
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 923-934 (2019)
DOI: 10.6688/JISE.201907_35(4).0013

923

A Methodology for Indexing Temporal RDF Data*

PING ZHAO AND LI YAN+

College of Computer Science and Technology
Nanjing University of Aeronautics and Astronautics

Nanjing, 211106 P.R. China

Time information widely exists in various real-world applications and RDF (Re-

source Description Framework) has been using as a data model and representation format
for semantic data processing. With the rapid growth of RDF data with time features, effi-
cient and effective management of temporal RDF data is an important task. For this pur-
pose, we propose to index temporal RDF data in the paper. We propose a novel temporal
RDF data index structure. We present its two levels of indexes: the first one is a global
index for time information of RDF triples and the second is a local index for non-time
information of RDF triples. We exploit efficient algorithms to build the global index and
the local index. We evaluate our index approach from index performances and querying
performances. The experimental results show that our index approach is scalable and ef-
ficient.

Keywords: RDF, temporal RDF, index structure, K-D tree index, bitmap index

1. INTRODUCTION

The resource description framework (RDF) [1] is a metadata model recommended
by the W3C (World Wide Web Consortium) for building an infrastructure of machine-
readable semantics for resources on the Web. Currently, many applications have started
using RDF as a data model and representation format for semantic data processing. For
example, Bio2RDF [2] uses RDF model to build a life sciences network; Lexvo [4] takes
language and literature into semantic network; LinkedMDB [5] releases the opening data
to build the first movie semantic web. Furthermore, the Linked Open Data (LOD) [6]
provides one large RDF data cloud by linking web data from a diverse set of domains
like DBpedia [3] from Wikipedia. With the increasing amount of RDF data available,
efficient management of RDF data is of crucial importance [7, 28, 29]. Among the issues
of RDF data management, indexing plays an important role in RDF data query and it is
especially true for querying large-scaled RDF data [8-17].

Time information widely exists in various applications such as sensor network [14],
biology [15], industry [16] and so on. Typically, some data may be available or correct at
some time and some historical data need to be recorded. So, it is necessary to manage
temporal data effectively. A core issue in temporal data management is to establish a
suitable temporal data model [17]. Many temporal data models, for example, temporal
database model and temporal ER/EER model [18], have been proposed. More recently,
with the wide utilization of XML (eXtensible Markup Language) for data representation
and exchange on the Web, temporal XML model has been proposed as well [19]. Tem-

Received January 26, 2018; revised August 20 & October 24, 2018; accepted November 15, 2018.
Communicated by Wei-Shinn Ku.
+ Corresponding author, e-mail: yanli@nuaa.edu.cn.
* This work was supported in part by the National Natural Science Foundation of China (61772269 and

61370075).

PING ZHAO AND LI YAN

924

poral XML provides an infrastructure of managing temporal data on the Web.
Generally, RDF can only reflect that a majority of facts is static in the real world. In

order to model the facts that it exists only for a limited time, several efforts have been
made to process temporal information with RDF. Temporal RDF model is first proposed
in [20], in which a syntax and semantics for temporal RDF are provided. Several issues
such as reasoning [21] and query [22] are investigated in the context of temporal RDF.
We argue that efficient queries of large-scaled RDF data rely on RDF index. Indexing
temporal RDF data is not carefully considered yet. So, we investigate the issue of tem-
poral RDF index in this paper. Temporal RDF index can play an important role in RDF
data management and especially improve RDF query efficiency.

In this paper, we propose a two-level temporal RDF index. First, we apply K-D tree
index as the global index to index temporal information about RDF data. Second, we
apply composition bitmap index as a local index to index RDF triple information. The
main contributions of this paper are summarized as follows:

(1) We propose a temporal RDF data model with transaction time instead of the existing

temporal RDF data models with valid time.
(2) On the basis of the temporal RDF data model proposed in the paper, we propose an

index model for the temporal RDF data model. To the best of our knowledge, this is
the first effort to construct index directly against the temporal RDF triple model.

(3) We develop an efficient algorithm for constructing temporal RDF indexes. We fur-
ther evaluate the performances of our index approach with experiments by construc-
ting the synthetic temporal RDF datasets from the traditional benchmark LUBM.

The remainder of this paper is organized as follows. Section 2 presents a brief over-

view of related work in temporal RDF model and classical RDF index. Section 3 pro-
poses our scheme about temporal RDF index and the index algorithm. Section 4 presents
the experimental evaluations of our approach. Section 5 concludes this paper and ske-
tches our future work.

