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In recent years, wireless sensor networks have gradually expanded in the field of 

transportation. Among them, in-vehicle sensor networks, as a new generation of network 
technologies that have received much attention, have broad application prospects in urban 
road condition detection and traffic anomaly detection. In particular, vehicles with wireless 
communication capabilities and roadside access points (APs) are interconnected to form a 
new application system, the Vehicular Ad-hoc NETwork (VANET), which provides in-
formation distribution between vehicles. Services such as querying, sharing and download-
ing multimedia materials continue to improve the user’s harsh driving environment and 
enrich the driving life of network users. 

However, with the popularization of intelligent transportation, the Internet of Vehi-
cles also brings some problems. For example, the high-speed movement of vehicle nodes 
leads to highly dynamic changes in the network topology, and the energy, storage, trans-
mission distance and processing capability of the nodes make QoS insufficient. Aiming at 
these problems, we propose a multi-convergence node coordination mechanism based on 
cellular automata, which improves the network’s perception ability by simulating the state 
of vehicle sensor movement in traffic flow, and adopts a heuristic algorithm considering 
multi-convergence nodes’ capability. This method effectively solves the problems of net-
work coverage life and QoS. Finally, we verify the effectiveness of the method through 
simulation.      
 
Keywords: vehicular sensor network, QoS, cellular automaton, energy consumption, mul-
ti-convergence 
 
 

1. INTRODUCTION 
 

It is obvious that the transportation system has become an important part of human 
activities. With the continuous development of science and technology, especially in urban 
areas, the number of cars has increased year by year. However, the lack of land resources 
and the lag caused by the long period of infrastructure construction make the rapid growth 
of people’s demand for automobiles and the slow construction of transportation infrastruc-
ture an inevitable contradiction. In cities, people need to move quickly from one location 
to another, and a variety of transportation-related problems have erupted. The common 
problems are the intensification of urban road traffic congestion and the frequent occur-
rence of traffic accidents. Traffic jams not only increase car fuel consumption, but also 

Received August 30, 2019; revised October 28, 2019; accepted December 27, 2019.  
Communicated by Gabriel-Miro Muntean. 



LUJIE ZHONG, SHUJIE YANG, JIEWEI CHEN 

 

728

increase the risk of a heart attack for drivers [1-4]. In addition, traffic congestion delays 
people’s time and seriously affects human activities, which can reduce a country’s produc-
tivity, competitiveness and overall growth rate. The frequent occurrence of traffic acci-
dents has greatly threatened the property and safety of the people. The emergence of intel-
ligent transportation systems (ITS) has effectively alleviated this traffic pressure, and the 
accident rate has dropped significantly. ITS can predict traffic flow, reduce traffic flow 
delays, and further improve the advantages of traffic efficiency at intersections, thereby 
bringing safety and convenience to people’s lives [5-10]. 

Since the intelligent transportation is realized based on the in-vehicle wireless sensor 
network, it mainly realizes the control and control of the entire traffic through the cooper-
ation of the in-vehicle sensor and the road-based sensor. However, wireless sensors are 
mostly characterized by small storage, low energy consumption, and strong mobility, 
which form some limitations of the in-vehicle sensor network: 

Discontinuities in network connections. In the actual deployment of wireless sensor net-
works, the high-speed movement of vehicle nodes and the existence of communication 
obstacles such as urban buildings and trees will cause the network topology to change 
frequently. At the same time, the sensor nodes that make up the network topology will 
increase or decrease at any time, which makes the network topology more complex and 
changeable. As a result, the network connection lasts for a short time and is often discon-
nected, and the network connectivity is poor [11, 12]. 

Insufficient node transmission and processing capabilities. The nodes in a wireless sen-
sor network are generally battery-powered, and the effective power is very limited. Due to 
the application environment, it also makes it more difficult to replace the battery. Therefore, 
the storage space, transmission distance and processing capacity of nodes in WSN will be 
limited, which will affect the effectiveness of sensor network functions [13, 14]. 

Unbalanced network topology. Affected by the road topology and traffic conditions, the 
nodes are not balanced and have large differences at different times of the same section 
and between different colleagues, so that the node density frequently switches between 
sparse and dense states. Furthermore, there will be a large number of networks in the net-
work, and there may be an “information island effect” in a certain period of time [15, 16]. 

