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For a connected graph G and a subset S of its vertices, the Steiner tree problem con-

sists of finding a minimum-size connected subgraph containing S. The Steiner distance of 
S is the size of a Steiner tree for S, and the Steiner k-diameter of G is the maximum value 
of the Steiner distance over all vertex subsets S of cardinality k. Calculation of Steiner 
trees and Steiner distance is known to be NP-hard in general, so applications may benefit 
from using graphs where the Steiner distance and structure of Steiner trees are known. In 
this paper, we investigate the Steiner distance and Steiner k-diameter of the join, corona, 
and cluster of connected graphs, as well as threshold graphs.  
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1. INTRODUCTION 
 

The Steiner tree problem in graphs was formulated in 1971 by Hakimi [1] and Levi 
[2]. In the case of an unweighted, undirected graph, this problem consists of finding, for 
a subset of vertices S, a minimum-size connected subgraph that contains the vertices in S. 
The size of the resulting subgraph is also known as the Steiner distance of S. The com-
putational side of the Steiner tree problem has been widely studied, and it is known to be 
an NP-hard problem for general graphs [3]. The determination of a Steiner tree in a 
graph is a discrete analogue of the well-known geometric Steiner problem: In a Euclide-
an space (usually a Euclidean plane) find the shortest possible network of line segments 
connecting a set of given points. 

Steiner trees have applications to multiprocessor computer networks, as well as 
other network structures. For example, it may be desired to connect a certain set of pro-
cessors with a subnetwork that uses the least number of communication links. A Steiner 
tree for the vertices representing the processors that need to be connected corresponds to 
such a minimum subnetwork. Since computing such a Steiner tree is NP-hard in general, 
when designing networks for such applications it may be beneficial to simplify this 
computation by choosing networks where the size and structure of Steiner trees are 
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known. In this paper, we consider the Steiner tree and Steiner distance problems, as well 
as the closely related Steiner k-diameter problem, for some particular families of graphs: 
namely, for the join and corona of connected graphs, as well as threshold graphs. 

 
1.1 Preliminaries 

 

All graphs in this paper are undirected, unweighted, finite and simple. We follow [4] 
in describing some frequently used notation and terminology, and refer the reader to [5] 
for notation and terminology not described here. For a graph G, let V(G), E(G), e(G), and 
(G) denote the set of vertices, the set of edges, the size, and the minimum degree, re-
spectively. The degree of a vertex v in G is denoted by degG(v). We denote by Kn, Pn, 
K1,n-1 and Cn be the complete graph of order n, the path of order n, the star of order n, and 
the cycle of order n, respectively. For any subset X of V(G), let G[X] denote the subgraph 
of G induced by X; similarly, for any subset F of E(G), let G[F] denote the subgraph of 
G induced by F. We use G\X to denote the subgraph of G obtained by removing all the 
vertices of X together with the edges incident with them from G; similarly, we use G\F to 
denote the subgraph of G obtained by removing all the edges of F from G. If X = {v} and 
F = {e}, we simply write G\v and G\e for G\{v} and G\{e}, respectively. For two subsets 
X and Y of V(G) we denote by EG[X, Y] the set of edges of G with one end in X and the 
other end in Y. If X = {x}, we simply write EG[x, Y] for EG[{x}, Y]. 

 
1.2 Distance and its Generalizations 

 
Distance is one of the most basic concepts of graph theory. If G is a connected 

graph and u, v  V(G), then the distance dG(u, v) between u and v is the length of a 
shortest path connecting u and v. If v is a vertex of a connected graph G, then the eccen-
tricity e(v) of v is defined by e(v) = max{dG(u, v) | u  V(G)}. Furthermore, the radius 
rad(G) and diameter diam(G) of G are defined by rad(G) = min{e(v) | v  V(G)} and 
diam(G) = max{e(v) | v  V(G)}. These last two concepts are related by the inequalities 
rad(G) ≤ diam(G) ≤ 2rad(G). 

The distance between two vertices u and v in a connected graph G also equals the 
minimum size of a connected subgraph of G containing both u and v. This observation 
suggests a generalization of distance. The Steiner distance of a graph, introduced by 
Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept 
of classical graph distance. For a graph G(V, E) and a set S ⊆ V(G) of at least two verti-
ces, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph 
T(V, E) of G that is a tree with S ⊆ V. Let G be a connected graph of order at least 2 
and let S be a nonempty set of vertices of G. Then the Steiner distance dG(S) among the 
vertices of S (or simply the distance of S) is the minimum size among all connected sub-
graphs whose vertex sets contain S. Note that if H is a connected subgraph of G such that 
S ⊆ V(H) and e(H) = dG(S), then H is a tree. Observe that dG(S) = min{e(T) | S ⊆ V(T)}, 
where T is subtree of G. Furthermore, if S = {u, v}, then dG(S) = dG(u, v) is the classical 
distance between u and v. Set dG(S) = ∞ when there is no S-Steiner tree in G. 
 
Observation 1.1: Let G be a graph of order n and k be an integer with 2 ≤ k ≤ n. If S ⊆ 
V(G) and |S| = k, then dG(S) ≥ k − 1. 
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Let n and k be two integers with 2 ≤ k ≤ n. The Steiner k-eccentricity ek(v) of a ver-
tex v of G is defined by ek(v) = max{dG(S)|S ⊆ V(G), |S| = k, and v  S}. The Steiner 
k-radius of G is sradk(G) = min{ek(v)|v  V(G)}, while the Steiner k-diameter of G is 
sdiamk(G) = max{ek(v) | v  V(G)}. Note for every connected graph G that e2(v) = e(v) 
for all vertices v of G and that srad2(G) = rad(G) and sdiam2(G) = diam(G). 
 

Observation 1.2: Let k, n be two integers with 2 ≤ k ≤ n. 
(1) If H is a spanning subgraph of G, then sdiamk(G) ≤ sdiamk(H). 
(2) For a connected graph G, sdiamk(G) ≤ sdiamk+1(G). 

 
In [6], Chartrand, Okamoto, Zhang obtained the following upper and lower bounds 

of sdiamk(G). 
 

