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Large scale parallel computing system is becoming more and more failure-prone due 

to the increasing number of computational nodes. This results in serious reliability prob-
lems in parallel computing. To ensure successfully running of parallel tasks such as Meta 
tasks and DAG tasks, it is necessary to perform reliability analysis before scheduling 
parallel tasks. For Meta tasks, some key factors are discussed that affect and impede suc-
cessful execution of a single task. Then, the reliability formula of Meta tasks is presented. 
For DAG tasks, hardware failures, software failures, network link failures and subtask 
execution order are all taken into account. We shall calculate not only the reliability of 
subtasks, but also the reliability of network communication. Then two reliability algo-
rithms of DAG tasks are designed. Finally, some experiments are conducted. Experi-
mental results show that our reliability analysis methods are more effective and compre-
hensive.     
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1. INTRODUCTION 
 

High Performance Computing (HPC) plays an important role in many fields, such 
as weather forecast, hydrocarbon exploration, biological modeling and simulation. These 
computing-intensive applications in turn have driven the scale of high performance 
computers from thousands to tens of thousands, or even hundreds of thousands of cores. 
For example, in 2016, the No. 1 supercomputer in the Top500 supercomputer list is 
Tianhe-2 consisting of 3, 123, 000 cores with an Rpeak of 54.902 PetaFlops [1]. This is 
an indisputable fact that scaling out the parallel computing system is an important way to 
improve its performance. However, as the scale of a parallel computing system grows, 
failures have become common. Los Alamos National Laboratory of America collects 
failure data of 22 high performance computers from 1996 to 2005, according to which 
the failure rate of single computational node is one in 512 hours [2]. But the runtime of 
many computing-intensive applications is weeks or even months. Therefore, it is difficult, 
if not impossible, for them to complete execution without failures. The frequent failures 
mean a waste of resources. Raicu et al. [3] point out that 20% or more of the computing 
capacity in a large scale high performance computing system is wasted due to failures.  

Reliability is one of the most important performance features of a supercomputing 
system. It indicates the probability of the system to function without failure under stated 
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conditions for a specified amount of time [4]. Reliability analysis usually adopts some 
methods such as statistics solutions to measure the probability. This information can 
provide a good reference regarding reliability optimization and maintainability of a sys-
tem. In parallel computing, if some failure data and distributions are obtained, they can 
be used to help system architecture design, task scheduling, fault-tolerance algorithm 
design, and so on. Because of the serious reliability problems in large-scale parallel com- 
puting, like in cloud computing, it is necessary to perform the reliability analysis for par-
allel computing. However, it is a non-trivial work to analyze the reliability due to the 
varieties of faults coming from system hardware, software, and network communication 
links. Hence, the traditional reliability models [5-7] cannot be directly applied to analyz-
ing the reliability of successfully running parallel tasks. In this paper, we focus on Meta 
tasks and DAG tasks, and analyze the reliabilities of successfully running them on a par-
allel computing system. The main contributions are as follows: 

 
(1) We propose a reliability model for Meta tasks. Its reliability formula is also present-

ed. 
(2) We propose a comprehensive reliability model for DAG tasks. In addition to the 

hardware and software failures, our model also takes communication link failures in-
to considerations due to the communication requirements among subtasks. Moreover, 
algorithms to evaluate the reliability of DAG TASKS are designed.  

(3) We conduct some numerical experiments to identify the key factors that affect the 
reliability of successfully running of parallel tasks, and to compare our reliability 
models with others. The experimental results demonstrate that the proposed models 
are comprehensive and consistent with the statistics reported.     
 
The rest of this paper is organized as follows: Section 2 discusses related work. 

Section 3 introduces the parallel computing environments and some definitions. Mean-
while, some traditional reliability analysis methods are also presented. Section 4 and 5 
analyze the reliabilities of Meta tasks and DAG tasks, respectively. Section 6 conducts 
extensive numerical experiments to identify the key factors that affect the reliability of 
parallel tasks under different situations. Section 7 concludes our work with some thoughts 
on future work. 

2. RELATED WORK 

The reliability of parallel computing is the probability that parallel tasks are suc-
cessfully executed on parallel computing system. Low reliability means a waste of com-
puting capacity due to failures and maintenances. To improve computing performance, 
many studies have been carried out. Pezoa et al. [8] proposed a rigorous probabilistic 
framework to analyze the hardware reliability of a distributed computing system in the 
presence of random server node failures. Xiong et al. [9] studied the parallel computing 
reliability by modeling the state transition process of a parallel computing system as a 
Markov chain. They calculated the reliability as the summation of probabilities of each 
state whose number of computational nodes in the operational state is larger than the 
maximum parallelism of parallel tasks. But References [8, 9] only considered the nodes 
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failure without taking the software into account. Xie et al. [10] proposed a reliability 
model for DAG tasks based on theory of probability. They assumed the failure events of 
each subtask could be modeled by non-homogeneous Poisson process while supposing 
the computational node to be perfect. However, just as the analysis of failure data col-
lected from two large HPC sites suggested, hardware and software were two main relia-
bility limiting factors [11]. Only considering either of them is not reasonable. Further-
more, References [9, 10] did not consider communication link failures. This is not ap-
propriate for dependent tasks such as DAG tasks. Because the communication data 
among its subtasks may not be successfully transmitted through links in the presence of 
link failures. Shi et al. [12] defined the reliability of grid computing as the probability of 
successfully running of the tasks on different resources. They use reliability block dia-
gram technique to evaluate the reliability. Dai et al. [13] defined the service reliability of 
grid computing system as the probability that all of the programs involved in the service 
are executed successfully. They derived the reliability using graphic theory. Guo et al. 
[14] studied the service reliability on a grid with star topology. They defined the reliabil-
ity as the probability that the resource management system received all the outcomes of 
subtasks successfully. References [12-14] all assumed the failure rates of node and link 
obeyed the negative exponential distribution, but they did not consider software failures. 
As the scale of software grows, software failures become common. So, it is necessary to 
take software failures into consideration. Dai et al. [15] analyzed the cloud service relia-
bility and defined it as the product of request stage reliability and execution stage relia-
bility. In their reliability models proposed for each stage, they took the failures of hard-
ware, software, and link into account. But they assumed no precedence constraints on the 
order of subtask execution. This assumption limits the application of their reliability 
model because parallel tasks often have dependencies among their subtasks. 