These features greatly reduce the QoS of intelligent transportation networks, so how 
to effectively solve these problems is an urgent problem to be solved. 

In recent years, researchers have done a lot of research on the above issues. In terms 
of perception, some classical algorithms have been proposed, such as TORA [17], QSDN-
WISE [18], RARE [19]. Most of these algorithms or models retain the “sleep wake-up” 
mechanism, that is, some nodes are in working mode. Other nodes are in sleep state, saving 
energy. In literature [20], in order to maintain a long network life and a sufficient sensing 
area, the method is to turn off the excess sensor, which is one of the most widely used 
methods. K. Wu et al. also advanced a lightweight deployment-aware scheduling (LDAS) 
algorithm that provides new insight into network perception, which is able to shut down 
redundant sensors without using accurate location information. In terms of information 
transfer, some algorithms based on QoS transmission are proposed, for example, the sug-
gested QoS aware Multi-Constrained Node Disjoint Multipath Routing (QMCNDMR) 
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protocol [21] is devoted from Triangle link quality metric Multipath Routing (TIGMR) 
protocol. This work generates fresh insights into eliminating path interference, that is to 
say, it is possible to avoid path interference between paths by calculating the triangle mass, 
the distance remaining, and the energy, and then searching for a route through the forward-
ing node, and ensuring that the route is not intersected by multiple nodes. 

In addition, the literature [22] proposed a CODA congestion control scheme, which 
takes into account both the link load and the buffer, thus enabling more effective conges-
tion control. Furthermore, the literature [23] elaborates on the MM SPEED protocol, which 
optimizes both the network layer and the MAC layer, and proposes a multi-path and multi-
speed routing mechanism for reliability and real-time. However, most of these studies are 
optimized based on a single performance. The combination of mobility and energy con-
sumption of sensor nodes including QoS as an optimization indicator is not considered.  

In response to the above problems, we propose a Dynamic-Aggregation Node Col-
laboration (DANC) Algorithm based on the cooperation between cellular automata and 
multi-convergence nodes. This method is mainly solved by the following steps:  

Firstly, we use BowTie analysis method to establish a cellular automaton system 
based on Markov process, and simulate the position of the car sensor moving in the traffic 
flow, also get the speed of the mobile sensor, which lay the foundation for the synergy of 
the aggregation nodes that advanced later. Secondly, we use K-means cluster analysis to 
determine the aggregation node, then the aggregation node is abstracted as the second layer. 
For the node of the “second abstraction layer”, we introduce the concept of “force”, so that 
the data packets in the node will adaptively select the next hop node according to the at-
traction of “force”. Finally, the simulation results show that in the new algorithm, the data 
packet will bypass the load-bearing area and select the path with smaller load for data 
transmission. Compared with the traditional algorithm, the new algorithm makes the net-
work consume less energy. 

2. SENSOR-MOVEMENT MODEL BASED ON CELLULAR AUTOMATON 

Assume that each car is equipped with a Mobile-Vehicle Sensor, and Road Sensors 
(ordinary nodes) are installed on each road. Data can be transferred between them via a 
wireless network. In this study, we did not update the network’s maximum life cycle rules 
by optimizing the size of the data packet. Instead, we focused our attention on the sensor 
itself and studied the trends of dynamic sensor node movement, such as frequency, dis-
placement, speed, direction and etc. by which is expected to improve the performance of 
the entire network. 

Cellular automata is widely used. Its advantage is that even in complex systems, dis-
crete individuals can effectively simulate the linear evolution process through computers. 
In this model, we will extend the standard cellular automaton (CA). In real life, we can 
easily observe that the change in vehicle density on the road will not change much in the 
short term, but when the time dimension is expanded to the number of days, the trend of 
the number of cars will be more obvious, such as single and double The number limit 
policy, repair bridges, etc., will lead to an increase in the number of cars over time; in some 
cases, the number of cars will decrease over time, such as the concept of energy saving 
and emission reduction. 
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In this study, we believe that the study of short-term mobile changes in wireless sensor 
networks is more valuable, and that at some point, vehicle changes are only affected by its 
previous state. Assume that the number of vehicles on the road at the time t is x, then the 
number of cars at the time t + 1 is only affected by the condition of the vehicle on the road 
at the previous moment t. We can see the car’s moving state satisfies the homogeneity. We 
can simulate the car movement on the road by establishing a cellular automaton model 
based on the weighted Markov chain. The principle is to use the Markov chain to improve 
the vehicle speed change mechanism, and to use the spatial and temporal parallelism of the 
cellular automaton to see the changes of the dynamic sensor nodes of the entire network. 
Meanwhile, we have considered the impact of a variety of factors as well as the cell con-
version rule are more comprehensive. 