Theorem 1.1: [6] Let k, n be two integers with 2 ≤ k ≤ n, and let G be a connected graph 
of order n. Then k − 1 ≤ sdiamk(G) ≤ n − 1. Moreover, the upper and lower bounds are 
sharp. 

 
In [7], Dankelmann, Swart and Oellermann obtained a bound on sdiamk(G) for a 

graph G in terms of the order of G and the minimum degree  of G, that is, sdiamk(G) ≤ 
3

1
n

  + 3k. Later, Ali, Dankelmann, Mukwembi [12] improved the bound of sdiamk(G) and 
showed that sdiamk(G) ≤ 3

1
n

  + 2k − 5 for all connected graphs G. Moreover, they con-
structed graphs to show that the bounds are asymptotically best possible. 

 

1.3 Product Networks and Threshold Graphs 
 

Product networks were proposed based upon the idea of using the product as a tool 
for “combining” two known graphs with established properties to obtain a new one that 
inherits properties from both [8]. Familiar examples of operations used to produce pro- 
duct networks include the Cartesian product of graphs, the strong product, and the lexi- 
cographic product. The join, corona, and cluster operations can also be regarded as graph 
product operations [9, 10] for more details. 

The join, corona, and cluster operations, as well as threshold graphs, are defined as 
follows. 

The join or complete product of two disjoint graphs G and H, denoted by GH, is the 
graph with vertex set V(G)∪V(H) and edge set E(G)∪E(H)∪{gh|gV(G), hV(H)}. 

The corona G ◦ H is obtained by taking one copy of G and |V(G)| copies of H, and 
by joining each vertex of the ith copy of H with the ith vertex of G, where i = 1, 
2, …, |V(G)|. 

The cluster [10] G⊙H is obtained by taking one copy of G and |V(G)| copies of a 
rooted graph H, and by identifying the root of the ith copy of H with the ith vertex 
of G, where i = 1, 2, ..., |V(G)|. The cluster can be viewed as a special case of the 
rooted product of graphs [11], where the family H1, …, H|V(G)| of rooted graphs to 
be joined to the base graph G consists of |V(G)| copies of the same rooted graph. 

A graph G is a threshold graph, if there exists a weight function w: V(G)   and 
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a real constant t such that two vertices g, g  V(G) are adjacent if and only if w(g) 
+ w(g) ≥ t. 

 
In the following sections, we consider the Steiner distance and Steiner k-diameter 

problems for the join, corona, and cluster of connected graphs, as well as threshold 
graphs. The structure of the minimum Steiner trees can also be seen from the derivation 
of the Steiner distance. Each type of graph is treated in a separate section. 

2. STEINER DIAMETER OF THE JOIN OF CONNECTED GRAPHS 

We now give the exact value for Steiner distance of joined graphs. 
 

Proposition 2.1: Let k, m, and n be three integers with 3 ≤ k ≤ m + n, and let G and H be 
two connected graphs with n and m vertices, respectively. Let S be a set of distinct verti-
ces of GH such that |S| = k. 
 
(i) If S∩V(G)  0/ and S∩V(H)  0/, then dGH(S) = k − 1. 
(ii) If S∩V(H) = 0/ and G[S] is connected, then dGH(S) = k − 1; if S∩V(H) = 0/ and G[S] 

is not connected, then dGH(S) = k. 
(iii) If S∩V(G) = 0/ and H[S] is connected, then dGH(S) = k − 1; if S∩V(G) = 0/ and H[S] 

is not connected, then dGH(S) = k. 
 
Proof: For (i), without loss of generality, let S∩V(G) = {g1, g2, …, gx} and S∩V(H) = {h1, 
h2, ..., hk-x}. Then the tree induced by the edges in {g1h1}∪{g1hi| 2 ≤ i ≤ k − x}∪{gih1| 2 
≤ i ≤ x} is an S-Steiner tree, and so dGH(S) ≤ k − 1. From Observation 1.1, we have 
dGH(S) = k − 1, as desired. 

We only give the proof of (ii), and the proof of (iii) follows by symmetry of the join 
operation. Since S∩V(H) = 0/, it follows that S ⊆ V(G). If G[S] is connected, there exists a 
spanning tree of G[S], which is an S-Steiner tree in G. Therefore, we have dGH(S) = dG(S) 
≤ k − 1, and hence dGH(S) = k − 1. If G[S] is not connected, then dGH(S) ≥ k. The tree in- 
duced by the edges in EGH[h, S] is an S-Steiner tree, where h  V(H), and hence dGH(S) 
≤ k. So, we have dGH(S) = k.                                               

For Steiner diameter of joined graphs, we have the following. 
 

Proposition 2.2: Let G be a connected graph with n vertices, and let H be a connected 
graph with m(n ≤ m) vertices. Let k be an integer with 3 ≤ k ≤ n + m. 
 

(i) If k > m, then sdiamk(GH) = k − 1. 
(ii) If n < k ≤ m and sdiamk(H) = k − 1, then sdiamk(GH) = k − 1; if n < k ≤ m and 

sdiamk(H) ≥ k, then sdiamk(GH) = k. 
(iii) If 3 ≤ k ≤ n, and sdiamk(G) ≥ k or sdiamk(H) ≥ k, then sdiamk(GH) = k; If 3 ≤ k ≤ n 

and sdiamk(G) = sdiamk(H) = k − 1, then sdiamk(GH) = k − 1. 
 

Proof: We only give the proofs of (i) and (ii), and the proof of (iii) is similar and is 
omitted. For (i), since k > m, it follows that S∩V(G)  0/ and S∩V(H)  0/ for any S⊆V 
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(GH) and |S| = k. From (i) of Proposition 2.1, we have dGH(S) = k − 1. Therefore we 
have sdiamk(GH) = k − 1. 

