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In order to enhance the convergence ability of multi-objective group search opti-

mizer and improve solution distribution of non-dominated Pareto set, we put forward a 
novel multi-objective group search optimizer based on multiple producers and crossover 
operator of genetic algorithm (MCGSO) in this paper. The producer of MCGSO is ex-
tended from one to multiple ones, which explores more solutions and improves solution 
distribution of non-dominated Pareto set. For the purpose of preventing a local optimal 
solution, the metropolis rule of simulation annealing algorithm is introduced into the 
search pattern of producers. Rangers’ search strategies and crossover operator are com-
bined to enhance algorithm’s ability to find new solutions and expand the range of 
non-dominated optimal set. Experimental results on DZTL serial benchmark functions 
demonstrate that MCGSO can effectively and efficiently solve multi-objective optimiza-
tion problems compared with other similar multi-objective evolutionary algorithms.  
 
Keywords: multi-objective optimization, group search optimizer, multi-producer, crosso-
ver operator, Pareto set 
 
 

1. INTRODUCTION 
 

Many metaheuristics have been applied to solve Multi-objective Optimization Pro- 
blems (MOPs) in engineering fields and scientific researches recently [1]. With the de-
velopment of evolutionary algorithms, Schaffer creatively applied genetic algorithm to 
MOPs and proposed the Vector Evaluated Genetic Algorithm (VEGA) [2] in 1985. Due 
to numerous advantages of evolutionary algorithms such as non-demand on derivation 
and other auxiliary knowledge, generating multiple solutions at a runtime, easiness to be 
implemented and so on, evolutionary algorithms become effective candidate methods for 
MOPs [3]. A series of multi-objective algorithm such as Multi-objective Genetic Algo-
rithms (MOGA) [4], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [5], Non-domi- 
nated Sorting Genetic Algorithm II (NSGA-II) [6], Multi-objective Particle Swarm Op-
timizer (MOPSO) [7] have been proposed since then.  

Recently, He, Wu and Saunders proposed a swarm intelligence optimization algo-
rithm named Group Search Optimizer (GSO), which simulates animal’s foraging behav-
ior and is formulated based on producer-scrounger model [8]. This algorithm has 
demonstrated good performance in function optimization for high-dimensional optimiza-
tion problems and possesses obvious superiority to solve complex engineering problems. 
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Several multi-objective GSOs have been proposed in last few years and have obtained 
certain progress, but the disadvantages such as low convergence precision and a small 
distribution range of problem solutions still exist. 

To overcome the above disadvantages, we put forward an enhanced multi-objective 
group search optimizer based on multiple producers and crossover operator of genetic 
algorithm (MCGSO). The improvements include the following. Firstly, we extend the 
number of producers from one to multiple and the metropolis rule is introduced into the 
search pattern of producers. Secondly, the crossover operator of genetic algorithm is 
combined with the rangers’ search strategies. At last, multi-objective GSO with single 
producer (MGSO) [8] and NSGA-II [6] are compared with the proposed MCGSO. The 
experimental results show the effectiveness of the proposed MCGSO on DZTL bench-
mark functions. 

The remainder of this paper is organized as follows. Section 2 introduces GSO and 
reviews related work of multi-objective GSO. Section 3 describes the proposed MCGSO 
in detail, including improved strategy of multi-producer, combination of crossover oper-
ator with ranger’s search pattern and archive of Pareto optimal set. Section 4 presents 
experimental results and discussion of MCGSO on DZTL benchmark functions. Section 
5 concludes the paper and points out future work. 

2. GSO AND RELATED WORK 

2.1 GSO 

GSO is a novel intelligent optimization algorithm inspired from animal’s foraging 
behavior and is formulated based on producer-scrounger model. Members in GSO are 
divided into three categories: producer, scroungers and rangers. Among them, the pro-
ducer is responsible for finding resources in each iteration, while the scroungers move 
toward the producer to share its information. In order to maintain the diversity of group 
and avoid being entrapped in local optimum, GSO adopts a wandering strategy, in which 
rangers perform random walks to explore the whole search space.  