2. RELATED WORK

2.1 Index for RDF Data

In order to improve RDF query efficiency, several index schemes about RDF are

proposed for different application scenarios. Basically, we can identify two categories of
RDF data index models: one is based on the triples and the other is based on the RDF
graph. The former constructs the undifferentiated index structure about three triple ele-
ments. The latter builds the indexes according to the features of RDF graph.

In [8], the sextuple indexing model is proposed, which extends the method of verti-
cal partitioning and treats subjects, predicates, and objects equally. The bitmap index for
triples is proposed in [9], which contains three composite bitmap indexes. The keys of
those composite bitmap are composite values of predicate-subject, predicate-object, and
subject-object. In [10], Up and Down documents are introduced to store temporal RDF
data. With respect to an object element of triples, the Up document stores the data group
that has a predicate as a key and subjects as its values (e.g., {“predicate1”:[subject1, sub-

A METHODOLOGY FOR INDEXING TEMPORAL RDF DATA 925

ject2, ..., subjectn]}, ..., {“predicaten”:[subjectn+1, subjectn+2, ..., subjectm]}). With respect
to a subject element of triples, the Down document stores objects (e.g., [object1, ob-
ject2, ..., objectn]).

In [11], the RG-index is proposed, which can improve the filtering power of triples.
The RG-index can index graph patterns in RDF graph. In [12], RDF graph is mapped to
an index structure, where the index nodes are a collection of the nodes of the original
RDF graph and the index edges are those of equivalent types. Based on RDF graph, in-
dexed graphs are generated in [13]. The created index graph is a summary of the paths
derived from the corresponding data graph. So, the index graph is data-oriented structure
and the same path elements are placed in an element group.

We summarize current major RDF indexes as follows. The index based on RDF tri-
ples is suitable for single element query, whose structure is document and whose storage
space is relatively large. The index based on RDF graph is suitable for path query, whose
structure is summary graph and whose storage space is relatively small.

2.2 Temporal Data Modeling in RDF

Temporal data modeling has been investigated in the context of databases (e.g., [18])

and XML (e.g., [19]). Two major temporal dimensions are considered in temporal data-
bases, which are valid time and transaction time. Valid time is the time when data is val-
id in the modeled world; the transaction time is the time when data is actually stored in
the data model. More recently, the temporal RDF model is proposed. In [20], a temporal
triple is defined as an RDF triple with a temporal label. Then a temporal triple has the
form (a, b, c):[t1, t2], where (a, b, c) is a triple and [t1, t2] is a time interval. Then (a, b,
c):[t1, t2] represents the time period when the triple is valid in the real world.

To represent historical information in RDF, temporal properties are considered in
[25], where a temporal triple has a form of (s, p:[start, end], o). Here p:[start, end] is a
temporal property and the effective time of property p is [start, end]. A straightforward
extension to the case of indeterminate triples is proposed in [23]. The temporal RDF da-
tabase consists of a set of temporally annotated RDF triples with a form of (subject, pro-
perty:annotation, object) [24].

Although some efforts have devoted to RDF index and temporal RDF data model-
ing has received more attention, the research works of temporal RDF data processing are
still scarce. Several issues such as reasoning [21] and query [22] are investigated in the
context of temporal RDF. However, to the best of our knowledge, only the work in [24]
investigates the issue of indexing temporal RDF data. The present paper is different from
[24] in two major aspects. First, this paper can deal with the transaction time while the
papers of [20, 24] can only deal with the valid time. Second, the tGRIN index structure
proposed in [24] is built upon the relational databases which physically store temporal
RDF data rather than directly upon temporal RDF triples.

3. TEMPORAL RDF INDEX

Let U be a set of URI references, L a set of literals, and P a set of properties. Then,
an RDF triple is a triple (s, p, o) in U × P × (U  L). The elements s, p, and o of RDF tri-
ples are called the subject, property (also called predicate) and object, respectively.

PING ZHAO AND LI YAN

926

3.1 Structure of Temporal RDF Index

The basic idea of temporal RDF is to annotate triples or/and triple elements (i.e.,
subject(s), property(p) and object(o)) with temporal labels. The type of temporal label
can be transaction time, it is applied to record the time that a transaction (e.g., an opera-
tion or change) occurs. If we operate on RDF data, the transaction time can faithfully
record the history of data changes in the operation. Therefore, in this paper, we concen-
trate on transaction time as a main temporal dimension.