For (ii), for any S ⊆ V(GH) and |S| = k, we have S ⊆ V(H), or S∩V(G)  0/ and 
S∩V(H)  0/, since n < k ≤ m. Suppose sdiamk(H) = k − 1. If S ⊆ V(H), then dGH(S) = k 
− 1, since sdiamk(H) = k − 1. If S∩V(G)  0/  and S∩V(H)  0/, then dGH(S) = k − 1 by (i) 
of Proposition 2.1. Therefore we have sdiamk(GH) = k − 1. Suppose sdiamk(H) ≥ k. Then 
we can see that sdiamk(GH) ≥ k by choosing S ⊆ V(H) with dH(S) = k. If S ⊆ V(H), then 
the tree induced by the edges in EGH[g, S] is an S-Steiner tree, where gV(G), and hence 
dGH(S) ≤ k. If S∩V(G)  0/ and S∩V(H)  0/, then dGH(S) = k − 1 by (i) of Proposition 2.1. 
Therefore we have sdiamk(GH) ≤ k, and we may conclude that sdiamk(GH) = k.     

3. STEINER DIAMETER OF THRESHOLD GRAPHS 

To calculate the Steiner distance for threshold graphs, the following observations 
are useful. 

 

Observation 3.1: Let G({1, 2, ..., n}, E) be a threshold graph with weight function w: 
V(G)   and threshold constant t. Let the vertices be labelled so that w(1) ≥ w(2) ≥ … 
≥ w(n). Then 
 
(a) d1 ≥ d2 ≥ … ≥ dn, where di is the degree of vertex i. 
(b) N(i) = {1, 2, …, di} for every i  I with di < i, and N(i)∪{i} = {1, 2, …, di + 1} when 

di ≥ i. Furthermore, if G is connected, then every vertex in G is adjacent to 1. 
(c) I = {i  V(G): di ≤ i − 1} is a maximum independent set of G and G\I is a clique in G. 

 

Proof: To see (a), note that if w(i) ≥ w( j), then w(j) + w(k) ≥ t implies that w(i) + w(k) ≥ t, 
so di ≥ dj. 

For (b), consider a fixed vertex i, and let j be the vertex with maximum label such 
that w(i) + w(j) ≥ t. For any other vertex k, if k > j, then clearly i and k are not adjacent, 
and if k ≤ j, then w(i) + w(k) ≥ w(i) + w( j) ≥ t, so i and k are adjacent. Thus if j < i then 
N(i) = {1, 2, …, j} and di = j, and if j ≥ i then N(i)∪{i} = {1, 2, …, j} and di = j − 1. 

For (c), suppose that i  I. Then for any j  V(G) with j > i, we also have j  I, since 
dj ≤ di ≤ i − 1 < j − 1. This also means that i and j are not adjacent by (b), since di < j. 
Thus no two members of I are adjacent, so I is an independent set of G. Now consider 
the set G\I = {i  V(G): dI > i − 1}. If i  G\I and j < i, then we also have j  G\I, since dj 

≥ di > i − 1 > j − 1, and we know that i and j are adjacent by (b) since di ≥ i > j. Thus 
every two members of G\I are adjacent, so G\I is a clique in G. 

Furthermore, we will now show that I is maximum. If a vertex of I is adjacent to 
every vertex of the clique G\I, then I is clearly a maximum independent set, since only 
one of those |G\I| + 1 vertices can be included in any independent set. Thus it suffices to 
show that I always contains a vertex adjacent to every vertex in G\I. Let j be the vertex 
with minimum label in I. Then (j − 1) is the element of G\I with maximum label, so dj-1 > 
j − 2 and thus dj-1 ≥ j − 1. By (b), this implies that {1, 2, …, j − 2, j} ⊆ N( j − 1), so j and 
(j − 1) are adjacent. Therefore {1, 2, …, j − 1} ⊆ N( j), and since( j − 1) was the element 
of G\I with maximum label, j is adjacent to every vertex in G\I.                   
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Let Cr and In-r denote the clique and the maximum independent set of G, respec-
tively, with V(Cr) = {g1, g2, …, gr} and V(In-r) = {g1, g2, …, gn-r} such that dG(g1)  dG(g2) 
 …  dG(gr) and dG(g1)  dG(g2)  …  dG(gn-r).  

 
Proposition 3.1: Let k and n be two integers with 3 ≤ k ≤ n, and let G be a connected 
threshold graph of order n. Let S be a set of distinct vertices of G such that |S| = k. Let gi 
be the vertex in S∩V(Cr) with the minimum subscript, and gj be the vertex in S∩V(In-r) 
with the maximum subscript. 
 
(i) If S⊆V(Cr), then dG(S) = k − 1. 
(ii) If SV(In-r), then dG(S) = k. 
(iii) If S∩V(Cr)  0/, S∩V(In-r)  0/, and gigj  E(G), then dG(S) = k − 1. 
(iv) If S∩V(Cr)  0/, S∩V(In-r)  0/, and gigj  E(G), then dG(S) = k. 

 
Proof: From the structure of threshold graph G, (i) and (ii) can be easily seen. We only 
give the proof of (iii) and (iv). Let S∩V(Cr) = {gi1, gi2, ..., gix} such that i1  i2  ...  ix, 

and S∩V(In-r) = {gj1, gj2, ..., gjk-x
} such that j1  j2  ...  jk-x. Then gi1 = gi and gjk-x

 = gj. For 

(iii), since gi gj  E(G), it follows that the tree induced by the edges in {gi1gj1, gi1gj2, ..., 
gi1gjk-x

}{gi1gi2, gi1gi3,..., gi1gix} is an S-Steiner tree in G, and hence dG(S)  k − 1. So, we 
have dG(S) = k − 1. For (iv), since K1,n-1 is the spanning tree of G, it follows from Obser-
vation 1.2 that sdiamk(G)  sdiamk(K1,n-1) = k. Since gigj E(G), it follows that gi1gj, 
gi2gj, ..., gixgj E(G), and hence there is no S-Steiner tree of size k − 1 in G. Then dG(S)  
k, and hence dG(S) = k.                                                
 

For Steiner diameter of threshold graphs, we have the following. 
 