In the n-dimensional search space, the position of ith member at kth iteration is ex-
pressed as Xi

kRn, while the member has a head angle φi
k=(φi1

k, …, φi(n-1)
k)Rn-1 and a 

head direction Di
k(φi1

k)=(di1
k, …, din

k)Rn that can be calculated from the head angle via 
a polar to Cartesian coordinate transformation as defined in Eq. (1). 
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For limited space, member behaviors are briefly reviewed in the following and de-

tailed introduction to GSO can be found in [8]. 
(A) Producer’s behavior 

The producer’s behavior can be summarized as follows. 
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First, the producer will begin to scan from 0°angle and randomly sample three 
points in the scanning field: one point at 0°, one point in the right side of the hypercube 
and the other one in the left side of the hypercube, which can be described in Eq. (2). 
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Where r1R1 is a normally distributed random value with mean 0 and standard de-

viation 1, and r2Rn-1 is a uniformly distributed random value in the range (0, 1).  
Second, if the producer finds a better position among the three points, it will move to that 

location; otherwise, it will return to the previous position and turn its head to a new angle as 
defined in Eq. (3). 

 
1

2 max
k k r         (3) 

 
Where max is the maximum turning angle. 
At last, if the producer can’t find a better position after iterations, it will turn back 

to original angle as defined in Eq. (4). 
 

k k       (4) 
 
Where is a user-defined constant. 

(B) Scrounger’s behavior 
In each iteration, the scroungers follow the producer in a random step according to 

Eq. (5). 
 

1
3( )k k k k

i i p iX X r X X        (5) 
 
Where r3Rn is a uniformly distributed random value in the range (0,1). 

(C) Ranger’s behavior 
In each iteration, rangers move to a new point based on a random head angle and a 

random distance as defined in Eq. (6).  
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2.2 Related Work 

 

The original GSO has been studied and improved with different strategies, including 
GSO member update and parameter optimization [9-11], co-evolutionary GSO [15, 16], hy-
brid GSO algorithms [17, 18], applications to complex practical problems [19, 20] and so on.  
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Furthermore, GSO is applied to solve multi-objective optimization. Wang, Zhong et 

al. proposed a novel multi-objective group search optimizer named NMGSO [12] for 
solving multi-objective optimization problems. The scanning strategy of the original 
GSO is replaced by the limited pattern search procedure but a special mutation with a 
controlling probability is designed to balance the exploration and exploitation at different 
searching stages. Wu, Lu et al. formulated reactive power dispatch incorporating flexible 
AC transmission system (FACTS) devices as a nonlinear constrained multi-objective 
optimization problem [13]. A group search optimizer with multiple producers (GSOMP) 
was designed and applied to minimize the real power loss and improve voltage profile. 
Guo, Zhan et al. proposed a group search optimizer with multiple producers (GSOMP) 
to deal with the multi-objective dynamic economic emission dispatch (DEED) of power 
systems [14]. A technique for order preference similar to an ideal solution (TOPSIS) is 
developed to determine the final solution by considering a decision maker’s preference. 

In summary, several conclusions can be drawn as follows: 
 

(1) GSO demonstrates its advantages in high-dimensional function optimization. How-
ever, GSO has its disadvantages such as slow convergence and entrapment in local 
optima. Therefore, GSO is still worthy of being improved with new strategies. 

(2) GSO simulates swarm behavior and is evolved with predator-scrounger model. The 
group members are classified as producer, scroungers and rangers, which is similar 
to multi-population structure. However, GSO can’t efficiently explore problem space 
in certain cases for the fact that all scroungers follow the single producer. 

(3) Related work on GSO mostly deals with single objective optimization problems. 
However, only a few works touch on multi-objective optimization problems and 
generally solves two-objective MOPs. 
 