2.1 Structure of the Cellular Automaton System 

The whole urban transportation system is regarded as a cellular automaton system A, 
we take the unit floor area in the road as a cell in the system, and their collection constitutes 
a two-dimensional quadrilateral cell space L. Then the state set of the cell S = {with car, 
no car}, the elements of S are limited and discrete. Let the set of all vehicles in the neigh-
borhood of the vehicle be N, with F being the local mapping. Then the cellular automaton 
system can be expressed as 

A = (L, d, S, N, F) where d = 2. 

 Cell Space 
The whole urban space is abstracted into an n  m square mesh structure, and each 

grid is divided into smaller grids according to the length of the road. Each small grid rep-
resents a cell. 

 Cell State 
The vehicle movement status is {with car, no car}. The letter Sc

t expresses the state 
of the vehicle at time t:  

Sc
t = {1, 2}. 

Where 1 indicates that there is a vehicle on the road, and 2 means the road is accessible. 

 Cell Neighborhood 
The cell neighbor relationship is the type of Moore with r = 2 [24]. 
 

 
Fig. 1. Type of Moore (r = 2). 
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 Status Update Rule 
The state update rule is the core part of the cellular automaton. The cell state at the 

next moment is affected by the state of the cell at the previous time and the set of cell states 
in the neighborhood. The mobile vehicle sensor can transmit data through neighbor sharing, 
reducing errors. Here, we combine the Markov chain to determine the state update rules, 
replacing the traditional probability distribution. Expressed as a mathematical formula as: 

1 ( , ).t t t
i i NS f S S   

Where 

t
NS  is the set of cell neighborhood states at time t, and is also the local mapping 

of cellular automata. Here, local mapping of two indicators needs to be determined: (1) 
vehicle speed update; (2) vehicle position update. 

 

 
Fig. 2. Vehicle cellular automaton. 

 
2.2 Parameter Determination 

 
When the initial state of the cell is a car, its next state is related to the acceleration of 

the car  

a = {a > 0, a < 0}. 

In a short time, the acceleration of the car cannot be zero.  
When the initial state of the cell is “no car”, it is related to the traffic flow and the car 

density of the road section to determine whether there is a car near the cell. 
Set in the unit time t, the average speed of the nth car vn

t, the distance traveled by the 
nth car is xn

t, hn
t is the distance from the rear of the nth car to the rear of the previous (n  

1)th car. The vehicle flow rate q is the number of vehicles passing through the road surface 
sensor per unit time T, the vehicle density  is the number of vehicles per unit area, and N

t 
indicates the density of the neighborhood of the cell at time t. From time t to time t + 1, 
there are four cases of changes in the state of the cell i: 
 
(1) As for si

t = 1,  
Having a car  still having a car: The speed of the car n is so slow that it has not left 

the cell i; or the n + 1 car is followed by the pace of n to occupy the cell i immediately at 
time t, which is expressed by the formula 

1

1
1

if 2 , 1,

if ,      1.

t t t
n n i

t t t
n n i

x v t r s

h v t s






  

 
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Having a car  with no car: the car n is away from the cell i, and the following ve-
hicles have not been able to reach i.  

1
1if 2  &  ,  0t t t t t

n n n n ix v t r h v t s 
     

(2) As for st
i = 0, 

No car  with a car: there is a car near the cell. 

1if ,    1t t
N ic s    

Where c is a fixed value. 
No car  still no car: there is no car near the cell.  

1if ,    0t t
N ic s    

Suppose P(K)decelerate is the probability that K factor causes the car to decelerate, while 
P(K)decelerate is the probability that the K factor causes the car to accelerate. Since each 
impact factor is not in the same dimension, it is finally necessary to normalize to establish 
the state transition matrices Ndece and Nacce.  

