
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 81-99 (2017)
DOI: 10.6688/JISE.2017.33.1.6

81

A Reliability Analysis for Successful Execution
of Parallel DAG Tasks

KE-KUN HU, GUO-SUN ZENG*, WEN-JUAN LIU AND WEI WANG

Department of Computer Science and Technology
Tongji University

Tongji Branch, National Engineering and Technology Center of High Performance Computer
Shanghai, 201804 P.R. China

E-mail: hookk@msn.com; {gszeng; wenjuanliu; wwang}@tongji.edu.cn

Large scale parallel computing system is becoming more and more failure-prone due

to the increasing number of computational nodes. This results in serious reliability prob-
lems in parallel computing. To ensure successfully running of parallel tasks such as Meta
tasks and DAG tasks, it is necessary to perform reliability analysis before scheduling
parallel tasks. For Meta tasks, some key factors are discussed that affect and impede suc-
cessful execution of a single task. Then, the reliability formula of Meta tasks is presented.
For DAG tasks, hardware failures, software failures, network link failures and subtask
execution order are all taken into account. We shall calculate not only the reliability of
subtasks, but also the reliability of network communication. Then two reliability algo-
rithms of DAG tasks are designed. Finally, some experiments are conducted. Experi-
mental results show that our reliability analysis methods are more effective and compre-
hensive.

Keywords: parallel computing, meta tasks, DAG tasks, successful execution, reliability

1. INTRODUCTION

High Performance Computing (HPC) plays an important role in many fields, such
as weather forecast, hydrocarbon exploration, biological modeling and simulation. These
computing-intensive applications in turn have driven the scale of high performance
computers from thousands to tens of thousands, or even hundreds of thousands of cores.
For example, in 2016, the No. 1 supercomputer in the Top500 supercomputer list is
Tianhe-2 consisting of 3, 123, 000 cores with an Rpeak of 54.902 PetaFlops [1]. This is
an indisputable fact that scaling out the parallel computing system is an important way to
improve its performance. However, as the scale of a parallel computing system grows,
failures have become common. Los Alamos National Laboratory of America collects
failure data of 22 high performance computers from 1996 to 2005, according to which
the failure rate of single computational node is one in 512 hours [2]. But the runtime of
many computing-intensive applications is weeks or even months. Therefore, it is difficult,
if not impossible, for them to complete execution without failures. The frequent failures
mean a waste of resources. Raicu et al. [3] point out that 20% or more of the computing
capacity in a large scale high performance computing system is wasted due to failures.

Reliability is one of the most important performance features of a supercomputing
system. It indicates the probability of the system to function without failure under stated

Received November 12, 2015; revised April 5 & June 21, 2016; accepted July 17, 2016.
Communicated by Jan-Jan Wu.
* Corresponding author.

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

82

conditions for a specified amount of time [4]. Reliability analysis usually adopts some
methods such as statistics solutions to measure the probability. This information can
provide a good reference regarding reliability optimization and maintainability of a sys-
tem. In parallel computing, if some failure data and distributions are obtained, they can
be used to help system architecture design, task scheduling, fault-tolerance algorithm
design, and so on. Because of the serious reliability problems in large-scale parallel com-
puting, like in cloud computing, it is necessary to perform the reliability analysis for par-
allel computing. However, it is a non-trivial work to analyze the reliability due to the
varieties of faults coming from system hardware, software, and network communication
links. Hence, the traditional reliability models [5-7] cannot be directly applied to analyz-
ing the reliability of successfully running parallel tasks. In this paper, we focus on Meta
tasks and DAG tasks, and analyze the reliabilities of successfully running them on a par-
allel computing system. The main contributions are as follows:

(1) We propose a reliability model for Meta tasks. Its reliability formula is also present-

ed.
(2) We propose a comprehensive reliability model for DAG tasks. In addition to the

hardware and software failures, our model also takes communication link failures in-
to considerations due to the communication requirements among subtasks. Moreover,
algorithms to evaluate the reliability of DAG TASKS are designed.

(3) We conduct some numerical experiments to identify the key factors that affect the
reliability of successfully running of parallel tasks, and to compare our reliability
models with others. The experimental results demonstrate that the proposed models
are comprehensive and consistent with the statistics reported.

The rest of this paper is organized as follows: Section 2 discusses related work.

Section 3 introduces the parallel computing environments and some definitions. Mean-
while, some traditional reliability analysis methods are also presented. Section 4 and 5
analyze the reliabilities of Meta tasks and DAG tasks, respectively. Section 6 conducts
extensive numerical experiments to identify the key factors that affect the reliability of
parallel tasks under different situations. Section 7 concludes our work with some thoughts
on future work.

2. RELATED WORK

The reliability of parallel computing is the probability that parallel tasks are suc-
cessfully executed on parallel computing system. Low reliability means a waste of com-
puting capacity due to failures and maintenances. To improve computing performance,
many studies have been carried out. Pezoa et al. [8] proposed a rigorous probabilistic
framework to analyze the hardware reliability of a distributed computing system in the
presence of random server node failures. Xiong et al. [9] studied the parallel computing
reliability by modeling the state transition process of a parallel computing system as a
Markov chain. They calculated the reliability as the summation of probabilities of each
state whose number of computational nodes in the operational state is larger than the
maximum parallelism of parallel tasks. But References [8, 9] only considered the nodes