Proposition 3.2: Let k and n be two integers with 3 ≤ k ≤ n, and let G be a connected 
threshold graph of order n. Let i be the subscript of the vertex in V(Cr) such that gign-r  

E(G) but gi+1gn-r  E(G). 
 
(i) If 3  k  n − i, then sdiamk(G) = k. 
(ii) If n − i + 1  k  n, then sdiamk(G) = k − 1. 

 
Proof: Recall that Cr and In-r are the clique and the maximum independent set of G, re-
spectively, with V(Cr) = {g1, g2, …, gr} and V(In-r) = {g1, g2, ..., gn-r} such that degG(g1)  
degG(g2)  …  degG(gr) and degG(g1)  degG(g2)  …  degG(gn-r). Since K1,n-1 is the 
spanning tree of G, it follows from Observation 1.2 that sdiamk(G)  sdiamk(K1,n-1) = k. 

For (i), if 3  k  n − r, then we choose S  V(In-r)  V(G) such that |S| = k. Since In-r 
is the maximum independent set of G, it follows that any S-Steiner tree must occupy at 
least one vertex in Cr, and hence dG(S)  k. Then sdiamk(G)  dG(S) = k, and hence sdi-
amk(G) = k. Suppose n − r + 1  k  n − i. Choose S  V(G)\{g1, g2, …, gi} with |S| = k 
such that gn-r  S. Note that for each j(i + 1  j  r), gjgn-r  E(G). Since any S-Steiner tree 
must occupy at least one vertex in {g1, g2, …, gi}, it follows that dG(S)  k, and hence 
sdiamk(G)  dG(S) = k. So, we have sdiamk(G) = k. 

For (ii), for any S  V(G) such that |S| = k, since n − i + 1  k  n, it follows that there 
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exists a vertex gp  {g1, g2, …, gi} such that gp  S. Let S1 = (S∩V(Cr))\gp and S2 = S∩V(In-r). 
Then the tree induced by the edges in ECr[gp, S1]∪Ein−r

 [gp, S2] is an S-Steiner tree in G, 
and hence dG(S) ≤ k − 1. Then sdiamk(G) ≤ k − 1, and hence sdiamk(G) = k − 1.      

4. STEINER DIAMETER OF THE CORONA OF CONNECTED GRAPHS 

In this section, let G and H be two graphs with V(G) = {g1, g2, ..., gn} and V(H) = 
{h1, h2, ..., hm}, respectively. From the definition of corona graphs, V(G ◦ H) = V(G)∪ 
{(gi, hj) | 1  i  n, 1  j  m}, where ◦ denotes the corona product operation. For g  

V(G), we use H(g) to denote the subgraph of G ◦ H induced by the vertex set {(g, hj) | 1  
j  m}. For fixed i(1  i  n), we have gi(gi, hj)  E(G ◦ H) for each j(1  j  m). Then 
V(G ◦ H) = V(G)∪V(H(g1))∪V(H(g2))∪ ... ∪V(H(gn)). 
 
Theorem 4.1: Let k, m, and n be three integers with 3 ≤ k ≤ n(m + 1), and let G and H be 
two connected graphs with V(G) = {g1, g2, ..., gn} and V(H) = {h1, h2, ..., hm}. Let S be a 
set of distinct vertices of G ◦ H such that |S| = k. 

 

dG◦H(S) = dG(SG) + k − t,  
 
where |S∩V(G)| = t, and SG is the maximum subset of V(G) such that S∩(V(H(g))∪{g}) 
 0/ for each g  SG.  
 
Proof: Without loss of generality, we can assume SG = {g1, g2, ..., gr} is the maximum 
subset of V(G) such that S∩(V(H(gi))∪{gi}) = 0/ for each g  SG. Then S  ∪r

i=1(V(H(gi)) 
∪{gi}). Clearly, |S∩{g1, g2, ..., gr}| = |S∩V(G) = t. Without loss of generality, say S∩{g1, 
g2, ..., gr} = {g1, g2, ..., gt}. Then since t ≤ r, S∩{gt+1, gt+2, ..., gr, gr+1, ..., gn} = 0/. 

For each i(1  i  r), we have S∩(V(H(gi))∪{gi})  0/. On one hand, we let T G be an 
SG-Steiner tree of size dG(SG) in G. Since |S∩V(G)| = t, it follows that |S∩(∪r

i=1V(H(gi)))| 
= k  t. Let S∩(∪r

i=1V(H(gi))) = {(gi1, hj1), (gi2, hj2), ..., (gik-t, hjk-t)}, where {gi1, gi2, ..., gik-t} 

 {g1, g2, ..., gr} and {hj1, hj2, ..., hjk-t}  V(H). Then the tree induced by the edges in E(T G) 
∪{gip(gip, hjp)|1  p  k − t} is an S-Steiner tree in G ◦ H, and hence dG◦H(S)  dG(SG) + k 
− t. 

On the other hand, since S∩(V(H(gi))∪{gi})  0/ for each gi  SG, it follows from the 
structure of G ◦ H that any S-Steiner tree T must contains all vertices in SG = {g1, g2, ..., 
gr}. Let T  be the minimal subtree of T connecting SG. Then e(T)  dG(SG). For all verti-
ces in S∩(∪r

i=1V(H(gi))), we need at least k  t edges connecting the vertices in S∩(∪r
i=1 

V(H(gi))) to SG. So, we have dG◦H(S)  e(T ) + k  t  dG(SG) + k  t.   
From the above argument, we conclude that dG◦H(S) = dG(S G) + k  t, as desired.  
 
For Steiner diameter of corona graphs, we have the following. 

 

Proposition 4.1: Let k, n, and m be integers with 3  k  n(m + 1), and let G and H be 
connected graphs with n and m vertices, respectively. 
 
(i) If 3  k  n, then sdiamk(G ◦ H) = sdiamk(G) + k. 
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(ii) If n + 1  k  mn, then sdiamk(G ◦ H) = n − 1 + k. 
(iii) If mn + 1  k  (m + 1)n, then sdiamk(G ◦ H) = n − 1 + mn. 