In summary, parallel tasks reliability depends on both hardware and software. When 
there are data dependencies among subtasks, the communication link failures and prece-
dence constraints on the order of subtask execution should also be considered. To our 
best knowledge, there are few literatures that take all these reliability limiting factors into 
account. Thus, in this paper, we present comprehensive reliability analysis for success-
fully running parallel tasks on a parallel computing system which take full considerations. 
Comparisons of related work are summarized in Table 1. 

 

Table 1. Comparisons of related work. 

           

hardware  software  link  subtask execution order   

system reliability [8]                            
 [9]                            

 
parallel computing 

reliability 
 
          

[10] 
[12] 

[13, 14] 
[15] 

Our work    

                             
                               
                             
                              

                                       
: taken into account  : not taken into account.  

and references 

reliability limiting factors

study objects   
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3. RELIABILITY CONCEPTS IN A PARALLEL COMPUTING SYSTEM 

3.1 Parallel Computing System 

Parallel computing is the simultaneous use of multiple computational nodes to solve 
application problems [16]. Generally speaking, it has three steps. Firstly, an application 
problem is divided into small subtasks. Then these subtasks are assigned to different 
computational nodes. Finally, all these nodes cooperate and execute the assigned sub-
tasks concurrently to speed up the problem solving process. A typical parallel computing 
system is shown in Fig. 1. From left to right, there are parallel tasks, task scheduler, par-
allel machine composed of computational nodes and high speed network, respectively. 
The task scheduler is responsible for mapping and scheduling parallel tasks to different 
computational nodes. 

 
    Parallel tasks    Task scheduler  Computational nodes  High speed network 

 
Fig. 1. A parallel computing system. 

 

As to parallel tasks, they are just software programs running on different computa-
tional nodes to solve application problems. Parallel tasks can be classified into inde-
pendent and dependent parallel tasks. The former refers to Meta tasks, the latter refers to 
DAG tasks. In this paper, when carrying out reliability analysis, we assume: (1) every 
task may fail due to some errors and the failures are statistically independent; and (2) 
each task has only two states: operational and failed. 

A parallel machine is composed of computational nodes connected by high speed 
network. Each node can be a cheap personal computer, workstation, or cluster. The to-
pology of the high speed network can be bus, ring, or hypercube, and so on. For conven-
ience, we model a parallel machine as a quadruples ARC=(P, L, S, B), where P={pi | i=1, 
2, …, m} is the set of computational nodes and pi denotes the ith node; L={luv | u, v=1, 
2, …, m} is the set of communication links, and luv indicates that there is a link between 
node pu and pv; S={si | i=1, 2, …, m} denotes set of nodes’ computational capability, and 
si corresponds to the computational capability of pi; and B={ buv | u, v=1, 2, …, m} is the 
set of link bandwidth, and buv denoting the bandwidth of luv. We make some assumptions 
for our target parallel machine: (1) it is composed of m nodes connected by high speed 
network with arbitrary topology; (2) both nodes and links may fail and have only two 
states: operational and failed; and (3) the failure of nodes and links are stochastic and 
statistically independent.  
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Tasks scheduler is actually a group of schedule policies and algorithms. Its respon-
sibilities are to determine the execution sequence of multiple tasks and their correspond-
ing execution time. There are many kinds of scheduler algorithms such as min-min, max- 
min. Of course, parallel tasks reliabilities vary with different scheduling algorithms. As 
scheduling algorithm is beyond the scope of this paper, we assume the tasks scheduler 
obeys the following principles: (1) it adopts a static centralized scheduling algorithm; (2) 
each task is only assigned to an idle node; and (3) each node can execute only one task at 
a time. 

3.2 Definition of Reliability 

Reliability has many different connotations. For an industrial product, it indicates 
the ability of the product to perform its expected function under specified conditions for 
a specified period of time. For a system, it indicates the probability that a system will 
satisfactorily perform its intended function. Similarly, we define the parallel computing 
reliability as follows: 
 
Definition 1: Parallel computing reliability is the probability that parallel tasks will be 
executed successfully on parallel machines with a specified scheduling algorithm under 
stated conditions for a specified period of time. 