Below we stand in the driver’s perspective, specifically analyze the factors that will 
cause changes in the speed of the car on the traffic road, and finally figure out the mapping 
between it and the speed of the car. 

 
Table 1. Factors of state change. 

Why the car would decelerate? Why the car would accelerate? 
Brake light up of front vehicle FBL. The road ahead is empty FRE.
Meet the traffic light or intersection FTL. The vehicle ahead is accelerating FVA. 
Obstructions ahead FOB. Overtake FOV.  
 

We mathematically see the change in car speed as a change in acceleration: 

.
dv

dt
a   

Traditional models often use V2R communication to estimate car speed and road traf-
fic. However, we found that the speed of a normal car is also affected by the brake lights 
on the front, road conditions, and so on. Therefore, this model can obtain some basic data 
values by using V2V communication: whether the brake light of the preceding vehicle is 
turned on Olight, the distance h from the preceding vehicle, and whether there is a change-
able lane Clane. The values that can be obtained by V2R communication are: the flow rate 
q of the road in a certain period of time, and the vehicle density car of the road at a certain 
time. 

When the acceleration a > 0, the car accelerates, and when a < 0, the car decelerates. 
Then the current road is empty, that is, when the distance between the two vehicles is 
greater than the safety distance hsafe, the car accelerates, and the farther the distance is, the 
greater the acceleration: 

if h > hsafe > s,   a = k1h. 
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Where s is a fixed value and k1 is a coefficient. 
When there is a vehicle in front of the car, that is h  s, we discuss the situation se-

parately. We have assumed that the driving state of the car is “good driving conditions”, 
so the abnormal road conditions such as bad weather, geological conditions, and traffic 
accidents are not considered here. Here is the effect of the rear brake light L = {0, 1} on 
the acceleration of the rear car: 

if Olight = 0 & h > hsafe < s, a = k2h 
if Olight = 0 & h > hsafe, a = k3h 
if Olight = 1 & h > hsafe < s,  a = k4h 
if Olight = 1 & h > hsafe, a = k5h 

According to the data analysis, the current brake light will give the rear vehicle driver 
more reaction time. If the brake light does not indicate that the two vehicles are less than 
the safe distance, the driver will slam on the brake, which is a very large deceleration 
acceleration. According to this mechanism, the following relationship can be obtained: 

k1 > 0 > k4 > k2 > k5 > k3. 

2.3 Markov Weight Optimization 

After obtaining the changes in speed, the cellular automaton model can be used to 
predict the position of the sensor node. Before the cellular automaton was run, in order to 
improve the accuracy and optimize the state update rules, we introduce the principle of the 
Markov process. The two states are divided into two state spaces R, where i is the initial 
state of the cell, j is the state after the state transition, pij is the probability of transitioning 
from state i to state j when the car is decelerating, and qij is the state of the car from accel-
eration. The probability that i will transition to state j. Therefore, the state transition matrix 
of the cell in the acceleration and deceleration states at time t is 

11 12

21 22

11 12

21 22

( ) ,

( ) .

dece

aece

p p
N t

p p

q q
N t

q q

 
  
 
 

  
 

Here we use the BowTie analysis commonly used in risk assessment to determine the 
values of pij and qij.  

pij ⋈{FBL, FTL, FOB} 
qij ⋈{FRE, FVA, FOV} 

In summary, by (i) BowTie Analysis method, combined with (ii) Markov process, and 
finally using (iii) cellular automaton system, the number of sensor nodes in each autono-
mous region, that is, the amount of data of the aggregation node can be calculated. This is 
beneficial for wireless sensor networks to transmit data at an appropriate rate to prevent 
congestion from affecting the quality of the entire network. 
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3. COLLABORATIVE MULTI-CONVERGENCE NODE MODEL

Due to the large amount of data in the entire network, especially when the number of 
cars is large and the traffic volume is large, effective data transmission cannot be per-
formed in a large-scale WSN. Therefore, the network needs to be divided into autonomous 
regions. However, most of the traditional algorithms only consider the data transmission 
of a certain autonomous region, so as to the other autonomous regions, so as to carry out 
data transmission of the entire network. In this section, the author will propose a collabo-
rative computer system that guarantees the lowest energy consumption of the sensor when 
considering QoS. The quality of service here is mainly designed for algorithms that reduce 
latency and ensure data integrity. 