Definition 1: A temporal triple is an RDF triple with a time interval. Formally, a tem-
poral RDF triple is denoted (s, p, o):[ts, te], in which s, p, and o represent the subject,
predicate and object, respectively, and [ts, te] represents a transaction time starting at ts
and ending at te. A temporal RDF data model is a set of temporal RDF triples with the
form of {(s, p, o):[ts, te] | ts ≤ te}. Here ts and te are the two time points.

t1 (sue, type, CEO):[4, 10] t7 (likes, type, socialRel):[0, 20]
t2 (crispin, type, VP):[0, 20] t8 (knows, type, socialRel):[0, 20]
t3 (sue, manage, joe):[9, 13] t9 (yonei, knows, yong):[3, 9]
t4 (jane, firend, lucy):[3, 9] t10 (yong, report, tamae):[3, 18]
t5 (crispin, knows, larry):[6, 15] t11 (report, type, social):[9, 13]
t6 (larry, likes, sarah):[6, 15] t12 (joe, report, jane):[3, 18]

Fig. 1. An example of temporal RDF data model.

Fig. 1 presents a simple example of temporal RDF data model which contains some
temporal RDF triples.

To index temporal RDF data, we introduce two concepts named interval list and
triple group. The interval list of a temporal RDF data model contains all unduplicated
transaction time of the temporal triples. We get all the triples with the same transaction
time to construct triple groups. Moreover, each transaction time in the interval list corre-
sponds to a triple group and the interval list corresponds to a set of triple group.

Example 1: Let us look at the temporal RDF data model in Fig. 1. Its interval list is {[4,
10], [3, 18], [9, 13], [6, 15], [3, 9], [0, 20]}. For the interval [0, 20], we have a triple
group {(likes, type, socialRel), (knows, type, socialRel), (crispin, type, VP)}.

K-D tree index is a space-partitioning data structure for organizing the points in a
k-dimensional space, which is mainly used to retrieve multi-dimensional data with a very
high efficiency [26]. Since the transaction time is two-dimensional data, we can con-
struct a K-D tree (where k can represent 2) to index the temporal information of temporal
RDF model. K-D tree is built by recursively decomposing the point set into two equal
subsets according to the median data of the dimension whose variance of the data is
larger. K-D tree index about the interval list of the temporal RDF model in Example 1,
which is shown in Fig. 2, contains all elements of the interval list as the values of its
nodes.

Note that the K-D tree can only index temporal RDF data at a level of time intervals.
To speed up retrieval of triples, we do need to further index the triples in each triple

A METHODOLOGY FOR INDEXING TEMPORAL RDF DATA 927

group. In the index about the triple group, we construct the index about triple group by
extending the composition bitmap proposed in [9]. Considering various possible query
conditions, we propose three composition indexes in this paper. The keys of composition
bitmaps are subject-predicate (s-p for short), predicate-object (p-o for short), and object-
subject (o-s for short) complex values, respectively. We store the above composite index
in an array bmn, where m and n are the numbers of rows and columns in the array, respec-
tively. Generally speaking, we use b00 to store the corresponding transaction time of the
triple group. In the s-p key bitmap, for example, b[i][0] (i > 0) is applied to store all sub-
jects, b[0][j] (j > 0) to store all predicates, and b[i][j] (i > 0 and j > 0) to store the corre-
sponding objects. If a bitmap index contains such triples that have the same subject and
predicate but different objects, that is, b[i][j] corresponds to a number of different objects,
they are treated as the part of b[i][j].

 Fig. 2. K-D tree index. Fig. 3. s-p composite bitmap index.

Fig. 4. p-o composite bitmap index. Fig. 5. o-s composite bitmap index.

Let us look at the triple group that corresponds to the interval [0, 20] in Example 1.
Three composition bitmap indexes for the triple group are showed in Figs. 3-5. The key
values of these three composition bitmap indexes are s-p, p-o, and o-s, respectively.

Combinedly using the temporal K-D tree index and the composition bitmap indexes,
we can construct the index structure of temporal RDF data. The temporal RDF index
structure is a tree model. We define the temporal RDF index tree as follows.