 
Mathematically, the parallel computing reliability function R(t) is the probability 

that the parallel tasks will run successfully without failure in the interval from time 0 to 
time t, R(t)=P(T>t), t0, where T is a random variable representing the task failure time. 
Specifically, R(t)=exp{

t

0(x)dx}, where (t) denotes the task failure rate function, or 
hazard function. Because hardware and software have a big influence on the parallel 
computing reliability, (t) should take both of them into consideration.  

3.3 Traditional Methods for Reliability Analysis 

There are many different kinds of reliability analysis methods, such as statistical 
analysis, structure analysis, and simulations analysis [17]. 
 
(1) Statistical analysis: Suppose there are n system failures occurred during a time inter-

val t. xi and yi (i=1, 2, …, n) denotes the normal operation time and failure repair time 
of ith cycle, respectively, and the mean time between failures and the mean time to 
repair are 1

1

n

n ii
x

 and 1
1

,
n

n ii
y

 respectively. Thus, the system reliability, denoted by 
r(t), can be calculated by 1 1 1

1 1 1
( ) ( ) /( ).

n n n

n n ni i ii i i
r t x x y

  
      

(2) Structure analysis: Assume there is a serial-parallel connection system whose struc-
ture is shown in Fig. 2 and each component has a constant reliability p. Then the re-
liabilities of the nth group and the system are rp = 1(1p)m and r(t) = pn-1(1(1p)m), 
respectively. 

(3) Simulation analysis: A method that approximates the system reliability by running a 
computer simulation program. A typical representative is Monte Carlo simulation. 
We omit its details because of the space limitation. 
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Fig. 2. Structure of a simple serial-parallel connection system. 

4. RELIABILITY ANALYSIS FOR META TASKS 

Usually there are many independent tasks in parallel computing, such as different 
services offered by cloud to user. The user may concern what the reliability of all the 
services being executed successfully is. This section performs the reliability analysis for 
this simple kind of parallel tasks, which establishes a foundation for that of dependent 
ones in the following section. 

4.1 Definition of Meta Tasks and Basic Assumptions 

Definition 2: Meta tasks is a kind of parallel tasks comprising a set of independent and 
indivisible single tasks. All these tasks can run on different computational nodes concur-
rently. It can be represented by a set MT={tj | j=1, 2, 3, …, n}, where tj denotes a task. 

When Meta tasks are running on different computational nodes, one or more of 
them may fail due to faults. Because of the independency, a single task’s failure will not 
affect any other single task. According to the theory of probability, the reliability that all 
Meta tasks are executed successfully, named Meta tasks parallel computing reliability in 
this paper, is equal to the product of each single task’s reliability. Firstly, we analyze the 
simplest case: the reliability of a single task running on one computational node. 

Whether or not a single task can run successfully, it depends on both hardware and 
software. Hardware refers to the physical components of a computational node such as 
CPU, memory, disk, while software refers to operation system, task program, and so on. 
Inspired by [18], we assume the hardware failure rate follows an exponential distribution. 
We use r

h
i(t) to denote the hardware reliability of computational node pi, then rh

i(t) = e-it, 
where i is the failure rate of pi. Similarly, we also assume the software failure rate of a 
single task tj follows an exponential distribution with parameter j. We denote the soft-
ware reliability of tj with rs

j(t), then rs
j(t) = e-jt. Furthermore, hardware and software fail-

ures are often independent with each other. Thus, the execution reliability of tj on pi, de-
noted by rij(ij), is equal to the product of hardware and software reliability: 

( )2

1( ) ( ) ( ) ,i j ij ij ijh

ij ij ij j ijr r r e e                 (1) 

where lij and ij represent the failure rate and execution time of tj on pi, respectively. Ob-
viously, lij =ai +bj. It takes both hardware and software failures into account. Suppose 
the computational workload of single task tj is wj, then the execution time of tj on pi is 
tij=wj/si, where si is the computational capability of node pi. Thus, the reliability of a 
single task running on a single computational node can be calculated by Eq. (1). 

1 2 n-1

nm 

n2 

n1 



A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS 

 

 

87

4.2 Reliability of Meta Tasks 

As discussed above, we analyze the reliability of a single task on one computational 
node. Based on that, we analyze the Meta tasks parallel computing reliability in this sec-
tion. Suppose all m computational nodes of the parallel computing system are idle and 
the scheduler starts to schedule single tasks when t=0. According to the schedule rules (2) 
assumed in Section 3.1, the scheduler can schedule min(n, m) single tasks a time. We 
only consider the case where n£m for the following two reasons: (1) m is often very 
large in cloud computing environment; (2) task scheduler can schedule the Meta tasks in 
batches when n>m. In the second case, the reliability is equal to the product of that of 
each batch. So we focus on the case of n£m. 