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

83

failure without taking the software into account. Xie et al. [10] proposed a reliability
model for DAG tasks based on theory of probability. They assumed the failure events of
each subtask could be modeled by non-homogeneous Poisson process while supposing
the computational node to be perfect. However, just as the analysis of failure data col-
lected from two large HPC sites suggested, hardware and software were two main relia-
bility limiting factors [11]. Only considering either of them is not reasonable. Further-
more, References [9, 10] did not consider communication link failures. This is not ap-
propriate for dependent tasks such as DAG tasks. Because the communication data
among its subtasks may not be successfully transmitted through links in the presence of
link failures. Shi et al. [12] defined the reliability of grid computing as the probability of
successfully running of the tasks on different resources. They use reliability block dia-
gram technique to evaluate the reliability. Dai et al. [13] defined the service reliability of
grid computing system as the probability that all of the programs involved in the service
are executed successfully. They derived the reliability using graphic theory. Guo et al.
[14] studied the service reliability on a grid with star topology. They defined the reliabil-
ity as the probability that the resource management system received all the outcomes of
subtasks successfully. References [12-14] all assumed the failure rates of node and link
obeyed the negative exponential distribution, but they did not consider software failures.
As the scale of software grows, software failures become common. So, it is necessary to
take software failures into consideration. Dai et al. [15] analyzed the cloud service relia-
bility and defined it as the product of request stage reliability and execution stage relia-
bility. In their reliability models proposed for each stage, they took the failures of hard-
ware, software, and link into account. But they assumed no precedence constraints on the
order of subtask execution. This assumption limits the application of their reliability
model because parallel tasks often have dependencies among their subtasks.

In summary, parallel tasks reliability depends on both hardware and software. When
there are data dependencies among subtasks, the communication link failures and prece-
dence constraints on the order of subtask execution should also be considered. To our
best knowledge, there are few literatures that take all these reliability limiting factors into
account. Thus, in this paper, we present comprehensive reliability analysis for success-
fully running parallel tasks on a parallel computing system which take full considerations.
Comparisons of related work are summarized in Table 1.

Table 1. Comparisons of related work.

hardware software link subtask execution order

system reliability [8]    
 [9]    

parallel computing

reliability

[10]
[12]

[13, 14]
[15]

Our work

    
    
    
    

    
: taken into account : not taken into account.

and references

reliability limiting factors

study objects

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

84

3. RELIABILITY CONCEPTS IN A PARALLEL COMPUTING SYSTEM

3.1 Parallel Computing System

Parallel computing is the simultaneous use of multiple computational nodes to solve
application problems [16]. Generally speaking, it has three steps. Firstly, an application
problem is divided into small subtasks. Then these subtasks are assigned to different
computational nodes. Finally, all these nodes cooperate and execute the assigned sub-
tasks concurrently to speed up the problem solving process. A typical parallel computing
system is shown in Fig. 1. From left to right, there are parallel tasks, task scheduler, par-
allel machine composed of computational nodes and high speed network, respectively.
The task scheduler is responsible for mapping and scheduling parallel tasks to different
computational nodes.

 Parallel tasks Task scheduler Computational nodes High speed network

Fig. 1. A parallel computing system.

As to parallel tasks, they are just software programs running on different computa-
tional nodes to solve application problems. Parallel tasks can be classified into inde-
pendent and dependent parallel tasks. The former refers to Meta tasks, the latter refers to
DAG tasks. In this paper, when carrying out reliability analysis, we assume: (1) every
task may fail due to some errors and the failures are statistically independent; and (2)
each task has only two states: operational and failed.

A parallel machine is composed of computational nodes connected by high speed
network. Each node can be a cheap personal computer, workstation, or cluster. The to-
pology of the high speed network can be bus, ring, or hypercube, and so on. For conven-
ience, we model a parallel machine as a quadruples ARC=(P, L, S, B), where P={pi | i=1,
2, …, m} is the set of computational nodes and pi denotes the ith node; L={luv | u, v=1,
2, …, m} is the set of communication links, and luv indicates that there is a link between
node pu and pv; S={si | i=1, 2, …, m} denotes set of nodes’ computational capability, and
si corresponds to the computational capability of pi; and B={ buv | u, v=1, 2, …, m} is the
set of link bandwidth, and buv denoting the bandwidth of luv. We make some assumptions
for our target parallel machine: (1) it is composed of m nodes connected by high speed
network with arbitrary topology; (2) both nodes and links may fail and have only two
states: operational and failed; and (3) the failure of nodes and links are stochastic and
statistically independent.

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

85

Tasks scheduler is actually a group of schedule policies and algorithms. Its respon-
sibilities are to determine the execution sequence of multiple tasks and their correspond-
ing execution time. There are many kinds of scheduler algorithms such as min-min, max-
min. Of course, parallel tasks reliabilities vary with different scheduling algorithms. As
scheduling algorithm is beyond the scope of this paper, we assume the tasks scheduler
obeys the following principles: (1) it adopts a static centralized scheduling algorithm; (2)
each task is only assigned to an idle node; and (3) each node can execute only one task at
a time.

3.2 Definition of Reliability

Reliability has many different connotations. For an industrial product, it indicates
the ability of the product to perform its expected function under specified conditions for
a specified period of time. For a system, it indicates the probability that a system will
satisfactorily perform its intended function. Similarly, we define the parallel computing
reliability as follows:

Definition 1: Parallel computing reliability is the probability that parallel tasks will be
executed successfully on parallel machines with a specified scheduling algorithm under
stated conditions for a specified period of time.

Mathematically, the parallel computing reliability function R(t) is the probability

that the parallel tasks will run successfully without failure in the interval from time 0 to
time t, R(t)=P(T>t), t0, where T is a random variable representing the task failure time.
Specifically, R(t)=exp{

t

0(x)dx}, where (t) denotes the task failure rate function, or
hazard function. Because hardware and software have a big influence on the parallel
computing reliability, (t) should take both of them into consideration.

3.3 Traditional Methods for Reliability Analysis

There are many different kinds of reliability analysis methods, such as statistical
analysis, structure analysis, and simulations analysis [17].