Definition 2: The model of temporal RDF index tree has a form of (N, C, V).
(1) N is a set of nodes of the index tree. Three types of nodes can be identified: non-leaf

node (denoted nn), leaf node (denoted nl) and empty node (denoted ne). Then we have
N = {nn}{nl}{ne}.

(2) C: NN is a set of parent-child relationships between nodes. For two nodes ni and nj,
C(ni) = nj means that ni is the patent of nj, in which ni  {nn} and nj  {nn}{nl}
{ne}. For node ni  {nn}, it has three leaf nodes and two non-leaf/empty nodes as its
children.

(3) V: Nvalue is an assignment function. For a non-leaf node nn  N, V(nn) is a list of
time intervals (i.e., V(nn) = {[ts, te]}). For a leaf node nl, V(nl) is a composition bit-
map {b[i][j]}.

PING ZHAO AND LI YAN

928

We give an example to illustrate the temporal RDF index tree. In Fig. 2, we show
the K-D tree about the interval list of the temporal data model in Fig1 and then we need
add the local indexes to the index tree. The nodes of the index tree usually have 5 child
nodes, two are child nodes of the original K-D tree and the other three are the composi-
tion bitmap indexes. We have the temporal RDF tree index of the temporal RDF data in
Fig. 1, which is shown in Fig. 6.

To sum up, we first construct the temporal K-D tree index of the interval list as the
global index and then construct the composition bitmap index of the triple group as the
local index. When querying temporal RDF triples, the global index is used to locate the
triple groups and then the local composite bitmap index is used to locate the triples that
satisfy the given temporal query. Compared with the composite bitmaps in [9] for regular
RDF data without temporal information, the size of the local composite bitmap index that
is used for a given temporal querying is very small. So, the proposed index is more effi-
cient for massive temporal RDF data querying than the index proposed in [9].

Fig. 6. Temporal RDF index.

3.2 Algorithm of Indexing Temporal RDF

Our index approach is to find suitable triple groups according to the time intervals
and then validate the appropriate triples in the triple group. We first propose Algorithm 1
to build the global index which is actually used to build the temporal K-D tree index and
then use Algorithm 2 to create the local indexes which are composition bitmap indexes.

Algorithm 1 shows the overall processing of building the global index of temporal

A METHODOLOGY FOR INDEXING TEMPORAL RDF DATA 929

RDF model. We traverse the dataset to get the interval list I for the non-leaf node value
of the global index (line 1). Then we start to build K-D tree, if I is null, the algorithm
returns null (line 3). This means that a branch of the index tree is built. Otherwise, we
process I to obtain the split dimension D and split value Mid (lines 4-6). We process each
element in I to obtain the variance of each dimension and compare all the variance to get
the larger variance and the related dimension (lines 13-21). We get the median Mid of
dimension D by processing interval list I on the dimension D (line 6). The interval in
which Mid is located is obtained by D and I, which is the value of the current node Node
(line 7). Next, we need to build the child nodes of Node. Our index also contains local
indexes, which is mainly realized by calling Algorithm 2 (line 10). The construction of
the other non-leaf nodes is mainly to recursively call the part of creating nodes itself
(lines 8-12). The other non-leaf nodes of the index tree are created with the same dataset
and different interval list. We can construct the index tree until the nodes are all created.

In Algorithm 1, we call Algorithm 2 to build a local index. Algorithm 2 is actually

used to build the composition bitmap indexes and create the leaf nodes of temporal RDF
index structure. The key values of composition bitmaps are subject-predicate pairs.

Algorithm 2 is used to construct the local index of temporal RDF index. It is possi-
ble that there are multiple intervals related to the median and all possible intervals need
to be considered (line 1). Generally, an interval corresponds to three composite bitmap
indexes. The first element b00 of the bitmap b is the time interval i, which is related to the

Algorithm 1: Global index
Input: temporal RDF dataset S
Output: temporal RDF index
1. I  getTimeInterval(S) // traverse the dataset to get all time intervals
2. CreateNode (I, S)
3. If I is null Return null
4. Split (I)
5. D  judgeDimension (I)
6. Mid  getMidValue (I, D) // get the median in dimension D
7. Node.Data  getMidInterval (D, I, Mid)

// get the list of intervals whose value is Mid on dimension D
8. I_left  getleftInterval (D, I)