Therefore, we are inspired to develop a multi-objective group search optimizer 

based on multi-producer and crossover operator to improve its performance and solve 
multi-objective optimization problems. 

3. A MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER BASED ON 
MULTI-PRODUCER AND CROSSOVER OPERATOR（MCGSO） 

In this section, some key components of MCGSO are presented firstly and then al-
gorithmic procedure is described in detail. 

3.1 Multi-Producer and Metropolis Rule 

In the existing multi-objective group search optimizer based on single producer, the 
Pareto solution with the largest crowding distance is generally selected as the producer 
and all the scroungers move to the only producer. Therefore, the single producer is 
bound to affect the convergence speed and the diversity of solution sets. However, for 
MOPs, the Pareto solutions constitute a non-domination set and are not a single solution. 
The producer can be extended to more than one. Search strategy with multiple producers 
enables the algorithm to simultaneously search in multiple directions, and achieves the 
best solution in less iterations. This can also avoid excessive concentration of solutions 
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in certain extent. In order to guarantee the convergence precision and the diversity of 
solution, the non-dominated set will be sorted according to their crowding distance. The 
former members of top% will be chosen as producers of the current iteration, and the 
scroungers will randomly choose a producer to follow according to Eq. (5). 

In fact, once the producer moves to a wrong position, the algorithm will be easily 
trapped into a local optimum. In our study, the metropolis rule of simulation annealing 
(SA) is introduced. This method can lead the algorithm to effectively jump out of local 
optimal [9]. In the kth iteration of multi-objective group search algorithm with metropolis 
rule, each producer will generate three new solutions 1

k

ix , 2
k

ix , 3
k

ix after three times of 
search in different directions according to Eq. (2). If a solution k

imx , (1,2,3)m can domi-
nate the current solution, the producer will move to k

imx ; otherwise, after calculating the 
optimal increment (x ) (x )k k

im it f f   , the producer will accept k

imx as a new solution ac-
cording to a probability of exp( / )t T , which is defined in Eq. (7). 
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Where, T is the total number of iterations, and j is the number of objective functions, 

j=1, 2, 3,  . 
In summary, the update strategy of multi-producer can be described as follows: 
 

For (each producer 
k

ix  in kth iteration) { 
//i=1, …, N and N is group size, k is current generation 
(1) The producer moves according to Eq. (2) and three new solutions 1

k

ix , 2
k

ix , 3
k

ix are 
generated; 

(2) If ( k

imx (m=1, 2, 3) dominates k

ix ) { 
If there is only one k

imx dominating k

ix { 
k

ix is replaced with to k

imx ; 
Else 

Randomly selects a new solution k

imx to replace k

ix ; 
}// end If 

       ElseIf (all the objective functions of k

imx are inferior to k

ix and exp(t / T)  
random is satisfied)  

Randomly select a new solution k

imx to replace k

ix ; 
}//end If 
If a better solution can’t be found after iterations, the producer moves back to 
the original position, and turn its head to a new angle according to Eq. (3); 

}//end For  

3.2 Ranger Search Combining with Crossover Operator 

In GSO, the fact that most members (scroungers) move to the minority (only one 
producer) leads GSO to concentrate only on part of solutions. For some complex prob-
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lems, it is difficult to find ideal optimal solutions. Therefore, crossover operator of ge-
netic algorithm is introduced to multi-objective group search optimizer, which ensures 
the diversity of non-dominated set in solution space.  