(1) Statistical analysis: Suppose there are n system failures occurred during a time inter-

val t. xi and yi (i=1, 2, …, n) denotes the normal operation time and failure repair time
of ith cycle, respectively, and the mean time between failures and the mean time to
repair are 1

1

n

n ii
x

 and 1
1

,
n

n ii
y

 respectively. Thus, the system reliability, denoted by
r(t), can be calculated by 1 1 1

1 1 1
() () /().

n n n

n n ni i ii i i
r t x x y

  
   

(2) Structure analysis: Assume there is a serial-parallel connection system whose struc-
ture is shown in Fig. 2 and each component has a constant reliability p. Then the re-
liabilities of the nth group and the system are rp = 1(1p)m and r(t) = pn-1(1(1p)m),
respectively.

(3) Simulation analysis: A method that approximates the system reliability by running a
computer simulation program. A typical representative is Monte Carlo simulation.
We omit its details because of the space limitation.

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

86

Fig. 2. Structure of a simple serial-parallel connection system.

4. RELIABILITY ANALYSIS FOR META TASKS

Usually there are many independent tasks in parallel computing, such as different
services offered by cloud to user. The user may concern what the reliability of all the
services being executed successfully is. This section performs the reliability analysis for
this simple kind of parallel tasks, which establishes a foundation for that of dependent
ones in the following section.

4.1 Definition of Meta Tasks and Basic Assumptions

Definition 2: Meta tasks is a kind of parallel tasks comprising a set of independent and
indivisible single tasks. All these tasks can run on different computational nodes concur-
rently. It can be represented by a set MT={tj | j=1, 2, 3, …, n}, where tj denotes a task.

When Meta tasks are running on different computational nodes, one or more of
them may fail due to faults. Because of the independency, a single task’s failure will not
affect any other single task. According to the theory of probability, the reliability that all
Meta tasks are executed successfully, named Meta tasks parallel computing reliability in
this paper, is equal to the product of each single task’s reliability. Firstly, we analyze the
simplest case: the reliability of a single task running on one computational node.

Whether or not a single task can run successfully, it depends on both hardware and
software. Hardware refers to the physical components of a computational node such as
CPU, memory, disk, while software refers to operation system, task program, and so on.
Inspired by [18], we assume the hardware failure rate follows an exponential distribution.
We use r

h
i(t) to denote the hardware reliability of computational node pi, then rh

i(t) = e-it,
where i is the failure rate of pi. Similarly, we also assume the software failure rate of a
single task tj follows an exponential distribution with parameter j. We denote the soft-
ware reliability of tj with rs

j(t), then rs
j(t) = e-jt. Furthermore, hardware and software fail-

ures are often independent with each other. Thus, the execution reliability of tj on pi, de-
noted by rij(ij), is equal to the product of hardware and software reliability:

()2

1() () () ,i j ij ij ijh

ij ij ij j ijr r r e e             (1)

where lij and ij represent the failure rate and execution time of tj on pi, respectively. Ob-
viously, lij =ai +bj. It takes both hardware and software failures into account. Suppose
the computational workload of single task tj is wj, then the execution time of tj on pi is
tij=wj/si, where si is the computational capability of node pi. Thus, the reliability of a
single task running on a single computational node can be calculated by Eq. (1).

1 2 n-1

nm

n2

n1

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

87

4.2 Reliability of Meta Tasks

As discussed above, we analyze the reliability of a single task on one computational
node. Based on that, we analyze the Meta tasks parallel computing reliability in this sec-
tion. Suppose all m computational nodes of the parallel computing system are idle and
the scheduler starts to schedule single tasks when t=0. According to the schedule rules (2)
assumed in Section 3.1, the scheduler can schedule min(n, m) single tasks a time. We
only consider the case where n£m for the following two reasons: (1) m is often very
large in cloud computing environment; (2) task scheduler can schedule the Meta tasks in
batches when n>m. In the second case, the reliability is equal to the product of that of
each batch. So we focus on the case of n£m.

When n=1, m>1, there is only a single task tj to be scheduled and executed. tj fails
if and only if it fails on all computational nodes. Thus, the whole parallel computing
system can be considered as a connection system in parallel with m parts. We use rj

m(t) to
denote the reliability of successfully running tj on the system, and rj

m, the corresponding
execution time, where rj

m = max{ij = wj/si | i = 1, 2, m}, then

1 1

1 1
() 1 {1 ()} 1 (1).i i

m mj i

m m ij iji i
r r e    

 
       (2)

When n>1, m>1, the successfully running of Meta tasks means all the single tasks
are executed successfully. Without loss of generality, we assume they are completed in
the order of t1, t2, …, tn. For single task t1 (t2, …, tn), the parallel computing system can
be treated as a connection system in parallel with m (m-1, m-2, …, m-n+1) parts, re-
spectively. We denote the Meta tasks parallel computing reliability with rMeta(t), then
according to Eq. (1), we have

1 1 2 2

1 1 2 2

1 1 1 1

1 2

() () () ()

(1 (1)) (1 (1))...(1 (1)),i i i i in in

n n

Meta m m m m m n m n

m m m

i i i n

r t r r r

e e e     

       

  

  

 

         


 (3)

where i
m denotes the finish time of tj and t=max{j

m | j = 1, 2, …, n}.

5. RELIABILITY ANALYSIS FOR DAG TASKS

Meta tasks is very simple parallel tasks. However, there are many other parallel
tasks with complex dependencies among their subtasks such as Fork-Join [19], MapRe-
duce [20], or Directed Acyclic Graph (DAG). Because DAG tasks is a generalization of
Fork-Join and MapReduce tasks, we focus on the more general and expressive DAG tasks.

5.1 Definition of DAG Tasks and Basic Assumptions

Definition 3: DAG tasks consist of a set of subtasks with precedence constraints. We
model a DAG tasks as a quadruple DAG=(T, E, W, C), where (1) T={tj | j=1, 2, 3, …, n}
is the set of subtasks and tj denotes the jth subtask; (2) E={ejk | j, k=1, 2, 3, …, n } is the
set of directed edges and ejk characterize the data dependencies between subtasks tj and tk.
tj output its result to tk and tk takes the result as one of its inputs. tj is said to be the imme-
diate antecedent of tk and tk is referred as the immediate successor of tj; (3) W={wj | j=1, 2,

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

88

3, …, n} is the set of computational workload of subtasks and wj denotes the computa-
tional workload of tj; (4) C={cjk | j, k=1, 2, 3, …, n} is the set of data transfer volume,
and cjk denotes the data transfer volume between tj and tk.