 // get the list of intervals whose value is less than Mid on dimension D
9. Node.left  CreateNode (I_left, S)
10. call local index (Node.Data, S)
11. I_right  getrightInterval (D, I)

 // get the list of intervals whose value is greater than Mid on dimension D
12. Node.right  CreateNode (I_right, S)
13. judgeDimension(I) // get the split dimension
14. Set maxDimension=0, maxVariance=0;
15. For (all dimension in I)
16. Set var=getVariance(I, dimension)
17. If(var>maxVariance)
18. maxVariance=var
19. maxDimension=dimension
20. dimension=maxDimension;
21. return dimension;

PING ZHAO AND LI YAN

930

value of its parent node in Algorithm 1. We need to obtain the triple group G that is re-
lated to the interval i from the temporal RDF dataset S (line 2). We process the dataset S
to obtain the subjects of triples and put all the subjects into the subject set {Subject}
without duplicates (line 3). We use the similar method to obtain the predicate set {pred-
icate} (line 4). Then, we can store the elements of the subject set {Subject} and the
predicate set {predicate} in the first column bp0 of bitmap and the first row b0q of bitmap
sequentially (lines 5-6). Finally, we need to store the object in the bitmap (lines 7-9). We
process each triple t in G and store the object of a triple t in the right position.

The time complexity of the algorithm1 is O(k  n  logn) and the time complexity of
Algorithm 2 is O(d  n), where k is the number of time intervals, n is the number of
temporal triples, d is the size of the interval list.

4. EXPERIMENTAL EVALUATION

To evaluate the performances of our approach for temporal RDF data index, we
conduct some experiments with datasets and report experimental results. We first present
several datasets we apply in our experiments and then our experimental results.

4.1 Experimental Datasets

We apply several RDF datasets which originate from the LUBM (Lehigh University
Benchmark) [27]. The LUBM is developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way. We can obtain datasets by the generator of
the LUBM. Note that the triples in the LUBM do not contain temporal information. For
our experiments of temporal RDF index, we need to generate temporal RDF dataset by
adding temporal information to the classical triples of the LUBM dataset randomly.

We evaluate the performance of our index approach by choosing several datasets
with different size of interval lists and different numbers of triples. For this purpose, we
use the LUBM datasets and create eight different datasets by randomly allocating time
intervals to triples. To better evaluate the temporal RDF index, we use the LUBM da-
tasets to compare the performance of index. The characteristics of the eight datasets are
summarized in Table 1.

Algorithm 2: Local index
Input: time interval I, temporal RDF dataset S
Output: bitmap index b
1. For(all i in the interval list I)
2. b00  i
3. G  getTripleGroup (S, i) // get all triples in interval i in dataset S
4. {Subject}  getSubject (S) // get all the subjects of the dataset S
5. {predicate}  getPredicate (S) // get all the predicates of the dataset S
6. bp0  {Subject} // 0 < p < n (n is the number of rows in the bitmap)
7. b0q  {Predicate} // 0 < q < m (m is the number of columns in the bitmap)
8. For all tG
9. if (t.subject = bp0&&t.predicate = b0q)

// the subject of the triple t, t.predicate: the predicate of triple t
10. bpq = t.object

A METHODOLOGY FOR INDEXING TEMPORAL RDF DATA 931

Fig. 8. Number of index nodes. Fig. 9. Storage space of index.

Table 1. Characteristics of LUBM datasets.
Dataset
name

Size of
interval list

Number
of triples

Dataset
name

Size of
interval list

Number
of triples

ds1 20 80 ds2 20 820
ds3 100 820 ds4 100 3320
ds5 200 3320 ds6 200 6620
ds7 400 6620 ds8 400 9960

4.2 Evaluation Results

Our experiments are implemented in JDK 1.8.0 with Eclipse and MySQL and per-
formed on a system with Intel i5-2450m 2.5GHz processor, 2GB RAM, and Windows 7
operating system. We evaluate our index approach from two major aspects, which are
index performances and querying performances.

(1) Index Performances

We evaluate the index performances of our index approach from several aspects,
including the building time of the index, the node number of the index, and the storage
space of the index. We observe how they vary over different datasets.

First, we evaluate the time of building indexes over different datasets in Table 2. It
is shown in Fig. 7 that, for two datasets having the same number of triples but different
sizes of interval lists (e.g., ds1 and ds2), indexing the datasets with big size of interval
list costs more than that with the small size of interval list; for two datasets having the
same size of interval lists but different numbers of triples (e.g., Dataset2 and datasets3),
indexing the datasets with more triples costs more than that with fewer triples. So, the
time of building index is related to the number of triples and the size of interval list.