For each ranger, crossover operator is executed with the probability Rran while the 
original updating strategy is executed with probability (1Rran). The update strategy of 
rangers is described as follows: 

 
For (each ranger k

ix in kth iteration) { 
(1) Generate a random value r in (0,1); 
(2) If (r> Rran) { 

Randomly select two members represented as 1
k

ip , 2
k

ip from producers which 
act as the parent individuals of the crossover operator; 
The parent individuals produce offspring according to Eq. (8), and two 
children individuals are generated and represented as 1

k

ic , 2
k

ic ;  
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Here,  is calculated according to Eq. (9). 
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Where u is a random value in (0, 1), and c is the distribution index for 
crossover operator; 
Calculate fitness value of 1

k

ic , 2
k

ic on each objective function; 
Select a better one as a new solution, otherwise randomly select one if 
they are non-dominant to each other;  

Else 

Update k

ix according to Eq. (6); 
}//end If 

}//end For 

3.3 Archive Strategy 

By referencing the elitist strategy of NSGA-II, update procedure of MCGSO exter-
nal archive is formulated as follows: 
 
(1)  Combine new population Qk of kth generation with its parent population Pk to Rk, and 

the size of Rk is 2N. 
(2)  Sort Rk based on non-domination, generate non-dominated sets F1, F2, …, Fj, …  

and then calculate the crowding distance of each member. Sort each set Fj by their 
crowding distance. 
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(3)  Put F1 into the new parent population Pk+1. 
(4)  If the size of Pk+1 is less than N, put next level of non-dominated set F2, F3, …Fj into 

Pk+1 consistently until the size of Pk+1 exceed N. Execute crowding-comparison oper-
ator for Fj, and put the first {|Fj|(|Pk+1|N)} individuals into Pk+1 until the size of 
Pk+1 is equal to N. The new parent population Pk+1 is eventually formed. 

3.4 Description of MCGSO 

The algorithmic procedure of MCGSO is described as follows. 
(1)  Population initialization. Initialize position 1

ix and angle 1
i randomly for each member, 

and the population is initialized as R1. Calculate all the objective function values for 
all the members. k=1. 

(2)  j=1, Pk=. Sort Rk based on non-domination, generate non-dominated sets F1, F2, …, 
Fj, … and then calculate crowding distance of each member. Sort each set Fj by their 
crowding distance. 

(3)  Calculate |Pk|+| Fj |. If |Pk|+| Fj | is greater than N, go to 5). 
(4)  Pk=Pk  Fj, j=j+1, go to 3). 
(5)  Put the former {|Fj|-(|Pk|-N)} individuals of Fj into Pk. 
(6)  Sort Pk according to their crowding distance and choose the former members of 

top% as producers of this iteration. 
(7)  For each member k

ix in Pk (i=1, …, N)  
i. If it’s a producer, it will be updated according to producer update strategy de-

scribed in Section 3.1; 
ii. If it’s a scrounger, it will choose a producer at first, and then be updated ac-

cording to Eq. (5); 
iii. If it’s a ranger, it will be updated according to the steps described in Section 3.2. 
iv. After all the members are completely updated, new population Qk is constructed. 

(8)  k=k+1. If k is greater than maximum number of iterations, output the result. 
(9)  Combine Pk-1 and Qk-1 to construct Rk whose size is 2N. Go to 2). 

4. SIMULATION EXPERIMENTS AND DISCUSSION 

4.1 Evaluation Metrics 

In order to compare the performance of MCGSO with selected comparative algo-
rithms, three frequently referenced metrics are adopted in this paper. 
(A) Spacing (SP) 

SP is used to measure the distribution of Pareto solution set [21]. It is defined in Eq. (10). 
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Where M is the number of objective functions and n is the number of final set of 
Pareto optimal solutions. 
(B) Generational Distance (GD) 

GD measures the distance between true Pareto front and approximate Pareto front 
obtained by optimization algorithm, which can evaluate convergence ability of an algo-
rithm [21]. It is mathematically defined in Eq. (11). 

