query regions also increases number of subdo-
mains in QRT, and thus, the server in QRT takes more time to search a resident domain for
o and the size of this resident domain decreases consequently. On the other hand, the
SmartSplit splitting node method helps QRT* keep the size of subdomains as large as pos-
sible; therefore, the size of QR*-tree is also kept as small as possible. Under the circum-
stances, QRT* takes less time to search a resident domain and assigns larger resident do-
main to o than MQM and QRT. As compared to MQM and QRT, QRT* takes 53.4% and

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

404

76.1%, respectively, of the server workload for Uniform. Besides, QRT* takes 57.3% and
75.3% of the server workload, as compared to MQM and QRT, respectively, for Skewed.

Fig. 18 shows the effect of the side length of each query region (i.e., the size of each
query region) on the total number of messages. QRT* performs better than MQM and QRT
for Uniform and Skewed for the reason mentioned in the description of the first simulation.
On the other hand, MQM performs worst because the longer side length of each query re-
gion (i.e., larger size of each query region) negatively affects the performance of MQM. In
all cases, QRT* achieves the best performance for Uniform and Skewed. In comparison
with MQM and QRT, QRT* incurs 41.7% and 84.0%, respectively, of the communication
cost for Uniform. On the other hand, QRT* incurs 50.5% and 79.1% of the communication
cost as compared to MQM and QRT, respectively, for Skewed.

(a) Uniform. (b) Skew.

Fig. 18. Number of messages vs. size of query regions.

4.2.3 Effect of the number of moving objects

In this simulation, we increased the number of moving objects from 5,000 to 50,000
to study the way the number of moving objects affects the performances of MQM, QRT,
and QRT*. As shown in Fig. 19 and Fig. 20, when the number of moving objects in-
creases, the overhead of all the methods increases in terms of the CPU-time and the
amount of messages transmitted between the server and moving objects. In all cases,
QRT* outperforms MQM and QRT for the reason mentioned in the description of the
first simulation. It is also clear that MQM performs worst regarding server load and
communication cost.

(a) Uniform. (b) Skew.
Fig. 19. CPU-time vs. number of moving objects.

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 405

(a) Uniform. (b) Skew.

Fig. 20. Number of messages vs. number of moving objects.

4.2.4 Effect of the update rates of queries

In this simulation, we investigated how the updates (i.e., insertion and deletion) of
queries affect the performance of MQM, QRT, and QRT* by increasing update rates
(from 1% to 10%) of queries in Uniform and Skewed. Fig. 21 shows the effect of the up-
date rates of queries on the CPU-time. As can be seen in the figure, QRT* performs much
better than MQM and QRT for Uniform and Skewed. This is because, in MQM, when q
is inserted, q.R of q is partitioned into many monitoring regions. The insertion operation
of the BP-tree is, therefore, performed for each of these monitoring regions. This in-
creases the CPU-time drastically. The case where an existing query deleted is similar. On
the other hand, in QRT (and QRT*), when a q is inserted (or deleted), the insertion (or
deletion) operation of QR-tree (and QR*-tree) is performed only once for q.R of q. How-
ever, the size of QR*-tree is much smaller than that of QR-tree, consequently, the cost of
insertion (or deletion) operation in QR*-tree is less than that in QR-tree. In this figure,
QRT* outperforms the other methods in all cases. QRT* takes 58.6% and 74.7% of the
server workload, as compared to MQM and QRT, respectively, for Uniform. On the other
hand, QRT* takes 54.7% and 62.4% of the server workload, as compared to MQM and
QRT, respectively, for Skewed.

(a) Uniform. (b) Skew.

Fig. 21. CPU-time vs. update rates of queries.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

406

(a) Uniform. (b) Skew.
Fig. 22. Number of messages vs. update rates of queries.

Fig. 22 shows the effect of the update rates of queries on the total amount of mes-
sages transmitted. It is notable that MQM approach is worst, and as expected, QRT*
achieves the best performance in all cases for Uniform and Skewed. From our experi-
mental results, when the update rates of queries increase, the number of messages sent
from server to moving objects increases in all methods. In QRT and QRT*, the number of
messages from moving objects to server increases slightly, while in MQM considerably
decreases (because of the effect of deleting queries), and in consequence, the total num-
ber of messages in MQM decreases. It can be seen that MQM is the most sensitive
method with the update rates of queries.

4.2.5 Effect of the maximum speed of moving objects

Finally, we varied the maximum speed of moving objects from 10 km/h to 100 km/h
to investigate the effect of the moving objects’ speed on the performances of MQM,
QRT, and QRT*.