Note that: here are some additional notation and terminology. We denote the imme-
diate antecedent set and immediate successor set of tj with Pred(tj) and Succ(tj), respec-
tively. If Pred(tj)=, then tj is called an entry subtask denoted by tentry. If Succ(tj)=, then
tj is called an exit subtask denoted by texit.

Fig. 3. An example of DAG tasks.

Fig. 3 gives an example of a DAG tasks. There are 12 subtask nodes with 18 edges
connecting them. The numbers besides the edges represent the data transfer volume be-
tween subtasks. With zero in-degree, t1 is the start point of the overall DAG tasks and
spawns five subtasks. Every one of them then spawns more subtasks until reaching the
exit subtask t12, which indicates the finish of DAG tasks. During the execution, every
subtask with nonzero in-degree starts to execute if and only if all its immediate anteced-
ent subtasks execute successfully and send their results to it. Any subtask’s failure will
lead to the failure of the whole DAG tasks. Actually, there may be many entry subtasks
and exit subtasks in a DAG tasks. However, it can be transformed to a DAG tasks with
only one entry and exit subtask by adding one virtual entry subtask and one virtual exit
subtask correspondingly. In this paper, we all refer to this type of DAG tasks unless
stated otherwise.

Given the above DAG tasks model, we now analyze its parallel computing reliabil-
ity on the parallel computing system. When n>m, like the scheduling of Meta tasks in
batches, DAG tasks can be scheduled hierarchically, where the current layer subtasks
take the output of upper layer subtasks as their input. Then the reliability of DAG tasks is
equal to the product of that of each layer. So we focus on the case of n£m.

The successfully running of DAG tasks means all the subtasks are executed without
failures and the network succeeds in transmitting all the communication data among
subtasks. For each subtask, just as the case of single task of Meta tasks, its successful
execution depends on both hardware and software. In addition, its successful execution
implies all its immediate antecedent subtasks, if any, should also be executed success-
fully. This is different with Meta tasks. Furthermore, reliable network is another prereq-
uisite for the successful data transmission among subtasks. Any communication link
failure may fail the network in transmitting the data, which makes the immediate suc-

t1

24

 t244

t4
30

t3
10

t5
38

t6
12

t7
16

t8
28

t9
40

t10
36

t12
28

2 22 22

3

42

224113 2

21

2

t11
19

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

89

cessor subtasks unable to start due to lack of inputs. Thus, we can decompose the DAG
tasks parallel computing reliability into two distinct parts: subtask execution reliability
and network communication reliability, each of which can be calculated independently.
Then, we obtain the DAG tasks parallel computing reliability by multiplying the former
by the later.

5.2 Reliability of a Subtask Execution

Based on the discussion above, we firstly analyze how to calculate the execution re-
liability of any subtask. Because of the data dependencies, a subtask must receive all the
results from its immediate antecedents (named the inputs receiving phase) and then begin
to execute (named the execution phase). Upon finish, it should send the execution results
to all its immediate successors (named the outputs sending phase). Any failure in any one
of the three phases will definitely lead to failure of the subtask. As a subtask’s reliability
is affected by hardware and software, the successfully running of a subtask means both
of them should be in the operational state all through these three phases. If we know the
total time spent in these phases for each subtask, then we can calculate its reliability ac-
cording to Eq. (1).

We now discuss how to calculate the total time. For convenience, this paper names
the time spent in the inputs receiving and the outputs sending phases as communication
time. Firstly, we analyze how to calculate it. Some basic assumptions are: (1) subtask tj
and tk are assigned to computational node pu and pv, respectively; (2) the bandwidth of
communication links between tj and tk is buv when tkÎPred(tj) and bvu when tjÎPred(tk);
and (3) the data size of inputs and outputs of subtask tj are din(tj) and dout(tj), respectively.
We denote the bandwidth used to transmit all these data by bw. Then the communication
time of tj, denoted by tcomm(tj), is computed by

() ()

() ()
() ,

k j k j

in j out j kj jk

comm j t Pred t t Succ t

uv vu

d t d t c c
t

bw b b


 


    (4)

where din(tentry)=dout(texit)=0, because tentry do not have inputs receiving stage and texit do
not have outputs sending stage.

The execution time of tj on pi, denoted by tcomp(tj), is equal to wj/si. We denote the
total time as tij, then

() ()
() () .

k j k j

j kj jk

ij comp j comm j t Pred t t Succ t

i uv vu

w c c
t t

v b b
  

 
      (5)

So the execution reliability of tj on pi is equal to e-ijij according to Eq. (1). However, as
discussed above, we should also take the execution reliabilities of all tj’s immediate an-
tecedent subtasks into account. We denote the computational nodes to which the sched-
uler assigns subtask tkÎPred(tj) by px, where pxP and pxpi. Then the execution reliabil-
ity of tj, denoted by rij(tij), can be computed by

(),() () .ij ij

k j xij ij t Pred t p P xk xkr r e    

    (6)

Obviously, any subtask’s execution reliability can be calculated by Eq. (6) recursively

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

90

until reaching the exit subtask. The pseudo code of the algorithm to calculate any sub-
task’s execution reliability is given as follows:

Algorithm 1: Subtask_Execution_Reliability_Algorithm, SERA

Input: DAG=(T, E, C, W), ARC=(P, L, S, B), lij; //Follow the assumptions in the pre-
vious section

Output: rij(tij) (1 i  m, 1 j  n), rExit, ttotal; //ttotal is the total execution time of
DAG tasks