3.1 K-means Clustering Method to Determines the Aggregation Nodes 

The network is divided into K autonomous regions, and then all sensor nodes are clu- 
stered and analyzed by K-means clustering method to determine the mobile aggregation 
node. The algorithm steps are as follows: 

(1) First enter the value of k, that is, obtain k packets by clustering; 
(2) randomly selecting k data points from the sensor set as the initial centroid; 
(3) For each sensor node in the network, calculate the distance from each centroid, which 

centroid distance is close, and which centroid collection is placed. Here the “degree of 
difference” is embodied in a wide range of Euclidean distances: 

(4) At this time, a collection of data points is gathered under each centroid collection, and 
then a new centroid is selected by the algorithm under this set. 

(5) Set a certain threshold. If the distance between the new centroid and the old centroid is 
less than a certain threshold, it can be considered that the position of the recalculated 
centroid has reached the convergence effect, that is, the clustering we have performed 
has reached the desired result and the algorithm is terminated.  

(6) If the distance between the new centroid and the old centroid is significantly different, 
the algorithm continues with iterations (3) to (5). 

Fig. 3. Floor plan of WSN (simple ver.). 

The entire wireless sensor network can be abstracted as shown in the figure, wherein 
a red dot represents a common node, and a lower right corner of each autonomous region 
represents a sink node of the region, that is, a blue cross indicates a sink node. (Note: the 
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nodes on the graph are not complete) 
Abstract all the aggregation nodes (centroids) into a new layer: 
 

 
Fig. 4. Abstract second layer. 

 
Then, the ordinary node may go through multiple hops when it reaches the data center 

via the aggregation node, and the QoS problem is involved here. 
 

 
Fig. 5. Path types. 

 
In order to avoid the long queue time in the process of data transmission, we need to 

increase the data transmission efficiency under the condition of maximizing the network 
coverage life, so that the data transmission reaches the best QoS, which is represented by  

min

max

( , )

( , )

charge

service

charge doment work

service delay loss

E

Q

E f S S

Q g T P






 

 

(A) Minimum Energy Consumption Module 
For a typical wireless sensor network, there is a long enough time between network 

reassembly cycles. This means that in all scenarios, network maintenance values are at 
least an order of magnitude lower than data transmission values, so path discovery and 
maintenance operations consume only a fraction of the total energy budget (less than 1.0% 
[1]). So even if this paper ignores the energy overhead of network maintenance, it will not 
lead to a significant underestimation of the total energy budget. 

We consider two types of sensors below that consume power. 
The first one is that the sensor actively senses the traffic flow, which is denoted by 

E1. In this case, the more common nodes in the coverage of the sensor, the greater the 
power consumption; if there is no data transmission in the network for a long time, the 
sleep time is set. However, it must be guaranteed to cover every in-vehicle sensor node in 
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the network. 
When a specific sensor node uploads data to a central database, data transmission and 

communication between the sensors (prepared for collaboration), that is, E2. In this case, 
it is necessary to consider the necessity of coordination, and not every information needs 
to be communicated between each aggregation node. Since the position and speed of the 
car are dynamically changing, the aggregation node is also dynamic and changeable. At 
this time, the multi-aggregation node uploads the data to the central database, and the rout-
ing determines the energy consumption. 

The basic rule is that when the node has no packet transmission for a long time, it will 
sleep during this time period, so that the coverage life of the entire network is maximized. 
When a packet arrives, it wakes up again, reducing the latency of the entire network. Thus, 
we need to set up a dynamic sleep schedule. The wake-up state time is twake, which is pre-
dictable by the cellular automaton model. 

 
Esleep = Pidletwake + Psleeptsleep 
 
Where Pidle indicates the power when the node is in the idle listening state, and Psleep 

is the power in the sleep state. 
As a result of that, the optimal energy consumption model ensures that every common 

node is covered and consumes the least amount of energy required within a certain time 
delay. Energy consumption includes the power required for operation and the power during 
sleep. Expressed as a mathematical formula as: 

1 2min

.

charge sleep

sen agg

delay deadline

E E E E

n N
s t

t t

  

 
 

 

(B) Algorithm of Attractive-Force Transmission 
Congestion awareness requires the network to predict the dynamic changes of the 

entire network at the next moment in order to make corresponding routing decisions and 
prevent a large number of congestion conditions in the network. In this model, the most 
important thing is to determine the weight, which is the decision of priority. The concept 
of gravitational domains is introduced here. The end-to-end data transmission is seen as a 
process similar to the flow of rivers from high to low and finally to the sea, and the direc-
tion and speed of the water are related to the force acting on the water. The factor that 
affects the efficiency of packet transmission is abstracted as the “force” here, which is a 
vector unit. 