(a) Uniform. (b) Skew.

Fig. 23. CPU-time vs. maximum speed of moving objects.

As shown in Fig. 23, the performances of all the methods in terms of the CPU time

degrade as the maximum speed of moving objects increases. The reason is that as the
speed of moving objects increases, they may frequently exit their resident domains, and
request new resident domains. It can be seen in Fig. 23 that QRT* performs best in all

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 407

cases. In particular, QRT* takes 57.0% and 77.9% of the server workload, as compared to
MQM and QRT, respectively, for Uniform. Meanwhile, QRT* takes 66.2% and 81.2% of
the server workload, as compared to MQM and QRT, respectively, for Skewed.

Fig. 24 indicates the effect of the maximum speed of moving objects on the total
amount of messages transmitted. As expected, the performances of all the methods de-
crease as the maximum speed of moving objects increases. It is also observed from the fig-
ure that MQM performs worst, whereas QRT* performs best for both Uniform and Skewed.

(a) Uniform (b) Skew

Fig. 24. Number of messages vs. maximum speed of moving objects.

5. RELATED WORK

In the past few decades, stationary objects were considered and efficient spatial access
methods such as the R-tree [23] and its variants [24-26] were developed broadly. These
approaches, however, have retrieve the results only once at a specific time point. In recent
years, continuous query evaluation has been extensively attractive so much attention due to
LBSs over moving objects. Continuous query evaluation can be categorized into two types
which depend on the move of the queries. The first category deals with stationary or quasi-
stationary queries over moving objects [1, 5, 10, 15, 17, 18], and the second one focuses on
moving queries over moving objects [2, 4, 6, 12-14]. Because our work belongs to the first
category, we elaborate on the review of the representative methods in the first category and
evaluates the approaches in the latter category shortly. Considering the trajectories of object
movements as a priori or predictable, Saltenis et al. suggested the Time-Parameterized
R-tree (TPR-tree) for indexing moving object [27], where each object’s location is trans-
formed into a linear function of time. An upgraded version of the TPR-tree which uses the
same data structure as the TPR-tree, called the TPR*-tree, was proposed by Tao et al. [28].
In this version, new insertion and deletion algorithm were applied. Further, some index
structures such as the STRIPES [28] and the Bx-tree [30], a variant of the B+-tree, were
presented in order to enhance the performance of the TPR-tree family. The know-trajectory
assumption, however, does not hold for many real-life LBS scenarios (e.g., the velocity and
direction of a typical customer on the road are frequently changed). This causes these index
structures to be expensive to maintain.

Because queries remain active for a long period of time and are stationary, indexing
queries seems to be a promising approach in comparison with indexing frequently mov-

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

408

ing objects. Kalashnkov et al. [10] proposed the in-memory grid index, while using the
R-tree to index queries was suggested by Prabhakar et al. [15]. Wu et al. [18] used a new
query indexing approach called Containment Encoded Square (CES) based indexing.
To sum up, it was considered that objects proactively report their location updates to the
server whenever they move. In the meantime, the server continually receives the loca-
tion-update stream, regulates the queries affected by the movements of the objects, and
updates their results. However, a remarkable communication bottleneck and the increas-
ing of the workload of determining the affected queries may cause when constant loca-
tion updates by a large number of objects. Besides, the handheld device carried by each
object exhausts the battery life quickly due to the fact that the transmission of a location
update message over a wireless connection takes a considerable amount of energy. In
order to reduce the frequency of each moving object reporting its location update, the
safe region technique was proposed [5, 15]. Cai et al. [1] and Jung et al. [20] proposed
the monitoring query management method (MQM) and the QR-tree method (QRT), re-
spectively, which aim to reduce the communication cost and the server workload by lev-
eraging heterogeneous computational capabilities of moving objects through the concept
of resident domain. In recent times, the safe region approach for moving circular range
queries over stationary objects was suggested in [2]. Jung et al. [20, 31] proposed BQR-
tree and GQR-tree, which deal with continuous range queries with specifications for
non-spatial attributes.

The Scalable INcremental hash based Algorithm (SINA), which concentrates on the
evaluation of continuous moving queries over moving objects, based on the notions of
shared execution and incremental evaluation was suggested by Mokbel et al. [13].
Gedik et al. [4] proposed MobiEyes, where moving objects play an active role in the
query evaluation task as in MQM. Liu et al. [12] presented two kinds of communica-
tion methods for moving query evaluation, on-demand access and periodic broadcasting,
to reduce the communication costs and energy waste of handheld devices carried by the
objects and the query issuers. In addition, the broadcast grid index (BGI) [14] was dis-
cussed by considering that the objects periodically report their location-updates. The
method uses periodic broadcasting to communicate between the query issuers and the
server in order to evaluate moving queries.