 
Proof: (i) For the upper bound, from the definition of sdiamk(G ◦ H), there exists a ver-
tex subset S ⊆ V(G ◦ H) with |S| = k such that dG◦H(S) = sdiamk(G ◦ H). Let S = {(g1, h1), 
(g2, h2), ..., (gk, hk)}, and let SG ⊆ {g1, g2, ..., gk}. From Theorem 4.1, we have sdiamk(G ◦ 
H) = dG◦H(S) = dG(SG) + k − t  sdiamk(G) + k − t  sdiamk(G) + k. For the lower bound, 
we choose S = {(g1, h1), (g2, h1), ..., (gk, h1)} such that dG(SG) = sdiamk(G), where SG = 
{g1, g2, ..., gk}. Then any S-Steiner tree T must contain all vertices in SG = {g1, g2, ..., gk}, 
and we also need a subtree T  of T of size at least dG(SG). For each vertex in S, we need 
at least one edge to connect it to T , and hence sdiamk(G ◦ H) ≥ dG◦H(S) ≥ dG(SG) + k = 
sdiamk(G) + k. We conclude that sdiamk(G ◦ H) = sdiamk(G) + k. 
 
(ii) For the upper bound, from the definition of sdiamk(G ◦ H), there exists a vertex sub-
set S  V(G ◦ H) with |S| = k such that dG◦H(S) = sdiamk(G ◦ H). Let S = {(g1, h1), (g2, 
h2), ..., (gk, hk)}, and let S⊆ {g1, g2, ..., gk}. From Theorem 4.1, we have sdiamk(G ◦ H) = 
dG◦H(S) = dG(S) + k − t ≤ n − 1 + k − t  n − 1 + k. For the lower bound, since n + 1 ≤ k 
 mn, we choose S = {(gi1, hj1), (gi2, hj1), ..., (gik, hjk)} such that V(G  {gi1, gi2, ..., gik }. Let 
SG = {gi1, gi2, ..., gik}. Then any S-Steiner tree T must contain all vertices in SG = V(G), 
and we need a subtree T  of T of size at least n − 1. For each vertex in S, we need at least 
one edge to connect it to T , and hence sdiamk(G ◦ H)  dG◦H(S)  n − 1 + k. We con-
clude that sdiamk(G ◦ H) = n − 1 + k. 
 
(iii) Since |V(G ◦ H)| = mn + n, it follows that sdiamk(G ◦ H) ≤ n − 1 + mn. Furthermore, 
since mn + 1  k  (m + 1)n, we choose S = {(gi1, hj1), (gi2, hj1), ..., (gik, hjk)} such that V(G) 

 {gi1, gi2, ..., gik } and V(H)  {hj1, hj2, ..., hjk }, that is, V(H(g1))∪V(H(g2))∪ ... ∪V(H(gn)) 

 S. Then any S-Steiner tree T must contain all vertices in V(G ◦ H), and hence sdiamk(G 
◦ H)  n − 1 + mn. We conclude that sdiamk(G ◦ H) = n − 1 + mn.                  

5. STEINER DIAMETER OF THE CLUSTER OF CONNECTED GRAPHS 

In this section, let G and H be two graphs with V(G) = {g1, g2, ..., gn} and V(H) = 
{h1, h2, ..., hm}, respectively. From the definition of cluster, V(G⊙H) = {(gi, hj)|1  i  n, 
1  j  m}, where ⊙ denotes the cluster product operation. For g  V(G), we use H(g) to 
denote the subgraph of G⊙H induced by the vertex set {(g, hj) | 1  j  m}. Without loss 
of generality, we assume (gi, h1) is the root of H(gi) for each gi  V(G). Let G(h1) be the 
graph induced by the vertices in {(gi, h1)|1  i  n}. Clearly, G(h1) ≃ G, and V(G⊙H) = 
V(H(g1))∪V(H(g2))∪ ... ∪V(H(gn)). 

 
Theorem 5.1: Let k, m, n be three integers with 3  k  nm, and let G, H be two con-
nected graphs with V(G) = {g1, g2, ..., gn} and V(H) = {h1, h2, ..., hm}. Let S = {(gi1, hj1), 
(gi2, hj2), ..., (gik, hjk)} be a set of distinct vertices of G⊙H. Let SG = {gi1, gi2, ..., gik} and SH 
= {hj1, hj2, ..., hjk}.  
 
(i) If S  V(G(h1)), then dG⊙H(S) = dG(SG). 
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(ii) If there exists some H(gi)(1  i  n) such that S ⊆ V(H(gi)), then dG⊙H(S) = dH(SH). 
(iii) If there is no H(gi)(1  i  n) such that S ⊆ V(H(gi)), then  
 

dG(SG) + k − t  dG⊙H(S)  r ꞏ dH(SH) + dG(S), 
 
where SH = SH if h1  SH and SH = SH∪{h1} otherwise |S∩V(G(h1))| = t, |SG| = r, and SG is 
the maximum subset of V(G) such that S∩V(H(g))  0/ for each g  SG. 

 
Moreover, the upper and lower bounds in (iii) are sharp.  

 
Proof: We only give the proof of (iii), since (i) and (ii) are both easily seen. Without loss 
of generality, we can assume SG = {g1, g2, ..., gr} is the maximum subset of V(G(h1)) 
such that S∩V(H(gi))  0/ for each gi  SG. Then S∪r

i=1V(H(gi)), and S∩V(H(gi)) = 0/ for 
each i(r + 1  i  n). Clearly, |S∩{g1, g2, ..., gr}| = |S∩V(G(h1))| = t. Without loss of gen-
eraliy, S∩{g1, g2, ..., gr} = {g1, g2, ..., gt}. Then since t ≤ r, S∩{gt+1, gt+2, ..., gr} = 0/ and 
S∩{gr+1, gr+2, ..., gn} = 0/. 

We first give the lower bound. Since S∩V(H(gi))  0/ for each gi  SG, it follows 
from the structure of G⊙H that any S-Steiner tree T must contains any vertices in SG = 
{(gi, h1) | 1 ≤ i ≤ r}. Let T  be the minimal subtree of T connecting S. Then e(T ) ≥ dG(SG). 
For all vertices in S∩(∪r

i=2|V(H(gi))), we need at least k − t edges connecting them to S. 
So, we have dG⊙H(S) ≥ e(T ) + k − t = dG(SG) + k − t, as desired.  