 
2

1
( ) /

n
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i

GD d n


      (11) 

 
Where n is the number of final set of Pareto optimal solutions, and di is the Euclid-

ean phenotypic distance between each member i of achieved Pareto front and its closest 
neighbor member in true Pareto front. 
(C) Maximum Spread (MS) 

MS can embody the coverage of Pareto front considering the extreme solution for 
the situation [21]. Larger value of MS shows that the Pareto front achieved by the algo-
rithm is widely distributed. It is mathematically defined in Eq. (12). 
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Where max

if and min
if are the maximum and minimum values of ith objective function 

for appropriate Pareto set and max
itruef , min

itruef  are those for the true Pareto set. 

4.2 Experimental Result and Discussion 

In this paper, three-objective DZTL are selected as benchmark functions for com-
parative algorithms and the details of DZTL can be found in [22]. To validate the effec-
tiveness of multi-objective group search algorithm in solving MOPs, we compared the 
MCGSO with MGSO [8] and NSGA-II [6] on benchmark functions.  

Main experimental parameters are listed in Table 1 and are not especially tuned for 
each benchmark functions. All the benchmark functions employed identical ones. 
Therefore, some experimental results are not prominent due to the selected parameters. 
Intensive tests on DZTL benchmark functions were conducted in Matlab R2010b setting. 
Each algorithm is independently run 30 times. 

Table 2 summarizes experimental results of SP, GD and MS on DZTL1~ DZTL7 
benchmark functions. The best numerical results are in bold. Sub-graph (a) of Figs. 1-7 
show comparison of the Parent front achieved by MCGSO and true Pareto front. 
Sub-graph (b) of Figs. 1-7 illustrate changes of GD for MCGSO, MGSO and NSGA –II. 
Sub-graph (c) of Figs. 1-7 are boxplot of GD for three algorithms. In the boxplots, the 
bottom and top of the box are the first and third quartiles. The middle horizontal lines are 
the median of samples while the upper and lower dotted lines represent the maximum 
and minimum samples respectively [19]. 

For DZTL1, the Pareto front achieved by MCGSO is close to true Pareto front. The 
trend can be analyzed from GD curves in sub-graph (b) of Fig. 1. The GD of MCGSO is 
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similar to NSGA II but smaller than MCGSO. However, MCGSO is not steady as 
MGSO and NSGA II as shown in sub-graph (c) of Fig. 1. 

For DZTL2, the Pareto front achieved by MCGSO is approximate to true Pareto 
front except three separated points. The GD curve of MCGSO in sub-graph (b) of Fig. 2 
approaches to zero and is smaller than NSGA II. In addition, MCGSO is steady as 
NSGA II as shown in sub-graph (c) of Fig. 2. 

For DZTL3 and DZTL4, MCGSO doesn’t show expected results and maybe it is 
not suitable to this kind of multi-objective problem. The Pareto front achieved by 
MCGSO is not identical to true Pareto front. The GD curves of MCGSO in sub-graph (b) 
of Figs. 3 and 4 are between MGSO and NSGA II. 

 
Table 1. Main experimental parameters. 

Algorithm Parameter Value 

NSGA-II crossover probability 0.9 
mutation probability 1/n 

MGSO Producer number 1 
Scrounger number 80% 

MCGSO 
Producer number 20% 

Scrounger number 60% 
Ranger crossover probability 0.5 

All Algorithms Population Size 100 
Generations 300 

 

Table 2. Mean and variance of GD and SP. 

Metrics Algorithms DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

GD 

MCGSO 24.2124 
(13.3229) 

0.0052 
(0.0010) 

97.8983 
(38.4990) 

0.8268 
(0.3716) 

0.0041 
(0.0001) 

0.0015 
(0.0004) 

0.0034 
(0.0026) 

MGSO 21.5240 
(9.4403) 

0.3385 
(0.0785) 

0.3434 
(0.1106) 

0.3343 
(0.0795) 

0.0931 
(0.0478) 

0.3725 
(0.7040) 

0.2998 
(0.1037) 

NSGA-II 0.4957 
(1.0092) 

0.0126 
(0.0011) 

0.0213 
(6.1842) 

0.0060 
(0.0011) 