6. CONCLUSIONS

In this paper, we addressed the problem of the efficient and scalable evaluation of
continuous range queries (CRQs). Given a set of geographically distributed moving ob-
jects, the primary goal of our study is to minimum communication cost and server work-
load by letting the moving objects evaluate several CRQs that are relevant to them. To
achieve this, we proposed a variant of the Query Region tree (QR-tree), namely QR*-tree.
We carried out a series of comprehensive simulations and demonstrated that the QR*-tree
outperforms the existing methods, validating the effectiveness of the QR*-tree.

ACKNOWLEDGEMENTS

This research project was supported by Ministry of Culture, Sports and Tourism

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 409

(MCST) and from Korea Copyright Commission in 2016.

REFERENCES

1. Y. Cai, K.A. Hua, G. Cao, and T. Xu, “Real-time processing of range-monitoring
queries in heterogeneous mobile databases,” IEEE Transactions on Mobile Compu-
ting, Vol. 5, 2006, pp. 931-942.

2. M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Continuous moni-
toring of distance-based range queries,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 23, 2011, pp. 1182-1199.

3. X. Chen, J. Pang, and R. Xue, “Constructing and comparing user mobility profiles
for location-based services,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 261-266.

4. B. Gedik and L. Liu, “Mobieyes: a distributed location monitoring service using
moving location queries,” IEEE Transactions on Mobile Computing, Vol. 5, 2006,
pp. 1384-1402.

5. H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring continuous spa-
tial queries over moving objects,” in Proceedings of ACM International Conference
on the Management of Data, 2005, pp. 479-490.

6. J. L. Huang and C.-C. Huang, “A proxy-based approach to continuous location-
based spatial queries in mobile environments,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 25, 2013, pp. 260-273.

7. S. Ilarri, E. Mena, and A. Illarramendi, “Location-dependent query processing: where
we are and where we are heading,” ACM Computing Surveys, Vol. 42, 2010, pp. 1-73.

8. H. Jung, B. K. Cho, Y. D. Chung, and L. Liu, “On processing location based top-k
queries in the wireless broadcasting system,” in Proceedings of the 2010 ACM Sym-
posium on Applied Computing, 2010, pp. 585-591.

9. H. Jung, Y. D. Chung, and L. Liu, “Processing generalized k-nearest neighbor que-
ries on a wireless broadcast stream,” Information Science, Vol. 188, 2012, pp. 64-79.

10. D. V. Kalashnkov, S. Prabhakar, and S. E. Hambrusch, “Main memory evaluation of
monitoring queries over moving objects,” Distributed and Parallel Databases, Vol.
15, 2004, pp. 117-135.

11. K. C. K. Lee, B. Zheng, C. Chen, and C. Y. Chow, “Efficient index-based approach-
es for skyline queries in location-based applications,” IEEE Transactions on Know-
ledge and Data Engineering, Vol. 25, 2013, pp. 2507-2520.

12. F. Liu, K. A. Hua, and F. Xie, “A hybrid communication solution to distributed
moving query monitoring systems,” Electronic Commerce Research and Applica-
tions, Vol. 10, 2011, pp. 214-228.

13. M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: scalable incremental processing of
continuous queries in spatio-temporal databases,” in Proceedings of ACM SIGMOD,
2004, pp. 623-634.

14. K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of spatial que-
ries in wireless broadcast environments,” IEEE Transactions on Mobile Computing,
Vol. 8, 2009, pp. 1297-1311.

TIEN-KHOI PHAN, HARIM JUNG, HEE YONG YOUN AND UNG-MO KIM

410

15. S. Prabhakar, Y. Xia, W. G. Aref, and S. Hambrusch, “Query indexing and velocity
constrained indexing: scalable techniques for continuous queries on moving objects,”
IEEE Transactions on Computers, Vol. 51, 2002, pp. 1124-1140.

16. M. Song, H. Choo, and W. Kim, “Spatial indexing for massively update intensive
applications,” Information Sciences, Vol. 203, 2012, pp. 1-23.

17. K. L. Wu, S. K. Chen, and P. S. Yu, “Efficient processing of continual range queries
for location-aware mobile services,” Information Systems Frontiers, Vol. 7, 2005, pp.
435-448.