When n=1, m>1, there is only a single task tj to be scheduled and executed. tj fails 
if and only if it fails on all computational nodes. Thus, the whole parallel computing 
system can be considered as a connection system in parallel with m parts. We use rj

m(t) to 
denote the reliability of successfully running tj on the system, and rj

m, the corresponding 
execution time, where rj

m = max{ij = wj/si | i = 1, 2, m}, then 

1 1

1 1
( ) 1 {1 ( )} 1 (1 ).i i

m mj i

m m ij iji i
r r e    

 
           (2) 

When n>1, m>1, the successfully running of Meta tasks means all the single tasks 
are executed successfully. Without loss of generality, we assume they are completed in 
the order of t1, t2, …, tn. For single task t1 (t2, …, tn), the parallel computing system can 
be treated as a connection system in parallel with m (m-1, m-2, …, m-n+1) parts, re-
spectively. We denote the Meta tasks parallel computing reliability with rMeta(t), then 
according to Eq. (1), we have  

1 1 2 2

1 1 2 2

1 1 1 1

1 2

( ) ( ) ( ) ( )

(1 (1 )) (1 (1 ))...(1 (1 )),i i i i in in

n n

Meta m m m m m n m n

m m m

i i i n

r t r r r

e e e     

       

  

  

 

         


    (3) 

where i
m denotes the finish time of tj and t=max{j

m | j = 1, 2, …, n}. 

5. RELIABILITY ANALYSIS FOR DAG TASKS 

Meta tasks is very simple parallel tasks. However, there are many other parallel 
tasks with complex dependencies among their subtasks such as Fork-Join [19], MapRe-
duce [20], or Directed Acyclic Graph (DAG). Because DAG tasks is a generalization of 
Fork-Join and MapReduce tasks, we focus on the more general and expressive DAG tasks. 

5.1 Definition of DAG Tasks and Basic Assumptions 

Definition 3: DAG tasks consist of a set of subtasks with precedence constraints. We 
model a DAG tasks as a quadruple DAG=(T, E, W, C), where (1) T={tj | j=1, 2, 3, …, n} 
is the set of subtasks and tj denotes the jth subtask; (2) E={ejk | j, k=1, 2, 3, …, n } is the 
set of directed edges and ejk characterize the data dependencies between subtasks tj and tk. 
tj output its result to tk and tk takes the result as one of its inputs. tj is said to be the imme-
diate antecedent of tk and tk is referred as the immediate successor of tj; (3) W={wj | j=1, 2, 
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3, …, n} is the set of computational workload of subtasks and wj denotes the computa-
tional workload of tj; (4) C={cjk | j, k=1, 2, 3, …, n} is the set of data transfer volume, 
and cjk denotes the data transfer volume between tj and tk.  

Note that: here are some additional notation and terminology. We denote the imme-
diate antecedent set and immediate successor set of tj with Pred(tj) and Succ(tj), respec-
tively. If Pred(tj)=, then tj is called an entry subtask denoted by tentry. If Succ(tj)=, then 
tj is called an exit subtask denoted by texit. 

 

 
Fig. 3. An example of DAG tasks.  

 

Fig. 3 gives an example of a DAG tasks. There are 12 subtask nodes with 18 edges 
connecting them. The numbers besides the edges represent the data transfer volume be-
tween subtasks. With zero in-degree, t1 is the start point of the overall DAG tasks and 
spawns five subtasks. Every one of them then spawns more subtasks until reaching the 
exit subtask t12, which indicates the finish of DAG tasks. During the execution, every 
subtask with nonzero in-degree starts to execute if and only if all its immediate anteced-
ent subtasks execute successfully and send their results to it. Any subtask’s failure will 
lead to the failure of the whole DAG tasks. Actually, there may be many entry subtasks 
and exit subtasks in a DAG tasks. However, it can be transformed to a DAG tasks with 
only one entry and exit subtask by adding one virtual entry subtask and one virtual exit 
subtask correspondingly. In this paper, we all refer to this type of DAG tasks unless 
stated otherwise. 

Given the above DAG tasks model, we now analyze its parallel computing reliabil-
ity on the parallel computing system. When n>m, like the scheduling of Meta tasks in 
batches, DAG tasks can be scheduled hierarchically, where the current layer subtasks 
take the output of upper layer subtasks as their input. Then the reliability of DAG tasks is 
equal to the product of that of each layer. So we focus on the case of n£m.  

The successfully running of DAG tasks means all the subtasks are executed without 
failures and the network succeeds in transmitting all the communication data among 
subtasks. For each subtask, just as the case of single task of Meta tasks, its successful 
execution depends on both hardware and software. In addition, its successful execution 
implies all its immediate antecedent subtasks, if any, should also be executed success-
fully. This is different with Meta tasks. Furthermore, reliable network is another prereq-
uisite for the successful data transmission among subtasks. Any communication link 
failure may fail the network in transmitting the data, which makes the immediate suc-
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cessor subtasks unable to start due to lack of inputs. Thus, we can decompose the DAG 
tasks parallel computing reliability into two distinct parts: subtask execution reliability 
and network communication reliability, each of which can be calculated independently. 
Then, we obtain the DAG tasks parallel computing reliability by multiplying the former 
by the later. 

5.2 Reliability of a Subtask Execution 

Based on the discussion above, we firstly analyze how to calculate the execution re-
liability of any subtask. Because of the data dependencies, a subtask must receive all the 
results from its immediate antecedents (named the inputs receiving phase) and then begin 
to execute (named the execution phase). Upon finish, it should send the execution results 
to all its immediate successors (named the outputs sending phase). Any failure in any one 
of the three phases will definitely lead to failure of the subtask. As a subtask’s reliability 
is affected by hardware and software, the successfully running of a subtask means both 
of them should be in the operational state all through these three phases. If we know the 
total time spent in these phases for each subtask, then we can calculate its reliability ac-
cording to Eq. (1).   