Next, we give the proof of the upper bound. If h1  SH, then without loss of general-
ity, let h1 = hj1. Note that there is an SG-Steiner tree T of size dG(SG) in G(h1). Since there 
is an SH-Steiner tree of size dH(SH) in H, it follows that there exists a Steiner tree of size 
dH(SH) connecting {(g1, hj1), (g1, hj2), ..., (g1, hjk)} in H(g1), say T(g1). For each i(2 ≤ i ≤ k), 
let T(gi) be the tree in H(gi) corresponding to T(g1) in H(g1). Note that T(gi)(1 ≤ i ≤ k) is 
the Steiner tree of size dH(SH) connecting {(gi, hj1), (gi, hj2), ..., (gi, hjk)} in H(gi). One can 
see that (gi1, hj1), (gi2, hj2), ..., (gik, hjk)∪a

i=2|V(T(gi)). Furthermore, the subgraph induced 
by the edges in (∪a

i=1E(T(gi))∪E(T)) is an S-Steiner tree, and hence dG⊙H(S) ≤ dG(SG) + 
rdH(SH). If h1  SH, then there is an SG-Steiner tree T of size dG(SG) in G(h1). Since there 
is an SH∪{h1}-Steiner tree of size dH(SH∪{h1}) in H, it follows that there exists a Steiner 
tree of size dH(SH∪{h1}) connecting {(g1, h1)}∪{(g1, hj1), (g1, hj2), ..., (g1, hjk)} in H(g1), 
say T(g1). For each i(2 ≤ i ≤ k), let T(gi) be the tree in H(gi) corresponding to T(g1) in 
H(g1). Note that T(gi)(1 ≤ i ≤ k) is the Steiner tree of size dH(SH) connecting {(gi, h1)}∪ 
{(gi, hj1), (gi, hj2), ..., (gi, hjk)} in H(gi). One can see that (gi1, hj1), (gi2, hj2), ..., (gik, hjk) 
V(T(gi)). Furthermore, the subgraph induced by the edges in (∪a

i=1E(T(gi)))∪E(T)) is an 
S-Steiner tree, and hence dGH(S)  dG(SG) + rdH(SH{h1}). The result follows.        

 
To show the sharpness of the above lower and upper bounds, we consider the fol-

lowing examples. 
 
Example 1: Let G = Pn = g1g2…gn and H = Pm = h1h2...hm with 3 ≤ k ≤ mn. Note that 
H(gi)  Pm for each gi(1 ≤ i ≤ n), and G(h1)  Pn. For h1  SH, if k ≤ n, then we choose S = 
{(g1, hm), (g2, hm), ..., (gk-1, hm)}∪{(gn, hm)}. Then r = k, dH(SH∪{h1}) = m − 1, dG(SG) = 
n − 1. Since the tree induced by the edges in E(G(h1))∪E(H(g1))∪E(H(g2))∪ ... ∪E(H 
(gk-1))∪E(H(gn)) is the unique S-Steiner tree, it follows that dG⊙H(S) ≥ k(m − 1) + (n − 1). 
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From Theorem 5.1, dG⊙H(S) ≤ rdH(SH∪{h1}) + dG(SG) = k(m − 1) +(n − 1). So, the upper 
bound for h1  SH is sharp. For h1  SH, if k ≤ n, then we choose S = {(g1, h1), (g2, h1), ..., 
(gk, h1)}. Then r = k, dH(SH) = 0, dG(SG) = k − 1. Then dG⊙H(S) ≥ k − 1. From Theorem 
5.1, dG⊙H(S) ≤ rdH(SH) + dG(SG) = k − 1. So, the upper bound for h1  SH is sharp. 
 
Example 2: Let G = Pn = g1g2..., gn and H = Km with 3 ≤ k ≤ mn, where V(H) = {h1, 
h2, ..., hn}. Note that H(gi) ≅ Km for each gi(1 ≤ i ≤ n), and G(h1) ≅ Pn. Choose S = {(g1, 
hm), (g2, hm), ..., (gk-1, hm)}∪{(gn, hm)}(m ≥ 2). Then dG(SG) = n − 1 and t = 0, and hence 
dG⊙H(S) ≥ n − 1 + k. Clearly, the tree induced by the edges in E(G(h1))∪EG⊙H[V(G(h1)), 
S] is an S-Steiner tree in G⊙H, and hence dG⊙H(S) ≤ n − 1 + k. So, we have dG⊙H(S) = n 
− 1 + k, which implies that the lower bound is sharp. 

 

Corollary 5.1 Let k, m, n be three integers with 3 ≤ k ≤ nm, and let G, H be two con-
nected graphs with V(G) = {g1, g2, ..., gn} and V(H) = {h1, h2, ..., hm}. Let (gi, h1) be the 
root of H(gi) for each gi(1 ≤ i ≤ n). Let S be a set of distinct vertices of G⊙H such that |S| 
= k. Then  
 

dG⊙H(S) ≤ rdH(SH∪{h1}) + dG(SG), 
 
where |SG| = r, and SG is the maximum subset of V(G) such that S∩V(H(g))  0/ for each g 

 SG. 
 
For Steiner diameter of cluster graphs, we have the following. 

 

Proposition 5.1: Let k, n, m be two integers with 3 ≤ k ≤ nm, and let G, H be two con-
nected graphs with n, m vertices, respectively. 
 