Second, we evaluate the storage space of index over different datasets in Table 2.
We respectively show in Figs. 8 and 9 how many nodes and spaces are used by the in-
dexes. It can be seen from Fig. 8 that, for two datasets having the same number of triples

Fig. 7. Time of building index on different datasets.

PING ZHAO AND LI YAN

932

but different sizes of interval lists (e.g., ds2 and ds3), the index over the dataset with a
big size of interval list contains more index nodes than the dataset with a small size of
interval list; for two datasets having the same size of interval lists but different numbers
of triples (e.g., ds1 and ds2), the index over the dataset with more triples contains more
index nodes than the dataset with fewer triples. The storage space of the index is closely
related to the number of non-leaf nodes, which determines the number of composition
bitmap indexes. So, like what we see in Fig. 8, we can see from Fig. 9 that the indexes
over the datasets with more triples and big size of interval lists need more storage space
than the datasets with fewer triples and small size of interval lists.

To sum up, the proposed temporal RDF index is suitable for temporal RDF datasets
that contain many triples with the same subjects, predicates, objects and time intervals.

(2) Querying Performances

The index is generally used to improve querying performances. We define two
types of queries: path query and star query, path query consists of several connected tri-
ple patterns that form a path and a star query consists of more than two path queries and
the paths share exactly a common center node.

Here we apply two types of queries over the datasets in Table 2 and have Query1
and Query2. In addition, we introduce a time interval query which is used to get the in-
terval of triples and have Query3. Fig. 10 shows the times of each type of query over the
datasets of Table 2 by using and not using the RDF index structure.

It can be seen from Fig. 10 that, for a given type of query and a given dataset, the
query with index costs far less than without index. This is because these queries can rap-
idly locate right triples and save much time in searching useless triples. In addition, it can
be seen in Fig. 10 that, for a given dataset, Query3 with index costs less than without
index. But compared with Query1 and Query2 with index, Query3 with index cost more.
This is because Query3 with the index is a kind of interval-based query, which needs to
search all the local index and then return the related interval. Query1 and Query2 with
indexes search the global index firstly to avoid searching the useless local index.

Fig. 10. The time of queries.

5. CONCLUSIONS

Time information widely exists in various real-world applications and RDF has
been an important model for semantic data processing. In this paper, we present a novel

A METHODOLOGY FOR INDEXING TEMPORAL RDF DATA 933

approach to index temporal RDF data, which can improve temporal RDF queries. The
proposed two-level index contains a global index structured as a K-D tree and a local
index structured as a composition bitmap index. The experimental results on datasets
show that our index approach is scalable and efficient. In our future work, we will opti-
mize our index approach to reduce the index space size and further improve query per-
formance according to data scale and querying categories of temporal RDF.

REFERENCES

1. G. Klyne and J. J. Carroll, “Resource description framework (RDF): Concepts and
abstract syntax,” W3C Recommendation.

2. Bio2RDF, https://github.com/bio2rdf/bio2rdf-scripts/wiki.
3. DBpedia, http://wiki.dbpedia.org/about.
4. Lexvo, http://www.lexvo.org/linkeddata/tutorial.html.
5. LinkedMDB, http://linkedmdb.org/.
6. C. Bizer, T. Heath, and T. Berners-Lee, “Linked data  the story so far,” Interna-

tional Journal of Semantic Web and Information Systems, Vol. 5, 2009, pp. 1-22.
7. Z. M. Ma, M. A. M. Capretz, and L. Yan, “Storing massive resource description

framework (RDF) data: a survey,” Knowledge Engineering Review, Vol. 31, 2016,
pp. 391-413.

8. C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple indexing for semantic
web data management,” Proceedings of the VLDB Endowment, Vol. 1, 2008, pp.
1008-1019.

9. K. Madduri and K. S. Wu, “Massive-scale RDF processing using compressed bit-
map indexes,” in Proceedings of the 23rd International Conference on Scientific and
Statistical Database Management, 2011, pp. 470-479.

10. M. Bae, J. Kihm, S. Kang, and S. Oh, “Indexing and querying algorithm based on
structure indexing for managing massive-scale RDF data,” Journal of Intelligent and
Fuzzy Systems, Vol. 27, 2014, pp. 575-587.