We now discuss how to calculate the total time. For convenience, this paper names 
the time spent in the inputs receiving and the outputs sending phases as communication 
time. Firstly, we analyze how to calculate it. Some basic assumptions are: (1) subtask tj 
and tk are assigned to computational node pu and pv, respectively; (2) the bandwidth of 
communication links between tj and tk is buv when tkÎPred(tj) and bvu when tjÎPred(tk); 
and (3) the data size of inputs and outputs of subtask tj are din(tj) and dout(tj), respectively. 
We denote the bandwidth used to transmit all these data by bw. Then the communication 
time of tj, denoted by tcomm(tj), is computed by  

( ) ( )

( ) ( )
( ) ,

k j k j

in j out j kj jk

comm j t Pred t t Succ t

uv vu

d t d t c c
t

bw b b


 


        (4) 

where din(tentry)=dout(texit)=0, because tentry do not have inputs receiving stage and texit do 
not have outputs sending stage.  

The execution time of tj on pi, denoted by tcomp(tj), is equal to wj/si. We denote the 
total time as tij, then  

( ) ( )
( ) ( ) .

k j k j

j kj jk

ij comp j comm j t Pred t t Succ t

i uv vu

w c c
t t

v b b
  

 
          (5) 

So the execution reliability of tj on pi is equal to e-ijij according to Eq. (1). However, as 
discussed above, we should also take the execution reliabilities of all tj’s immediate an-
tecedent subtasks into account. We denote the computational nodes to which the sched-
uler assigns subtask tkÎPred(tj) by px, where pxP and pxpi. Then the execution reliabil-
ity of tj, denoted by rij(tij), can be computed by  

( ),( ) ( ) .ij ij

k j xij ij t Pred t p P xk xkr r e    

        (6) 

Obviously, any subtask’s execution reliability can be calculated by Eq. (6) recursively 
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until reaching the exit subtask. The pseudo code of the algorithm to calculate any sub-
task’s execution reliability is given as follows: 
 

Algorithm 1: Subtask_Execution_Reliability_Algorithm, SERA 

Input: DAG=(T, E, C, W), ARC=(P, L, S, B), lij;  //Follow the assumptions in the pre-
vious section 

Output: rij(tij) (1 i  m, 1 j  n), rExit, ttotal;      //ttotal is the total execution time of 
DAG tasks  

SERA ( ) 
{  P{p1, p2, …, pm};  //Initialize set P that denotes the computational nodes in idle state 

L{tj | in-degree(tj)==0, 1 j  n };          //Add subtask with zero in-degree to  
the task ready queue L 

ts(tj)  0, te(tj)  0, j=1, 2, 3, …, n;      
tidle(pi)  0, i=1, 2, 3, …, m;      
ttotal0; 
ε;                                
do until L is empty 
{   for each idle processor node pi (1 i  m)  //Assign idle computational nodes for  

subtasks in L 
{    tj  scheduling(pi, L);             //Implement task scheduling accord- 

ing to schedule policies 
if (tj > 0) 
{    LL{ tj }, ←+{tj};  

                 ts(tj)  max(ts (tj), tidle(pi) );  
} 

} 
for each tj                 //Calculate the execution time and reliability of tj 
{        {tj}; 

te(tj)ts (tj)+tcomp(tj)+tcomm(tj);     //Calculate the ending time of tj 
tidle(pi)te(tj);  
tij=te(tj)-ts(tj);                  //Calculate the execution time of tj 
if (tj=tentry)                      //If tj is the entry subtask 

rij(ij)e-ijij;  
else 
{   Pred(tj)find_immediate_antecedent (tj, DAG); 

for each tk Î Pred(tj)        //Retrieve the calculated subtask ex-  
ecution relability 

rxk(xk)rxk(xk)get_finished_reliability (tk, tj); 

( ),( ) ( ) ij ij

k j xij ij t Pred t p P xk xkr r e    

    ; //current subtask execution reli-  
ability  

} 
} 
for each tk Î Succ(tj)                 //Update some parameters regarding tk 
{    ts(tk)  max(ts(tk), tidle(pi));    
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indegree(tk)  indegree(tk)1;     //Update the in-degree of tk 
if (indegree(tk)==0)  LL+{tk};    //If the in-degree of tk decreases to  

zero, then adds it to L 
} 

 } 
ttotalte(texit);          //The ending time of texit is equal to the total execution 

time of DAG tasks  
return {rij(tij)| (1 i  m, 1 j  n)}, ttotal;   //Output the results 

}  
 

Algorithm 1 traverses the DAG from the entry subtask in breadth-first manner. 
Meanwhile, it maintains a task ready queue and assigns each of them to an idle computa-
tional node. At the same time, it records the starting and ending time for each subtask. 
Based on these information, it calculates the execution reliability of every subtask in the 
queue recursively until reaching the exit subtask. Obviously, the successfully running of 
the exit subtask means that all subtasks have been executed successfully. Thus, the exe-
cution reliability of texit, denoted by rExit(xn), represents the execution reliability of the 
whole DAG tasks. 