Define a Depth Gravitational Domain (DGD) Ri
d(t) = Di(t). The depth indicates the 

distance that the ordinary node passes the data packet to the sink node, which can be un-
derstood as the length of the path to be taken. Di(t) is the depth of node i in the network at 
time t, so the expression of the force acting on the data packet from node i to node B is: 

 
Fd

ib(t)= Di(t)  Db(t). 
 
Similarly, define a Queue Gravitational Domain (QGD) Ri

q(t) = Qi(t). A queue refers 
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to a queue of packets that are aggregated in a node buffer. The longer the queue, the easier 
it is to be congested at that node. Qi(t) is the length of the queue of node i at time t, so the 
expression of the force acting on the data packet from node i to node B is: 

 
Fq

ib(t)= Qi(t)  Qb(t). 
 
By synthesizing two gravitational domains, we can get the expression formula of the 

mixed gravitational field of node A at time t: 
 
Ri

m(t) = Ri
q(t) + Ri

q(t) + C.  
 

Where C is a constant domain. 
So the mixed force from node i to node B is:  
 
Fm

ib(t) = (Di(t)  Db(t))  (Qi(t)  Qb(t)) + c. 

 

Where c is a constant. 
In order to determine the values of  and , the dynamic results of Model A can be 

used. The depth gravitational domain weight can be expressed as: 

100%.i aggr

o

l

v t
    

Where vo represents the transmission speed of the data packet per unit time, liaggr   
represents the distance from the i node to the sink node, and the larger , indicating that 
the data packet is difficult to be kicked out of the pre-selected optimal path. 

Use the buffer occupancy to estimate the congestion in the network, so that the weight 
of the impression queue gravitational domain: 

max max

100%.i neighbor

i neighbor

buff buff

buff buff



 


 

Among them, buffi, buffneighbor respectively indicate the buffer size of the normal queue 
and the neighbor queue. Also, buffi max, buffneighbor max respectively indicate the total capacity 
of its buffer. The larger the , the more the path will be looking for a smaller load path for 
transmission. 

The following describes the Dynamic-Aggregation Node Collaboration (DANC) Al-
gorithm steps. As for the packet queue in node i at time t: 

(1) 

max max

100%, 100%.i aggr i neighbor

o i neighbor

l buff buff

v t buff buff
  
   


 

(2) Calculate the force acting on the data packet P by the formula: 

Fm
ib(t) = (Di(t)  Db(t))  (Qi(t)  Qb(t)) + c. 

(3) Select {Wib}max, the force acting on the maximum value on P, the neighbor node 
pointed to by the force is the next hop route, where 



LUJIE ZHONG, SHUJIE YANG, JIEWEI CHEN 

 

738

Wib = {Fm
ib(t)}, b  1. 

(4) Send the packet P from node i.  
(5) Loop this way until reaching the sink node.  

 
Since the aggregation nodes are dynamically changing, the data packets of the respec-

tive aggregation nodes are cooperatively transmitted to more accurately perform network 
sensing. 

In summary, the collaborative mechanism of the entire network can be expressed as: 

1 2min

. .

charge sleep

sen aggr

delay deadline

response

loss

E E E E

n N

t t
s t

t k

P n

  

 






 

 

Where Ploss indicates the percentage of packets successfully delivered. 

success
loss

N
P

N
  

The step of the algorithm that we designed as below:  
 

Dynamic-Aggregation Node Collaboration (DANC) Algorithm 
1: Initialization  
2: calculate the value of  and  

max max

100%, 100%.i aggr i neighbor

o i neighbor

l buff buff

v t buff buff
  
   


 

3: do (4,5) until reaching the sink node. 
4: Calculate the force acting on the data packet P by the formula: 

Fm
ib(t) = (Di(t)  Db(t))  (Qi(t)  Qb(t)) + c. 

5: Send the packet P from node i.  