SERA ()
{ P{p1, p2, …, pm}; //Initialize set P that denotes the computational nodes in idle state

L{tj | in-degree(tj)==0, 1 j  n }; //Add subtask with zero in-degree to
the task ready queue L

ts(tj)  0, te(tj)  0, j=1, 2, 3, …, n;
tidle(pi)  0, i=1, 2, 3, …, m;
ttotal0;
ε;
do until L is empty
{ for each idle processor node pi (1 i  m) //Assign idle computational nodes for

subtasks in L
{ tj  scheduling(pi, L); //Implement task scheduling accord-

ing to schedule policies
if (tj > 0)
{ LL{ tj }, ←+{tj};

 ts(tj)  max(ts (tj), tidle(pi));
}

}
for each tj   //Calculate the execution time and reliability of tj
{     {tj};

te(tj)ts (tj)+tcomp(tj)+tcomm(tj); //Calculate the ending time of tj
tidle(pi)te(tj);
tij=te(tj)-ts(tj); //Calculate the execution time of tj
if (tj=tentry) //If tj is the entry subtask

rij(ij)e-ijij;
else
{ Pred(tj)find_immediate_antecedent (tj, DAG);

for each tk Î Pred(tj) //Retrieve the calculated subtask ex-
ecution relability

rxk(xk)rxk(xk)get_finished_reliability (tk, tj);

(),() () ij ij

k j xij ij t Pred t p P xk xkr r e    

    ; //current subtask execution reli-
ability

}
}
for each tk Î Succ(tj) //Update some parameters regarding tk
{ ts(tk)  max(ts(tk), tidle(pi));

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

91

indegree(tk)  indegree(tk)1; //Update the in-degree of tk
if (indegree(tk)==0) LL+{tk}; //If the in-degree of tk decreases to

zero, then adds it to L
}

 }
ttotalte(texit); //The ending time of texit is equal to the total execution

time of DAG tasks
return {rij(tij)| (1 i  m, 1 j  n)}, ttotal; //Output the results

}

Algorithm 1 traverses the DAG from the entry subtask in breadth-first manner.
Meanwhile, it maintains a task ready queue and assigns each of them to an idle computa-
tional node. At the same time, it records the starting and ending time for each subtask.
Based on these information, it calculates the execution reliability of every subtask in the
queue recursively until reaching the exit subtask. Obviously, the successfully running of
the exit subtask means that all subtasks have been executed successfully. Thus, the exe-
cution reliability of texit, denoted by rExit(xn), represents the execution reliability of the
whole DAG tasks.

5.3 Reliability of Network Communication

The reliable communication network is a guarantee of the successful data transmis-
sion among subtasks. Thus, the reliability of network communication should also be
taken into consideration. The network is reliable if and only if it satisfies the communi-
cation requirements between any pair of subtasks. This requires that there is at least one
communication path between any pair of subtasks. However, communication links may
encounter failures due to radiation effect, wear-out, or aging problems. This may result
in the failures of data transmission. To calculate the reliability of network communica-
tion, we assume: (1) every communication link may experience failures, and they are
independent with each other. Every communication link has only two states: operational
state with the probability  and failed state with the probability 1-; (2) The failure rate
of communication link follows an exponential distribution. We denote the reliability of
successful data transmission of luv with (),l l

uv uvr  then () ,
l

uv uvl l

vu uvr e    where guv represents
the failure rate of luv. And

l

uv represents the transmission time for data duv from computa-
tional node pu to pv, which can be calculated by ;uv

uv

dl
buv  (3) Communication data can

only be transmitted on the links whose two terminals both connect to computational node
assigned subtasks. We call all these links along with computational nodes connected to
them a subnet; (4) When the number of computational nodes m is larger than that of
subtasks n, scheduler partitions the communication network into m

n   disjoint subnets.
If a subnet can satisfy the communication requirements of DAG tasks, we think that

it is in the operational state. If there are more than one subnet in the operational state, the
network communication reliability is determined by all of them. In this case, we can
compute the average value of all subnets’ communication reliabilities as the network
communication reliability. Particularly, Algorithm 1 finds out a subnet that not only can
successfully execute subtasks but also satisfy their communication demands. Suppose the

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

92

subnet is denoted by ARCq(Pq, Lq), where Pq and Lq represent the computational nodes
set to which the scheduler assigns subtasks and communication links set that connect
those computational nodes, respectively. Because ARCq(Pq, Lq) satisfies the communica-
tion requirements of DA in the operational state G tasks, the links in the operational state
must form a spanning tree at least. Of course, there may be multiple spanning subgraphs
in the operational state. We suppose the set of spanning subgraphs of ARCq(Pq, Lq) in the
operational state is denoted by Ωq and the set of links in the operational state is denoted
by Lq, then the communication reliability of ARCq(Pq, Lq), denoted by r

q

Comm(t), can be
calculated as follows:

(\)
() (()) (1 ()),

q uv q gh q q

q l l l l

Comm q uv uv gh ghl L l L L
r t r r    

     (7)

where tq represents the execution time of DAG tasks. Its value equals to ttotal computed
by Algorithm 1.

We have discussed the single subnet communication reliability. In fact, when the
number of computational nodes m is larger than that of subtasks n, the communication
network is partitioned into m

n   disjoint subnets according to the assumption (4) in this
section. Then the network communication reliability, denoted by rComm(tq), can be calcu-
lated by

[]
()

() ,
m

q n

q

Com qARC ARC

Comm m
n

r t
r t

   
  


 (8)

where t=max{tq}. Based on discussion above, we design another algorithm, Network_
Communication_Reliability_Algorithm, to calculate the network communication reliabil-
ity. The following is its description in pseudo code.