5.3 Reliability of Network Communication 

The reliable communication network is a guarantee of the successful data transmis-
sion among subtasks. Thus, the reliability of network communication should also be 
taken into consideration. The network is reliable if and only if it satisfies the communi-
cation requirements between any pair of subtasks. This requires that there is at least one 
communication path between any pair of subtasks. However, communication links may 
encounter failures due to radiation effect, wear-out, or aging problems. This may result 
in the failures of data transmission. To calculate the reliability of network communica-
tion, we assume: (1) every communication link may experience failures, and they are 
independent with each other. Every communication link has only two states: operational 
state with the probability  and failed state with the probability 1-; (2) The failure rate 
of communication link follows an exponential distribution. We denote the reliability of 
successful data transmission of luv with ( ),l l

uv uvr   then ( ) ,
l

uv uvl l

vu uvr e     where guv represents 
the failure rate of luv. And 

l

uv  represents the transmission time for data duv from computa-
tional node pu to pv, which can be calculated by ;uv

uv

dl
buv   (3) Communication data can 

only be transmitted on the links whose two terminals both connect to computational node 
assigned subtasks. We call all these links along with computational nodes connected to 
them a subnet; (4) When the number of computational nodes m is larger than that of 
subtasks n, scheduler partitions the communication network into m

n    disjoint subnets. 
If a subnet can satisfy the communication requirements of DAG tasks, we think that 

it is in the operational state. If there are more than one subnet in the operational state, the 
network communication reliability is determined by all of them. In this case, we can 
compute the average value of all subnets’ communication reliabilities as the network 
communication reliability. Particularly, Algorithm 1 finds out a subnet that not only can 
successfully execute subtasks but also satisfy their communication demands. Suppose the 
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subnet is denoted by ARCq(Pq, Lq), where Pq and Lq represent the computational nodes 
set to which the scheduler assigns subtasks and communication links set that connect 
those computational nodes, respectively. Because ARCq(Pq, Lq) satisfies the communica-
tion requirements of DA in the operational state G tasks, the links in the operational state 
must form a spanning tree at least. Of course, there may be multiple spanning subgraphs 
in the operational state. We suppose the set of spanning subgraphs of ARCq(Pq, Lq) in the 
operational state is denoted by Ωq and the set of links in the operational state is denoted 
by Lq, then the communication reliability of ARCq(Pq, Lq), denoted by r

q

Comm(t), can be 
calculated as follows: 

( \ )
( ) ( ( )) (1 ( )),

q uv q gh q q

q l l l l

Comm q uv uv gh ghl L l L L
r t r r    

         (7) 

where tq represents the execution time of DAG tasks. Its value equals to ttotal computed 
by Algorithm 1. 

We have discussed the single subnet communication reliability. In fact, when the 
number of computational nodes m is larger than that of subtasks n, the communication 
network is partitioned into m

n   disjoint subnets according to the assumption (4) in this 
section. Then the network communication reliability, denoted by rComm(tq), can be calcu-
lated by 

[ ]
( )

( ) ,
m

q n

q

Com qARC ARC

Comm m
n

r t
r t

   
  


    (8) 

where t=max{tq}. Based on discussion above, we design another algorithm, Network_ 
Communication_Reliability_Algorithm, to calculate the network communication reliabil-
ity. The following is its description in pseudo code. 

 

Algorithm 2: Network_Communication_Reliability_Algorithm, NCRA 

Input: DAG=(T, E, C, W), ARC=(P, L, S, B), guv;     //Follow the assumptions in the 
previous section 

Output: rComm(t);                       //The reliability of network communication 
NCRA ( ) 
{ P←{p1, p2, …, pm}; 
 L←{ t1, t2, …, tn };                          //Initialize the task ready queue L 
 r

q

Comm(tq)=0 (q=1, 2, 3, …, 

m
n   );  

 ARC[ m
n   ]←{f, f, …, f};                     //Initialize the set of subnets  

 Ω[ m
n   ]←{f, f, …, f};    //Initialize set of spanning subgraphs of each subnet in the  

operational state  
ARC[ m

n   ]←subnet_decision_making(DAG, ARC); //Partition the system into subnets 
if (m<n)                              //No subtasks to be scheduled 

rComm(t)0;  
else if 

m
n    1                        //There are multiple subnets that may sat-  

isfy communication reqirements 
{   for each subnet ARCq Î ARC[ m

n   ]   //Calculate communication reliability for  
each subnet 
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{ if (is_connected(ARCq)<0);    
     r

q

Comm(t)0;  
   else 

{ Ωq ← generate_spanning_graph_in_operational_state (ARCq);   

    
( \ )

( ) ( ( )) (1 ( ))
q uv q gh q q

q l l l l

Comm q uv uv gh ghl L l L L
r t r r    

     ; 

} 
} 

[ ]
( )

( ) ;
m

q n

q

Com qN N

Comm m
n

r t
r t

   
  


   //Calculate network communication reliability 

} 
return rComm(t);       //Output the network communication reliability 

} 
 

The following example is designed to ease the understanding of Algorithm 2. 