11. K. Kim, B. Moon, and H. J. Kim, “RG-index: An RDF graph index for efficient
SPARQL query processing,” Expert Systems with Applications, Vol. 41, 2014, pp.
4596-4607.

12. F. Picalausa et al., “A structural approach to indexing triples,” in Proceedings of the
9th Extended Semantic Web Conference, 2012, pp. 406-421.

13. T. Tran, G. Ladwig, and S. Rudolph, “Managing structured and semistructured RDF
data using structure indexes,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 25, 2013, pp. 2076-2089.

14. N. Q. Mehmood, R. Culmone, and L. Mostarda, “Modeling temporal aspects of sen-
sor data for MongoDB NoSQL database,” Journal of Big Data, Vol. 4, 2017, p. 8.

15. W. Z. Nie, H. Y. Cheng, and Y. T. Su, “Modeling temporal information of mitotic for
mitotic event detection,” IEEE Transactions on Big Data, Vol. 3, 2017, pp. 458-469.

16. A. Soylu et al., “Querying industrial stream-temporal data: An ontology-based visual
approach,” Journal of Ambient Intelligence and Smart Environments, Vol. 9, 2017,
pp. 77-95.

17. C. Claramunt et al., “Special issue on spatial and temporal database management,”
GeoInformatica, Vol. 21, 2017, pp. 667-668.

PING ZHAO AND LI YAN

934

Li Yan is a Full Professor at Nanjing University of Aero-
nautics and Astronautics, China. She received her Ph.D. degree
from Northeastern University, China. Her research interests include
databases, XML and the Semantic Web with a special focus on
spatiotemporal information and uncertainty. She has published
more than sixty papers on these topics. She is also the author of
two monographs published by Springer.

18. A. Tansel, J. Clifford, and S. Gadia, Temporal Databases: Theory, Design and Im-
plementation, Benjamin/Cummings, San Francisco, 1993.

19. F. Rizzolo and A. A. Vaisman, “Temporal XML: modeling, indexing, and query pro-
cessing,” The VLDB Journal, Vol. 17, 2008, pp. 1179-1212.

20. C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, “Introducing time into RDF,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 19, 2007, pp. 207-218.

21. C. A. Hurtado and A. A. Vaisman, “Reasoning with temporal constraints in RDF,”
in Proceedings of the 4th International Workshop on Principles and Practice of Se-
mantic Web Reasoning, 2006, pp. 164-178.

22. J. Tappolet and A. Bernstein, “Applied temporal RDF: Efficient temporal querying
of RDF data with SPARQL,” in Proceedings of the 6th European Semantic Web
Conference, 2009, pp. 308-322.

23. O. Udrea, D. R. Recupero, and V. S. Subrahmanian, “Annotated RDF,” ACM Tran-
sactions on Computational Logic, Vol. 11, 2010, pp. 10:1-10:41.

24. A. Pugliese, O. Udrea, and V. S. Subrahmanian, “Scaling RDF with time,” in Proceed-
ings of the 17th International Conference on World Wide Web, 2008, pp. 605-614.

25. B. McBride and M. Butler, “Representing and querying historical information in RDF
with application to E-discovery,” HP Laboratories Technical Report, HPL-2009-261,
2009.

26. Z. Y. Zheng and Y. Tan, “An indexed K-D tree for neighborhood generation in
swarm robotics simulation,” in Proceedings of the 4th International Conference on
Advances in Swarm Intelligence, 2013, pp. 53-62.

27. http://swat.cse.lehigh.edu/projects/lubm.
28. R. Z. Ma, X. Y. Jia, J. W. Cheng, and R. A. Angryk, “SPARQL queries on RDF

with fuzzy constraints and preferences,” Journal of Intelligent & Fuzzy Systems, Vol.
30, 2016, pp. 183-195.

29. L. Yan, R. Z. Ma, D. Z. Li, and J. W. Cheng, “RDF approximate queries based on
semantic similarity,” Computing, Vol. 99, 2017, pp. 481-491.

Ping Zhao received her Bachelor degree in Computer Science
and Technology from Jiangsu University, China. She is currently
pursuing the M.S. degree in the College of Computer Science and
Technology, Nanjing University of Aeronautics and Astronautics,
China. Her research interests include RDF data and the Semantic
Web.