Algorithm 2: Network_Communication_Reliability_Algorithm, NCRA

Input: DAG=(T, E, C, W), ARC=(P, L, S, B), guv; //Follow the assumptions in the
previous section

Output: rComm(t); //The reliability of network communication
NCRA ()
{ P←{p1, p2, …, pm};
 L←{ t1, t2, …, tn }; //Initialize the task ready queue L
 r

q

Comm(tq)=0 (q=1, 2, 3, …,

m
n  );

 ARC[m
n  ]←{f, f, …, f}; //Initialize the set of subnets

 Ω[m
n  ]←{f, f, …, f}; //Initialize set of spanning subgraphs of each subnet in the

operational state
ARC[m

n  ]←subnet_decision_making(DAG, ARC); //Partition the system into subnets
if (m<n) //No subtasks to be scheduled

rComm(t)0;
else if

m
n    1 //There are multiple subnets that may sat-

isfy communication reqirements
{ for each subnet ARCq Î ARC[m

n  ] //Calculate communication reliability for
each subnet

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

93

{ if (is_connected(ARCq)<0);
 r

q

Comm(t)0;
 else

{ Ωq ← generate_spanning_graph_in_operational_state (ARCq);

(\)

() (()) (1 ())
q uv q gh q q

q l l l l

Comm q uv uv gh ghl L l L L
r t r r    

     ;

}
}

[]
()

() ;
m

q n

q

Com qN N

Comm m
n

r t
r t

   
  


 //Calculate network communication reliability

}
return rComm(t); //Output the network communication reliability

}

The following example is designed to ease the understanding of Algorithm 2.

Example 1: There is a DAG tasks with 4 subtasks and a parallel computing system with
6 computational nodes as are shown in Fig. 4. At the beginning, all computational nodes
are idle and the scheduler schedules the DAG tasks to the system. The scheduler parti-
tions the system into

6
4 1   subnet and assigns the DAG tasks to it. Suppose the subnet,

denoted by N1, is composed of p1, p2, p3, p4 and the links connected among them, as in-
dicated by dashed circle in Fig. 4. Obviously, N1 has three spanning trees, represented by
L1

1={l4,8, l7,8, l8,10}, L2
1={l4,7, l7,8, l8,10}, L3

1={l4,7, l4,8, l8,10}, respectively. In addition,
L1={ l4,7, l4,8, l7,8, l8,10} also satisfies the communication demand of the DAG tasks, so L1
is in the operational state. Then Ω1, the set of subnets of N1 in the operational state, is {L1

1,
L2

1, L
3
1, L1}. To calculate N1’s communication reliability, we assume that all links have

same bandwidth and failure rate, and b=1, guv = 0.02 for simplicity. Because it is difficult
to calculate data transfer volume on each links accurately, we take the average value as an

approximation. For each link of L1
1, the average data transfer volume is

4 4

1 1

1 1

iji j
cc

c
L L

 
 

3 2 3 1
3.3,

3

  
  and then the average communication time is

3.3
3.3.

1
L

uv

c

b
    Similar-

ly, we can calculate the average communication time for each link of L2
1, L

3
1, and L1. Thus,

we have r1
Comm(t1) = 30.93613(10.9361)+0.95124= 0.9759 according to Eq. (7). Be-

cause there is only one subnet, the network communication reliability equals to r1
Comm(t1).

Fig. 4. A simple example illustrating how to calculate reliability of network communication.

t1
24

t2
90

 t4
30

 t3
36

1

22

3

2

p1

 p2 p4

 p5 p6

 p3

Subnet
DAG Parallel computing system

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

94

5.4 Reliability of the Whole DAG Tasks

Till now, we have calculated the execution reliability of any subtask and reliability
of network communication. Because the reliability of the whole DAG tasks, denoted by
rDAG(t), is determined by both of them, then

rDAG(t) = rExit(t)rComm(t), (9)

where t represents the overall execution time of DAG tasks.

6. EXPERIMENTS AND APPLICATIONS

We have proposed reliability analysis methods for Meta tasks and DAG tasks in
Sections 4 and 5, respectively. In order to verify our methods, we first design two ex-
periments to investigate the influence of different hardware and software failure rates,
and the number of single tasks on the Meta tasks parallel computing reliability. Then we
design another three experiments for DAG tasks. The first one is to investigate the effect
of different link failure rates on network communication reliability, and the second one is
to study the effect of different failure rates of hardware, software, and link on DAG tasks
reliability. The last one is designed to compare our reliability methods with others. As-
sume the parallel computing system we use is same as in Fig. 4.

6.1 Experiments for Meta Tasks

Experiment 1: This experiment is designed to study how the Meta tasks parallel compu-
ting reliability change with different hardware and software failure rates. Suppose four
tasks t1, t2, t3, and t4 with different software failure rates, are assigned to computational
nodes p1, p2, p3, p4, respectively. And p5, p6 have no tasks to be executed. The parameters
of Meta tasks parallel computing are listed in Table 2. ai denotes hardware failure rate of
computational node pi. bj denotes software failure rate of task tj, and lij denotes the fail-
ure rate of tj executing on pi.

Table 2. Parameters of Meta tasks parallel computing.
 p1(t1) p2(t2) p3(t3) p4(t4) p5(t5) p6 ()
ai (/hr) 0.002 0.002 0.002 0.002 0.002 0.002
bj(/hr) 0.009 0.015 0.020 0.010  
lij(/hr) 0.011 0.017 0.022 0.012  

In this example we suppose all single tasks have an identical execution time, i.e.,
tj»t (j=1, 2, 3, 4). Then the Meta tasks parallel computing reliability with respect to ex-
ecution time are calculated according to Eq. (3). The results are shown in Fig. 5. It shows
that the reliability decreases quickly with the increase of execution time. And the higher
the failure rate is, the faster the reliability decreases. For instance, in the early stage of
execution when t<10, the reliabilities with all three different failure rates are close to 1.
However, they all approach to 0 when t = 350 hours. This means that it is almost impos-

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

95

sible for the Meta tasks to run so long time without failures. The possible reasons include
computation errors of CPU resulting from increasing temperature, memory leaks, hard
disk failures, and exposure of bugs in the code of tasks, and so on.