(i) If m > n and 3 ≤ k ≤ n, then  

sdiamk(G) + k ≤ sdiamk(G⊙H) ≤ k ꞏ sdiamk+1(H) + sdiamk(G). 
(ii) If m > n and n + 1 ≤ k ≤ m − 1, then  

n − 1 + k ≤ sdiamk(G⊙H) ≤ n ꞏ sdiamk+1(H) + n − 1. 
(iii) If m > n and m ≤ k ≤ nm − n, then  

n − 1 + k ≤ sdiamk(G⊙H) ≤ mn − 1. 
(iv) If m > n and nm − n ≤ k ≤ nm, then sdiamk(G⊙H) = nm − 1. 
(v) If m ≤ n and 3 ≤ k < m, then 

sdiamk(G) + k ≤ sdiamk(G⊙H) ≤ k ꞏ sdiamk+1(H) + sdiamk(G). 
(vi) If m ≤ n and m ≤ k ≤ n, then  

sdiamk(G) + k ≤ sdiamk(G⊙H) ≤ k(m − 1) + sdiamk(G). 
(vii) If m ≤ n and n < k ≤ mn − n, then  

n − 1 + k ≤ sdiamk(G⊙H) ≤ mn − 1. 
(viii) If m ≤ n and mn − n < k ≤ mn, then sdiamk(G⊙H) = mn − 1. 

 
Moreover, the upper and lower bounds are sharp. 
 

Proof: (i) For the upper bound, from the definition of sdiamk(G⊙H), there exists a vertex 
subset S ⊆ V(G⊙H) with |S| = k such that dG⊙H(S) = sdiamk(G⊙H). Let S = {(g1, h1), (g2, 
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h2), ..., (gk, hk)}, and let SG = {g1, g2, ..., gk} and SH = {h1, h2, ..., hk}. From Theorem 5.1, 
we have sdiamk(G⊙H) = dG⊙H(S) ≤ rdH(SH∪{h1}) + dG(SG) ≤ k ꞏ sdiamk+1(H) + sdiamk(G). 
For the lower bound, since k ≤ n, we choose S = {(g1, hm), (g2, hm), ..., (gk, hm)}(m ≥ 2) 
such that dG(SG) = sdiamk(G), where SG = {g1, g2, ..., gk}. Then any S-Steiner tree T must 
contain all vertices in {(g1, h1), (g2, h1), ..., (gk, h1)}(m ≥ 2), and we also need a subtree T 
of T of size at least dG(SG) in G(h1). For each vertex in S, we need at least one edge to 
connect it to T, and hence sdiamk(G⊙H) ≥ dG⊙H(S) ≥ dG(SG) + k = sdiamk(G) + k. We 
conclude that sdiamk(G) + k ≤ sdiamk(G⊙H) ≤ k ꞏ sdiamk+1(H) + sdiamk(G). 
 
(ii) For the upper bound, from the definition of sdiamk(G⊙H), there exists a vertex sub-
set S ⊆ V(G⊙H) with |S| = k such that dG⊙H(S) = sdiamk(G⊙H). Let S = {(g1, h1), (g2, 
h2), ..., (gk, hk)}, and let SG = {g1, g2, ..., gk} and SH = {h1, h2, ..., hk}. From Theorem 5.1, 
we have sdiamk(G⊙H) = dG⊙H(S) ≤ rdH(SH{h1}) + dG(S) ≤ n ꞏ sdiamk+1(H) + n − 1, 
where SG is the maximum subset of V(G) such that S∩V(H(g)) = 0/ for each g  SG. For 
the lower bound, since n + 1 ≤ k ≤ m − 1, we choose S = {(g1, hm), (g2, hm), ..., (gk, 
hm)}(m ≥ 2) such that V(G) ⊆ SG, SG = {g1, g2, ..., gk}. Then any S-Steiner tree T must 
contain all vertices in {(g1, h1), (g2, h2), ..., (gn, h1)}(m ≥ 2), and we need a subtree T of T 
of size n − 1{in G(h1). For each vertex in S, we need at least one edge to connect it to T, 
and hence sdiamk(G⊙H)  dG⊙H(S)  n − 1 + k. We conclude that n − 1 + k  sdiamk 

(G⊙H)  n ꞏ sdiamk+1(H) + n − 1. 
 
(iii) For the upper bound, from the definition of sdiamk(G⊙H), there exists a vertex sub-
set S ⊆ V(G⊙H) with |S| = k such that dG⊙H(S) = sdiamk(G⊙H). Let S = {(g1, h1), (g2, 
h2), ..., (gk, hk)}, and let SG = {g1, g2, ..., gk} and SH = {h1, h2, ..., hk}. From Theorem 5.1, 
we have sdiamk(G⊙H) = dG⊙H(S) ≤ rdH(SH{h1}) + dG(S) ≤ n(m − 1) + n − 1 = nm − 1, 
where S is the maximum subset of V(G) such that S∩V(H(g))  0/ for each g  S. For the 
lower bound, since m ≤ k ≤ nm − n, we choose S = {(g1, hm), (g2, hm), ..., (gk, hm)}(m ≥ 2) 
such that V(G) ⊆ SG, where SG = {g1, g2, ..., gk}. Then any S-Steiner tree T must contain 
all vertices in {(g1, h1), (g2, h1), ..., (gn, h1)}, and we need a subtree T of T of size n − 1 
in G(h1). For each vertex in S, we need at least one edge to connect it to T , and hence 
sdiamk(G⊙H)  dG⊙H(S)  n − 1 + k. We conclude that n − 1 + k ≤ sdiamk(G⊙H) ≤ mn 
− 1. 
 
(iv) Since |V(G⊙H)| = mn, it follows that sdiamk(G⊙H)  mn − 1. Furthermore, since 
nm − n  k  nm, we choose S = {(gi1, hj1), (gi2, hj1), ..., (gik, hjk)} such that V(G)\{g1} ⊆ 
{gi1, gi2, ..., gik} and V(H)\{h1} ⊆ {hj1, hj2, ..., hjk }, that is, V(H(g2))∪V(H(g3))∪...∪V(H 
(gn)) ⊆ S. Then any S-Steiner tree T must contain all vertices in V(G), and hence sdi-
amk(G⊙H) ≥ nm − 1. So, we have sdiamk(G⊙H) = nm − 1. 
(v) Since 3 ≤ k < m ≤ n, the proof of this case is similar to (i), and thus omitted. 
(vi) For the upper bound, from the definition of sdiamk(G⊙H), there exists a vertex sub-
set S ⊆ V(G⊙H) with |S| = k such that dG⊙H(S) = sdiamk(G⊙H). Let S = {(g1, h1), (g2, 
h2), ..., (gk, hk)}, and let SG = {g1, g2, ..., gk} and SH = {h1, h2, ..., hk}. 