Example 1: There is a DAG tasks with 4 subtasks and a parallel computing system with 
6 computational nodes as are shown in Fig. 4. At the beginning, all computational nodes 
are idle and the scheduler schedules the DAG tasks to the system. The scheduler parti-
tions the system into 

6
4 1    subnet and assigns the DAG tasks to it. Suppose the subnet, 

denoted by N1, is composed of p1, p2, p3, p4 and the links connected among them, as in-
dicated by dashed circle in Fig. 4. Obviously, N1 has three spanning trees, represented by 
L1

1={l4,8, l7,8, l8,10}, L2
1={l4,7, l7,8, l8,10}, L3

1={l4,7, l4,8, l8,10}, respectively. In addition, 
L1={ l4,7, l4,8, l7,8, l8,10} also satisfies the communication demand of the DAG tasks, so L1 
is in the operational state. Then Ω1, the set of subnets of N1 in the operational state, is {L1

1, 
L2

1, L
3
1, L1}. To calculate N1’s communication reliability, we assume that all links have 

same bandwidth and failure rate, and b=1, guv = 0.02 for simplicity. Because it is difficult 
to calculate data transfer volume on each links accurately, we take the average value as an  

approximation. For each link of L1
1, the average data transfer volume is 

4 4

1 1

1 1

iji j
cc

c
L L

 
 

 

3 2 3 1
3.3,

3

  
  and then the average communication time is 

3.3
3.3.

1
L

uv

c

b
     Similar- 

ly, we can calculate the average communication time for each link of L2
1, L

3
1, and L1. Thus, 

we have r1
Comm(t1) = 30.93613(10.9361)+0.95124= 0.9759 according to Eq. (7). Be-

cause there is only one subnet, the network communication reliability equals to r1
Comm(t1). 

 

 
Fig. 4. A simple example illustrating how to calculate reliability of network communication.  
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5.4 Reliability of the Whole DAG Tasks 

Till now, we have calculated the execution reliability of any subtask and reliability 
of network communication. Because the reliability of the whole DAG tasks, denoted by 
rDAG(t), is determined by both of them, then 

rDAG(t) = rExit(t)rComm(t),     (9) 

where t represents the overall execution time of DAG tasks. 

6. EXPERIMENTS AND APPLICATIONS 

We have proposed reliability analysis methods for Meta tasks and DAG tasks in 
Sections 4 and 5, respectively. In order to verify our methods, we first design two ex-
periments to investigate the influence of different hardware and software failure rates, 
and the number of single tasks on the Meta tasks parallel computing reliability. Then we 
design another three experiments for DAG tasks. The first one is to investigate the effect 
of different link failure rates on network communication reliability, and the second one is 
to study the effect of different failure rates of hardware, software, and link on DAG tasks 
reliability. The last one is designed to compare our reliability methods with others. As-
sume the parallel computing system we use is same as in Fig. 4. 

6.1 Experiments for Meta Tasks  

Experiment 1: This experiment is designed to study how the Meta tasks parallel compu-
ting reliability change with different hardware and software failure rates. Suppose four 
tasks t1, t2, t3, and t4 with different software failure rates, are assigned to computational 
nodes p1, p2, p3, p4, respectively. And p5, p6 have no tasks to be executed. The parameters 
of Meta tasks parallel computing are listed in Table 2. ai denotes hardware failure rate of 
computational node pi. bj denotes software failure rate of task tj, and lij denotes the fail-
ure rate of tj executing on pi.  
 

Table 2. Parameters of Meta tasks parallel computing. 
          p1(t1)     p2(t2)      p3(t3)       p4(t4)        p5(t5)      p6 () 
ai (/hr)      0.002  0.002   0.002   0.002   0.002   0.002 
bj(/hr)      0.009   0.015   0.020   0.010              
lij(/hr)      0.011   0.017   0.022   0.012              

 

In this example we suppose all single tasks have an identical execution time, i.e., 
tj»t (j=1, 2, 3, 4). Then the Meta tasks parallel computing reliability with respect to ex- 
ecution time are calculated according to Eq. (3). The results are shown in Fig. 5. It shows 
that the reliability decreases quickly with the increase of execution time. And the higher 
the failure rate is, the faster the reliability decreases. For instance, in the early stage of 
execution when t<10, the reliabilities with all three different failure rates are close to 1. 
However, they all approach to 0 when t = 350 hours. This means that it is almost impos-
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sible for the Meta tasks to run so long time without failures. The possible reasons include 
computation errors of CPU resulting from increasing temperature, memory leaks, hard 
disk failures, and exposure of bugs in the code of tasks, and so on. 

 
Experiment 2: We design this experiment to study how the Meta tasks parallel compu-
ting reliability change with different number of single tasks. In order to highlight the 
effects of number of single tasks on the reliability, we assume the failure rate of each 
single task when executing on a computational node is equal to 0.02. Then we calculate 
the Meta tasks parallel computing reliability according to Eq. (2). The results are shown 
in Fig. 6. It shows that the reliability decrease with the increase of execution time, no 
matter how many single tasks there are. What’s more, the larger the number of single 
tasks is, the faster the reliability decreases. This is because when the number of single 
tasks is smaller than that of computational nodes, the rest of nodes serve as standby. 
When a single task encounters failures on one computational node, it can resume its ex-
ecution on another node in idle state. This will increase its reliability. 
 

 
Fig. 5. Meta tasks reliability with different 

failure rates. 
Fig. 6. Meta tasks reliability with different 

number of single tasks. 