Experiment 2: We design this experiment to study how the Meta tasks parallel compu-
ting reliability change with different number of single tasks. In order to highlight the
effects of number of single tasks on the reliability, we assume the failure rate of each
single task when executing on a computational node is equal to 0.02. Then we calculate
the Meta tasks parallel computing reliability according to Eq. (2). The results are shown
in Fig. 6. It shows that the reliability decrease with the increase of execution time, no
matter how many single tasks there are. What’s more, the larger the number of single
tasks is, the faster the reliability decreases. This is because when the number of single
tasks is smaller than that of computational nodes, the rest of nodes serve as standby.
When a single task encounters failures on one computational node, it can resume its ex-
ecution on another node in idle state. This will increase its reliability.

Fig. 5. Meta tasks reliability with different

failure rates.
Fig. 6. Meta tasks reliability with different

number of single tasks.

6.2 Experiments for DAG Tasks

Experiment 3: This experiment is designed to study how the network communication
reliability change with different failure rates of communication links. We take the DAG
tasks in Fig. 4 as our test object. They are scheduled to subnet N1(P1, L1), where P1 = {p1,
p2, p3, p4} and L1 = {l12, l13, l14, l23}. Suppose the failure rates of l12, l13, l14, and l23 to be
0.012m, 0.018m, 0.020m, 0.014m, respectively. Then the network communication reliabili-
ties with different link failure rates are calculated according to Eqs. (7) and (8). The re-
sults are shown in Fig. 7. Just as the result shown in Fig. 5, the reliabilities with three
different link failure rates decrease quickly with the increase of execution time in Fig. 7.
And the one with higher failure rate drops faster than others with lower failure rate.
When t=250 hours, the reliabilities with all three different failure rates are close to 0. It is
not acceptable for large-scale parallel applications whose execution time are weeks or

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

96

even months. Thus, the reliability of communication links has a big influence on the
successfully running of DAG tasks and so it cannot be neglected.

Experiment 4: We design this experiment to study how the DAG tasks parallel compu-
ting reliability change with different hardware and software failure rates. The failure
rates of hardware are assumed to be same with Experiment 1. DAG tasks are assumed to
be same as in Fig. 4. And its subtasks have identical failure rates with the corresponding
tasks in Experiment 1. For simplicity, we assume the ratio of each subtask’s execution
time towards the total execution time of DAG tasks are 1/5, 1/2, 1/2 and 1/5 for t1, t2, t3,
and t4, respectively. The executions of t2 and t3 are completely overlapped. The ratio of
communication time to total execution time of DAG tasks is assumed to be 1/10. Then
the DAG tasks parallel computing reliability with respect to total execution time can be
calculated according to Eqs. (4)-(9). Their results are shown in Fig. 8 in solid line. Simi-
lar to the result shown in Fig. 5, the DAG tasks parallel computing reliability calculated
by our method decreases quickly with the increase of total execution time. However, the
reliability drops much faster than that in Fig. 5. For example, the reliability of the former
is 0.679525 while the latter is only 0.239766 in the case of =1, t=50. This is because the
reliability of communication links has a big influence on the successfully running of
DAG tasks.

Experiment 5: This experiment is designed to compare our reliability analysis method
for DAG tasks reliability with others. Reference [10] is the most relevant one to our
work. Thus, we use their reliability analysis method to calculate the reliabilities with the
same parameters and configurations as in Experiment 4. Their results are shown in dot-
ted line in Fig. 8. It can be noted that the reliabilities calculated by [10] is much higher
than ours in Fig. 8. For example, the reliability is 0.4798 while it is almost 0 in our method
in the case of =1, t=500. It implies that the probability that the DAG tasks can keep
running as long as 500 hours without failures is nearly 0.5. It is not consistent with the
statistics in [2]. Similar results can be obtained by the reliability analysis method provided
by [9]. This is because both of them did not consider the communication link failures.

Fig. 7. Network communication reliability

with different failure rates.
Fig. 8. DAG tasks reliability with different fai-

lure rates (solid line for our method,
dotted line for [10]).

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

97

According to the above experimental results, we can know that our method is more
consistent with actual statistics due to a comprehensive consideration of reliability limit-
ing factors including the hardware failures, software failures, link failures, and con-
straints on the subtask execution order.

6.3 Possible Applications

Our reliability analysis methods may be useful in at least three fields: system archi-
tecture design, task scheduling, and fault-tolerance algorithm design. For system archi-
tecture design, designers can use our methods to identify key components (hardware,
software, and communication link) that influence reliability greatly, and then deploy
more backups for the less reliable ones to enhance the reliability. For task scheduling,
scheduler can compute the reliabilities for different task assignments based on our
methods, and select the one that has largest reliability and matches the task QoS re-
quirements. If there are no assignments that satisfy the QoS requirements, then system
maintainers can replace the unreliable components with more reliable ones or increase
the number of backups. With respect to fault-tolerance algorithm design, programmers
can compute the reliabilities with different parameters of fault-tolerance algorithm such
as number of computational nodes, task replications. Based on some economic model,
they can design an optimal fault-tolerance algorithm.

7. CONCLUSIONS

In this paper we have performed reliability analysis for Meta tasks and DAG tasks.
For Meta tasks, the reliability of a single task on one computational node is firstly ana-
lyzed, then the reliability formula based on the theory of probability is presented. For
DAG tasks, we propose a reliability model that takes a comprehensive consideration on
the reliability limiting factors including computational nodes, software, communication
links and subtask execution order. In this model, we calculate both the reliability of sub-
task execution and that of network communication. Furthermore, we design two algo-
rithms, SERA and NCRA, to calculate the corresponding reliabilities. Finally, we conduct
some numerical experiments to validate our reliability models. Our works have a guiding
significance for reliability optimization in the field of high performance computing sys-
tems. On the other hand, this paper does not consider the fault tolerance mechanism and
the interactions between hardware and software failures. And that will be our future
work.