 
From Theorem 5.1, we have sdiamk(G⊙H) = dG⊙H(S)  rdH(SH∪{h1}) + dG(S)  

k(m − 1) + sdiamk(G), where SG is the maximum subset of V(G) such that S ∩V(H(g))  0/ 
for each g  SG. For the lower bound, since m  k  n, we choose S = {(gi1, hj1), (gi2, hj1), ..., 
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(gi1, hjk)} such that V(H)\{h1} ⊆ SH and dG(SG) = sdiamk(G), where SG = {gi1, gi1, ..., gik }. 
Then any S-Steiner tree T must contain all vertices in {(g1, h1), (g2, h1), ..., (gk, h1)}, and 
we need a subtree T  of T of size dG(SG) = sdiamk(G) in G(h1). For each vertex in S, we 
need at least one edge to connect it to T , and hence sdiamk(G⊙H) ≥ dG⊙H(S) ≥ sdiamk(G) 
+ k. We conclude that sdiamk(G) + k ≤ sdiamk(G⊙H) ≤ k(m − 1) + sdiamk(G). 
 
(vii) Since |V(G⊙H)| = mn, it follows that sdiamk(G⊙H) ≤ mn − 1. Furthermore, since m 
≤ n < k ≤ mn − n, we choose S = {(gi1, hj1), (gi2, hj1), ..., (gi1, hjk)} such that V(H)\{h1} ⊆ 
SH and V(G) ⊆ SG, where SG = {gi1, gi1, ..., gik}. Then any S-Steiner tree T must contain all 
vertices in {(g1, h1), (g2, h1), ..., (gn, h1)}, and we need a subtree T of T of size n − 1 in 
G(h1). For each vertex in S, we need at least one edge to connect it to T, and hence sdi-
amk(G⊙H) ≥ dG⊙H(S) ≥ n − 1 + k. We conclude that n − 1 + k ≤ sdiamk(G⊙H) ≤ mn − 1. 
 
(viii) For m ≤ n and mn − n < k ≤ mn, the proof of this case is similar to (iv), and thus 
omitted.                                                                
 

To show the sharpness of the above upper bounds, we consider the following ex-
ample. 
 
Example 3: Let G = Pn= g1g2, ..., gn and H = Pm = h1h2..., hm with 3 ≤ k ≤ mn. Note that 
H(gi)  Pm for each gi(1 ≤ i ≤ n), and G(h1)  Pn. 

 
For (i), we have 3 ≤ k ≤ n < m, sdiamk(G) = n − 1, and sdiamk+1(H) = m − 1. From 

(i) of Proposition 5.1, sdiamk(G⊙H) ≤ ksdiamk+1(H) + sdiamk(G) = k(m − 1) +(n − 1). 
Choose S = {(g1, hm), (g2, hm), ..., (gk-1, hm)}∪{(gn, hm)}. Then the tree induced by the 
edges in E(G(h1))∪E(H(g1))∪E(H(g2))∪...∪E(H(gk-1))∪E(H(gn)) is the unique S-Steiner 
tree, and hence sdiamk(G⊙H) = dG⊙H(S) ≥ k(m − 1) +(n − 1). So, we have sdiamk(G⊙H) 
= k(m − 1) +(n − 1), which implies that the upper bound in (i) is sharp. Similarly, the 
upper bound in (v) is sharp. 

For (ii), we have m > n, n + 1 ≤ k ≤ m − 1, and sdiamk+1(H) = m − 1. From (i) of 
Proposition 5.1, sdiamk(G⊙H) ≤ nsdiamk+1(H) + n − 1 = n(m − 1) + n − 1 = mn − 1. 
Choose S ⊆ V(G⊙H) with |S| = k such that {(g1, hm), (g2, hm), ..., (gn, hm)} ⊆ S. Then the 
tree induced by the edges in E(G⊙H) is the unique S-Steiner tree, and hence sdi-
amk(G⊙H) = dG⊙H(S) ≥ mn − 1. So, we have sdiamk(G⊙H) = mn − 1, which implies that 
the upper bound in (ii) is sharp. Similarly, the upper bound in (vi) is sharp. 

For (iii), we have n < m ≤ k ≤ nm − n. From (iii) of Proposition 5.1, we have sdi-
amk(G⊙H) ≤ mn − 1. Choose S ⊆ V(G⊙H) with |S| = k such that {(g1, hm), (g2, hm), ..., 
(gn, hm)} ⊆ S. Then the tree induced by the edges in E(G⊙H) is the unique S-Steiner tree, 
and hence sdiamk(G⊙H) = dG⊙H(S) ≥ mn − 1. So, we have sdiamk(G⊙H) = mn − 1, 
which implies that the upper bound in (iii) is sharp. Similarly, the upper bound in (vii) is 
sharp. 

To show the sharpness of the above lower bounds, we consider the following ex-
ample. 

 
Example 4: Let G = Pn = g1g2...gn and H = Km with 3 ≤ k ≤ mn, where V(H) = {h1, h2, ..., 
hn}. Note that H(gi)  Km for each gi(1 ≤ i ≤ n), and G(h1)  Pn. For (i)-(iii) and (v)-(vii), 
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we have 3 ≤ k ≤ mn − n, and sdiamk(G⊙H) ≥ n − 1 + k. For any S ⊆ V(G⊙H) and |S| = k, 
the tree induced by the edges in E(G(h1))∪EG⊙H[V(G(h1)), S\V(G(h1))] is an S-Steiner 
tree in G⊙H, and hence dG⊙H(S) ≥ n − 1 + k. From the arbitrariness of S, we have sdi-
amk(G⊙H) = n − 1 + k, which implies that the lower bounds in (i)-(iii) and (v)-(vii) are 
sharp. 
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