18. K. L. Wu, S. K. Chen, and P. S. Yu, “On incremental processing of continual range
queries for location-aware services and applications,” in Proceedings of MobiQui-
tous, 2005, pp. 261-269.

19. X. Ding, X. Lian, L. Chen, and H. Jin, “Continuous monitoring of skylines over un-
certain data streams,” Information Sciences, Vol. 184, 2012, pp. 196-214.

20. H. Jung, Y. S. Kim, and Y. D. Chung, “QR-tree: An efficient and scalable method
for evaluation of continuous range queries,” Information Sciences, Vol. 274, 2014,
pp. 156-176.

21. J. Broch, D. A. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance com-
parison of multi-hop wireless ad hoc network routing protocols,” in Proceedings of
ACM/IEEE MobiCom, 1998, pp. 85-97.

22. T. Brinkhoff, “A framework for generating network-based moving objects,” GeoIn-
formatica, Vol. 6, 2002, pp. 153-180.

23. A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceed-
ings of ACM SIGMOD, 1984, pp. 47-57.

24. N. Roussopoulos and C. Faloutsos, “The R+-tree: a dynamic index for multi-dimen-
sional objects,” in Proceedings of International Conference on Very Large Database,
1987, pp. 507-518.

25. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an efficient
and robust access method for points and rectangles,” in Proceedings of ACM SIG-
MOD, 1990, pp. 322-331.

26. I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using fractals,” in
Proceedings of International Conference on Very Large Database, 1994, pp.
500-509.

27. S. Saltenis, C. Jensen, S. Leutenegger, and M.A. Lopez, “Indexing the positions of
continuously moving objects,” in Proceedings of ACM SIGMOD, 2000, pp. 331-342.

28. Y. Tao, D. Papadias, and J. Sun, “The TPR*-tree: an optimized spatio-temporal ac-
cess method for predictive queries,” in Proceedings of International Conference on
Very Large Database, 2003, pp. 790-801.

29. J. M. Patel, Y. Chen, and V. P. Chakka, “STRIPES: an efficient index for predicted
trajectories,” in Proceedings of ACM SIGMOD, 2004, pp. 635-646.

30. C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update efficient B+-tree based in-
dexing of moving objects,” in Proceedings of International Conference on Very
Large Database, 2004, pp. 768-779.

31. H. Jung, M. Song, H. Y. Youn, and U. M. Kim, “Evaluation of content-matched
range monitoring queries over moving objects in mobile computing environments,”
Sensors, Vol. 15, 2015, pp. 24143-24177.

QR*-TREE: AN INDEX FOR MONITORING MOVING OBJECTS 411

Tien-Khoi Phan received the B.S. and M.S. degrees in
Computer Science and Engineering from Ho Chi Minh City Uni-
versity of Technology, Viet Nam in 2007 and 2011, respectively.
He is a Ph.D. candidate in College of Information and Commu-
nication Engineering, Sungkyunkwan University, Korea. His res-
arch interests include database systems, spatial queries, GIS, and
big data.

HaRim Jung received his B.S. degree in Computer Science
from Kwangwoon University, Seoul, Korea, in 2004. He received
his M.S. and Ph.D. degrees in Computer Science and Engineering
from Korea University, Seoul, Korea, in 2007 and 2012, respec-
tively. Currently, he is a research fellow at the School of Infor-
mation and Communication Engineering, Sungkyunkwan Uni-
versity, Suwon, Korea. His research interests include location-
based services and spatial data management in mobile/pervasive
environments.

Hee Yong Youn received the B.S and M.S degree in electri-
cal engineering from Seoul National University, Seoul, Korea, in
1977 and 1979, respectively, and the Ph.D. degree in computer
engineering from the University of Massachusetts at Amherst, in
1988. Currently, he is Professor of College of Information and
Communication Engineering and Director of Ubiquitous compu-
ting Technology Research Institute, Sungkyunkwan University,
Suwon, Korea. His research interests include cloud and ubiquitous
computing, system software and middleware, and RFID/USN.

Ung-Mo Kim received the B.E. degree in Mathematics
from Sungkyunkwan University, Korea in 1981 and the M.S.
degree in Computer Science from Old Dominion University,
U.S.A. in 1986. He received Ph.D. degree in Computer Science
from Northwestern University, U.S.A. in 1990. Currently, he is a
Professor of College of Information and Communication Engi-
neering, Sungkyunkwan University, Korea. His research inter-
ests include data mining, database security, data warehousing,
GIS, and big data.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