4. SIMULATION 

In this section, the simulation results of the model are shown. We use MATLAB to 
add a new state update rule to the original traffic model, and simulate the movement state 
of the on-board sensor with a typical T-shaped traffic intersection, so that the traffic flow 
condition of the road at different times can be obtained [25]. As shown in Fig. 6, it is the 
location information of the car we intercepted at different times. (black dots represent the 
position of the car sensor) 

Compared with the traditional probability-based cellular automaton model [25-27], 
the model in this study is more real-time, can predict the behavior of the car more accu-
rately in a short time, and better detect the traffic flow of the entire traffic. 
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(a)                     (b)                     (c)                    (d) 

 
(e)                     (f)                     (g)                    (h) 

Fig. 6. Cellular-automaton to sensor-movement modeling. 
 

We performed simulation experiments in NS-2 [4] using the Dynamic-Aggregation 
Node Collaboration (DANC) Algorithm. Scene setting: 500 sensor nodes are randomly 
deployed in a square area of 500  500m2. Table 2 shows the experimental simulation pa-
rameters set by the algorithm, which provided a general example of parameters setting. 
 

Table 2. Simulation parameters set. 
Parameters Definition Numerical Values 

N Number of sensor nodes. 500
E0 Initial energy. 2kJ

Pidle The power when the node is in idle listening state. 15nJ/bit/s 
Psleep The power of the node in the sleep state. 10nJ/bit/s 
Pis The power by which the node actively senses the traffic flow. 25nJ/bit/s 
Esc The energy consumed by a node to transfer data to data center. 50nJ/bit 
fs Transmission expansion factor in free space. 10pJ/bit/𝑚ଶ 
mm Transmission expansion factor under multipath model. 0.0014pJ/bit/𝑚ସ 
 

The parameter  and  are important factors in determining the next hop node of the 
data packet. A series of simulation experiments were performed by setting different initial 
values, i.e. different sensor speeds and sensor positions, to generate different parameter 
values. Fig. 7 compares the network differences between two different algorithms in the 
application scenario, observing how much energy is left in the same round when the initial 
energy is the same. 

It can be seen from Fig. 7 that the DANC algorithm exhibits stronger sensing ability 
than the traditional LDAS algorithm. This is because in the entire wireless sensor network, 
the new algorithm uses the weight of the buffer queue and the distance of the path to weight, 
so that the network has a faster response speed, and thereby cooperate with multiple ag-
gregation nodes in the network. 

In order to better analyze the role of the parameter  and the parameter  in the algo-
rithm, we respectively remove one of the parameters to perform simulation and compari-
son, so as to verify the robustness of the analytical model. 

As shown in Fig. 8, the DANC algorithm that removes one of the weights will cause 
the network to consume more energy. After the 70th round, the algorithm for removing the 
parameter α shows a tendency for the energy to drop rapidly. This is because the data flow 
in the later network will become more and more complicated and complicated. If the long  
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Fig. 7. Compare the relationship between resi- 
dual energy and rounds under two algorithms.

      Fig. 8. Sensitivity analysis. 

 

nodes of the buffer queue are not bypassed, the path congestion will easily occur, which is 
not conducive to the extended coverage life of the entire network. 

In summary, we have implemented the process of the DANC algorithm and compared 
the effect with the classic LDAS algorithm. Numerical simulation experiments have 
proved that our algorithm has a good effect. At the same time, in order to further analyze 
the sensitivity of the algorithm, we separated two important parameters in the algorithm, 
eliminated the ,  parameters, and observed the degree of influence of these two param-
eters on the algorithm’s effect. From the simulation results, these two parameters have an 
impact on the results, and the  parameter has a greater impact. 

5. CONCLUSION 

In this study, we propose a cellular automaton model based on Markov process and a 
multi-convergence node coordination mechanism based on classical algorithm for the traf-
fic system under real conditions, so as to jointly optimize the transmission of wireless sen-
sor networks. 

We not only pay attention to the harsh conditions of the road driving environment (for 
example, intersection turns, obstacles in front, etc.), but also pay special attention to prac-
tical aspects, such as the relationship between the normal queue and the neighbor queue, 
setting weights, and so on. 

Finally, we test the superiority of the algorithm through simulation experiments, and 
carry out sensitivity analysis on important parameters, which proves that the model has 
strong stability. 
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