ACKNOWLEDGEMENTS

This work was supported by the National High-Tech Research and Development
Plan of China under grant No. 2009AA012201; the Program of Shanghai Subject Chief
Scientist under grant No. 10XD1404400; the Huawei Innovation Research Program un-
der grant No. IRP-2013-12-03; the State Key Laboratory of High-end Server and Storage
Technology under grant No. 2014HSSA10.

KE-KUN HU, GUO-SUN ZENG, WEN-JUAN LIU AND WEI WANG

98

REFERENCES

1. The TOP500 supercomputer list, https://www.top500.org/system/177999.
2. The computer failure data repository, https://www.usenix.org/cfdr-data.
3. I. Raicu, I. T. Foster, and P. Beckman, “Making a case for distributed file systems at

exascale,” in Proceedings of the 3rd ACM International Workshop on Large-Scale
System and Application Performance, 2011, pp. 11-18.

4. X. Yang, Z. Wang, J. Xue, et al., “The reliability wall for exascale supercomputing,”
IEEE Transactions on Computers, Vol. 61, 2012, pp. 767-779.

5. W. D. Vanel, M. Schuld, R. Wijgers, et al., “Software reliability and its interaction
with hardware reliability,” in Proceedings of the 15th International Conference on
Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelec-
tronics and Microsystems, 2014, pp. 1-8.

6. S. Thirumurugan and D. R. P. Williams, “Analysis of testing and operational soft-
ware reliability in SRGM based on NHPP,” International Journal of Computer and
Information Engineering, Vol. 1, 2007, pp. 284-289.

7. J. Silva, T. Gomes, D. Tipper, et al., “An effective algorithm for computing all‐
terminal reliability bounds,” Networks, Vol. 66, 2015, pp. 282-295.

8. J. E. Pezoa, S. Dhakal, and M. M. Hayat, “Maximizing service reliability in distrib-
uted computing systems with random node failures: Theory and implementation,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 21, 2010, 1531-1544.

9. H. Xiong, G. Zeng, W. Wang, et al., “Upper limit analysis of scalable parallel compu-
ting on the premise of reliability requirement,” IETE Technical Review, 2016, pp. 1-11.

10. G. Q. Xie, R. F. Li, L. Liu, and F. Yang, “DAG reliability model and fault-tolerant
algorithm for heterogeneous distributed systems,” Chinese Journal of Computers,
Vol. 36, 2013, pp. 2019-2032.

11. B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-performance
computing systems,” IEEE Transactions on Dependable and Secure Computing,
Vol. 7, 2010, pp. 337-350.

12. X. Shi, H. Jin, W. Qiang, et al., “Reliability analysis for grid computing,” Grid and
Cooperative Computing, Springer, Berlin Heidelberg, 2004, pp. 787-790.

13. Y. S. Dai, M. Xie, and K. L. Poh, “Reliability of grid service systems,” Computers
and Industrial Engineering, Vol. 50, 2006, pp. 130-147.

14. S. Guo, H. Z. Huang, Z. Wang, et al., “Grid service reliability modeling and optimal
task scheduling considering fault recovery,” IEEE Transactions on Reliability, Vol.
60, 2011, pp. 263-274.

15. Y. S. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud service reliability: Modeling
and analysis,” in Proceedings of the 15th IEEE Pacific Rim International Symposi-
um on Dependable Computing, 2009, pp. 1-17.

16. L. Zhang, X. B. Chi, Z. Y. Mo, and N. Li, Introduction to Parallel Computing,
Tsinghua University Press, Peking, 2006.

17. H. L. Zhang, “Research on key technologies of reliability analysis of dynamic sys-
tems,” Graduate School, National University of Defense Technology, Changsha,
2011.

18. Q. Kang and H. He, “A novel discrete particle swarm optimization algorithm for

A RELIABILITY ANALYSIS FOR SUCCESSFUL EXECUTION OF PARALLEL DAG TASKS

99

Meta tasks assignment in heterogeneous computing systems,” Microprocessors and
Microsystems, Vol. 35, 2011, pp. 10-17.

19. L. Yuan, P. Jia, and Y. Yang, “Scheduling of fork-join tasks on multi-core proces-
sors to avoid communication conflict,” TENCON 2015-2015 IEEE Region 10 Con-
ference, 2015, pp. 1-6.

20. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clus-
ters,” Communications of the ACM, Vol. 51, 2008, pp. 107-113.

Ke-Kun Hu (胡克坤) received the MS degree in Computer

Science from Shandong University of Science and Technology in
2014. He is currently working toward the Ph.D. degree in Com-
puter Science at Tongji University. His research interests include
parallel computing, system reliability and fault tolerance.

Guo-Sun Zeng (曾国荪) received the BS, MS, and Ph.D. de-

grees in Computer Software and Application all from the Depart-
ment of Computer Science and Engineering, Shanghai Jiao Tong
University. He is currently working at Tongji University as a Full
Professor, and as a Supervisor of Ph.D. candidates in Computer
Software and Theory. His research interests include green compu-
ting, parallel computing and information security. He is a senior
member of the IEEE.

Wen-Juan Liu (刘文娟) was born in 1989 and received her

M.S. in Wuhan University in 2013. Now she is a Ph.D. candidate
in Department of Computer Science and Technology, Tongji Uni-
versity. Her research interests are focused on parallel distributed
computing and system scaling.

Wei Wang (王伟) received his Ph.D. in Computer Software

and Theory from the Department of Computer Science and Tech-
nology, Tongji University. He is an Associate Professor in De-
partment of Computer Science and Technology at Tongji Univer-
sity, P.R. China. His research interests include parallel and distrib-
uted computing and information security. In 2007, he was granted
IBM Ph.D. Fellowship.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