6.2 Experiments for DAG Tasks 

Experiment 3: This experiment is designed to study how the network communication 
reliability change with different failure rates of communication links. We take the DAG 
tasks in Fig. 4 as our test object. They are scheduled to subnet N1(P1, L1), where P1 = {p1, 
p2, p3, p4} and L1 = {l12, l13, l14, l23}. Suppose the failure rates of l12, l13, l14, and l23 to be 
0.012m, 0.018m, 0.020m, 0.014m, respectively. Then the network communication reliabili-
ties with different link failure rates are calculated according to Eqs. (7) and (8). The re-
sults are shown in Fig. 7. Just as the result shown in Fig. 5, the reliabilities with three 
different link failure rates decrease quickly with the increase of execution time in Fig. 7. 
And the one with higher failure rate drops faster than others with lower failure rate. 
When t=250 hours, the reliabilities with all three different failure rates are close to 0. It is 
not acceptable for large-scale parallel applications whose execution time are weeks or 
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even months. Thus, the reliability of communication links has a big influence on the 
successfully running of DAG tasks and so it cannot be neglected.   
 
Experiment 4: We design this experiment to study how the DAG tasks parallel compu-
ting reliability change with different hardware and software failure rates. The failure 
rates of hardware are assumed to be same with Experiment 1. DAG tasks are assumed to 
be same as in Fig. 4. And its subtasks have identical failure rates with the corresponding 
tasks in Experiment 1. For simplicity, we assume the ratio of each subtask’s execution 
time towards the total execution time of DAG tasks are 1/5, 1/2, 1/2 and 1/5 for t1, t2, t3, 
and t4, respectively. The executions of t2 and t3 are completely overlapped. The ratio of 
communication time to total execution time of DAG tasks is assumed to be 1/10. Then 
the DAG tasks parallel computing reliability with respect to total execution time can be 
calculated according to Eqs. (4)-(9). Their results are shown in Fig. 8 in solid line. Simi-
lar to the result shown in Fig. 5, the DAG tasks parallel computing reliability calculated 
by our method decreases quickly with the increase of total execution time. However, the 
reliability drops much faster than that in Fig. 5. For example, the reliability of the former 
is 0.679525 while the latter is only 0.239766 in the case of =1, t=50. This is because the 
reliability of communication links has a big influence on the successfully running of 
DAG tasks.  
 
Experiment 5: This experiment is designed to compare our reliability analysis method 
for DAG tasks reliability with others. Reference [10] is the most relevant one to our 
work. Thus, we use their reliability analysis method to calculate the reliabilities with the 
same parameters and configurations as in Experiment 4. Their results are shown in dot-
ted line in Fig. 8. It can be noted that the reliabilities calculated by [10] is much higher 
than ours in Fig. 8. For example, the reliability is 0.4798 while it is almost 0 in our method 
in the case of =1, t=500. It implies that the probability that the DAG tasks can keep 
running as long as 500 hours without failures is nearly 0.5. It is not consistent with the 
statistics in [2]. Similar results can be obtained by the reliability analysis method provided 
by [9]. This is because both of them did not consider the communication link failures.  
 

 
Fig. 7. Network communication reliability 

with different failure rates. 
Fig. 8. DAG tasks reliability with different fai- 

lure rates (solid line for our method, 
dotted line for [10]).
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According to the above experimental results, we can know that our method is more 
consistent with actual statistics due to a comprehensive consideration of reliability limit-
ing factors including the hardware failures, software failures, link failures, and con-
straints on the subtask execution order.  

6.3 Possible Applications 

Our reliability analysis methods may be useful in at least three fields: system archi-
tecture design, task scheduling, and fault-tolerance algorithm design. For system archi-
tecture design, designers can use our methods to identify key components (hardware, 
software, and communication link) that influence reliability greatly, and then deploy 
more backups for the less reliable ones to enhance the reliability. For task scheduling, 
scheduler can compute the reliabilities for different task assignments based on our 
methods, and select the one that has largest reliability and matches the task QoS re-
quirements. If there are no assignments that satisfy the QoS requirements, then system 
maintainers can replace the unreliable components with more reliable ones or increase 
the number of backups. With respect to fault-tolerance algorithm design, programmers 
can compute the reliabilities with different parameters of fault-tolerance algorithm such 
as number of computational nodes, task replications. Based on some economic model, 
they can design an optimal fault-tolerance algorithm.  

7. CONCLUSIONS 

In this paper we have performed reliability analysis for Meta tasks and DAG tasks. 
For Meta tasks, the reliability of a single task on one computational node is firstly ana-
lyzed, then the reliability formula based on the theory of probability is presented. For 
DAG tasks, we propose a reliability model that takes a comprehensive consideration on 
the reliability limiting factors including computational nodes, software, communication 
links and subtask execution order. In this model, we calculate both the reliability of sub-
task execution and that of network communication. Furthermore, we design two algo-
rithms, SERA and NCRA, to calculate the corresponding reliabilities. Finally, we conduct 
some numerical experiments to validate our reliability models. Our works have a guiding 
significance for reliability optimization in the field of high performance computing sys-
tems. On the other hand, this paper does not consider the fault tolerance mechanism and 
the interactions between hardware and software failures. And that will be our future 
work. 
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