0.0048 
(0.0003) 

0.0195 
(0.0004) 

 
(0.0034) 

SP 

MCGSO 0.5888 
(0.3101) 

0.0431 
(0.0020) 

3.9981 
(1.8223) 

0.0738 
(0.0206) 

0.0070 
(0.0003) 

0.0070 
(0.0002) 

0.0211 
(0.0120) 

MGSO 0.9959 
(0.4769) 

0.0920 
(0.0097) 

0.0954 
(0.0231) 

0.0909 
(0.0109) 

0.0212 
(0.0070) 

0.0497 
(0.1089) 

0.0676 
(0.0218) 

NSGA-II 0.6210 
(3.0295) 

0.0585 
(0.0049) 

8.0416 
(10.7732) 

0.0565 
(0.0041) 

0.0094 
(0.0010) 

0.0126 
(0.0007) 

0.0732 
(0.0123) 

 
 

 
 
 
 
 
 
 

Fig. 1. Pareto fronts, GD curves and GD boxplots of DTLZ1. 

 

(a) (b) (c) 
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Fig. 2. Pareto fronts, GD curves and GD boxplots of DTLZ2. 

 

 
Fig. 3. Pareto fronts, GD curves and GD boxplots of DTLZ3. 

 

 
Fig. 4. Pareto fronts, GD curves and GD boxplots of DTLZ4. 

 

 
Fig. 5. Pareto fronts, GD curves and GD boxplots of DTLZ5. 

 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 



XIANG-WEI ZHENG, XIAO-MEI YU, YAN LI AND HONG LIU 47 

 
Fig. 6. Pareto fronts, GD curves and GD boxplots of DTLZ6. 

 

 
Fig. 7. Pareto fronts, GD curves and GD boxplots of DTLZ7. 

 
For DZTL5, the Pareto front achieved by MCGSO is close to true Pareto front. GD 

curves in sub-graph (b) of Fig. 5 show that all algorithms have similar result. However, 
MGSO is not steady as MCGSO and NSGA II as shown in sub-graph (c) of Fig. 5. 

For DZTL6 and DZTL7, MCGSO show similar performance. The Pareto front 
achieved by MCGSO is very close to true Pareto front. The GD curve of MCGSO in 
sub-graph (b) of Figs. 6 and 7 approaches to zero in fewer generations than NSGA II. 
And, MCGSO and NSGA II are steady as shown in sub-graph (c) of Figs. 6 and 7. 
MGSO shows worse results on GD and convergence. 

In conclusion, as shown in Table 2 and Sub-graph (a) of Figs. 1-7, the Pareto front 
achieved by MCGSO is consistent with the true Pareto front. MCGSO outperforms 
MGSO and NSGA II on DTLZ2, DTLZ5~DTLZ7. In terms of the algorithmic conver-
gence, MCGSO has the minimum value of GD than other algorithms. As shown in 
sub-graph (b) of Figs. 1-7, the convergence speed of MCGSO is significantly faster than 
other algorithms. However, the SP of MCGSO for DTLZ2 and DTLZ3 are worse than 
NSGA-II. 

5. CONCLUSIONS AND FUTURE WORK 

Considering the superiority of GSO in high dimensional function optimization, we 
studied how to apply GSO to solve MOPs in this paper. Therefore, we put forward an en-
hanced multi-objective group search optimizer based on multiple producers and crossover 
operator of genetic algorithm. The experiments on DTLZ benchmark functions demonstrate 

(a) (b) (c) 

(a) (b) (c) 
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the effectiveness of MCGSO on various multi-objective optimization problems. 
However, MCGSO is still not utilized to solve practical applications. Future work 

will be continued. On the one hand, we attempt to formulate a multi-objective virtual 
network embedding model and plan to employ it as optimization algorithm. On the other 
hand, based on the tests on practical applications, MCGSO will be further improved to 
suit practical problems. 
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