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The main purpose of this work is to develop a cost-effective design of the shell and 

tube heat exchanger (STHE). The STHE objective function to be minimized is the total 
cost of STHE, which is a function of the surface area of the heat transfer and pressure drop 
at both tube and shell side. Artificial Bee Colony (ABC) is a robust population-based 
swarm optimization algorithm with a few numbers of control parameters. Slow conver-
gence and poor exploitations of ABC may cause solutions to be stuck in local minima. 
Differential evolution (DE) is arguably one of the most potent stochastic real-parameter 
optimization algorithms in current use. Compared to most other EAs, DE is much simpler 
and more straightforward to implement. Despite its simplicity, DE exhibits much better 
performance in comparison with several others on a wide variety of problems, including 
unimodal, multimodal, separable, non-separable, and so on. Besides, the number of control 
parameters in DE is very few, and the space complexity of DE is low as compared to some 
of the most competitive real parameter optimizers. These features help in extending DE 
for handling large scale and expensive optimization problems. Hybridizing ABC with DE 
seems a reasonable suggestion to combine the merits of both resulting in proposed Hybrid 
ABC DE (HABCDE). The HABCDE is compared against five algorithms using two dif-
ferent cases with a different number of passes, pitch type, and fluid type. The results show 
that HABCDE gets the minimum total cost. Total cost decreases by a percentage ranging 
from 22.29% to 0.93%, compared to other algorithms.      
 
Keywords: artificial bee colony (ABC), cost optimization, differential evolution (DE), 
shell and tube heat exchanger (STHE), swarm optimization, particle swarm optimization, 
genetic algorithm 
 
 

1. INTRODUCTION 
 

Shell and tube heat exchanger (STHE) is the most common heat exchanger because 
it is suitable for a vast domain of pressures and temperatures. STHE is always used in many 
industrial applications as in power industries and petrochemical system. STHE is often 
used in applications that need to heat or cooling large amounts of fluid because it has fea-
tures of efficient heat transfer and large surface area. 

However, the optimum thermal design of STHE is not an easy problem because many 
related design parameters and constraints should be considered. These parameters can be 
divided into process and mechanical parameters [1]. Process parameters are including tem-
perature specifications, pressure drop limits, velocity limits. Mechanical parameters are 
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concerned with the selection of heat exchanger TEMA (Tubular Exchanger Manufacturers 
Association) layout, several passes, and specification of tube parameters [1]. 

Several methods have been proposed to find the optimal setting of STHE. The tradi-
tional methods [10-12] are based on trial and error calculations, so they depend strongly 
on the past experiences. On top of that, they are time-consuming. Recently, different evo-
lutionary algorithms like a genetic algorithm (GA), artificial bee colony (ABC), Biogeog-
raphy Based Optimization (BBO) and Particle Swarm Optimization (PSO) have been used 
to find the optimal parameters of STHE [2, 3, 8, 9]. However, each algorithm has its pros 
and cons, which is abstracted in Table 1.  

Artificial Bee Colony (ABC) is an evolutionary algorithm introduced in 2005 [4]. 
ABC imitates the foraging behavior of the bee swarm. In ABC, the bee colony consists of 
three types of bees; employed, onlookers, and scouts bees. At each iteration, employee 
bees find the solutions randomly. Then, depending on the probability of these solutions 
(i.e., the experience of employee bees), onlooker bees try to improve these found solutions. 
If the bee fails to improve the solution for some predetermined iterations, it is replaced by 
another random one (i.e., scout) [4].  

Although ABC is efficient in exploration, it has less ability to perform proper exploi-
tation [5]. Hybridizing technique with other search algorithms as Differential Evolution 
(DE) is introduced to improve the performance of ABC, [6] has been introduced. Recently 
Hybrid ABC algorithm with Differential Evolution algorithm (HABCDE) is introduced 
[5]. HABCDE is tested on twenty problems and four real-world optimization problems. 
Results indicate that HABCDE has an excellent performance. 

The main contributions of this paper are:  
 

 Using the hybrid ABC algorithm with Differential Evolution algorithm (HABCDE) [5] 
to find the optimal setting of STHE. 

 Comparing HABCDE against five algorithms using the total cost as the objective function. 
 
The rest of the paper is organized as follows, Section 2 explains the related work 

briefly. Section 3 describes the objective function to be optimized. Section 4 describes the 
implementation of HABCDE to the optimal STHE design. Section 5 concludes this paper. 
Finally, Appendix A describes the mathematical model of STHE.  

Nomenclature 
 

a1 numerical constant Pr prandtle number 
a2 numerical constant Pt tube pitch (m) 
a3 numerical constant Q heat duty (W) 
B baffles spacing (m) Re Reynolds number 
Cl Clearance (m) Rf fouling resistance (m2K/W) 
Cp specific heat (kJ/kg K) S heat transfer surface area (m2)  
Ci capital investment (€) T Temperature (K) 
CE energy cost (€/kW h) U overall heat transfer coefficient (W/m2K) 
Co annual operating cost (€/year) v fluid velocity (m/s) 
CoD total discounted operating cost (€)   
Ctot total annual cost (€) P pressure drop (Pa) 
d tube diameter (m) TLM logarithmic mean temperature difference(°C) 
D shell diameter (m) t dynamic viscosity (Pa s)  
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f friction factor   
F correction factor  density (Kg/m3) 
h heat transfer coefficient (W/m2K)  overall pumping efficiency 
H annual operating time (h/year)   
I annual discount rate (%)   
k thermal conductivity (W/mK) subscripts  

K1 numerical constant i inlet  
L tubes length (m) o outlet 
m mass flow rate (kg/s) s belonging to shell 
N number of tube passages t belonging to tube 
n1 numerical constant w tube wall 
Ny equipment life (year)   
Nt number of tubes   
P pumping power (W)   

 

Table 1. Pros and cons of different algorithms. 
 Pros Cons 

GA 
Good optimization for noisy 
functions [16] 

Loss of diversity and premature convergence due to less 
effect of crossover with continuing generations [13] 

DE 
Relatively faster convergence 
[5] 

 Easy to drop into local optima because of its fast 
convergence [13] 
 Very sensitive to control parameters values. 

PSO Fast convergence [13] 
Easy to trap because all particles learn from best par-
ticles [13]

ABC Good exploration [5] 
 Lack of exploitation [5] 
 Slow convergence [5]

BBO Powerful information sharing [15] Poor balance of exploitation and exploration [14] 

2. RELATED WORK 

In this section, an overview of three related algorithms is reviewed. The algorithms are 
differential evolution (DE), Artificial Bee colony, and hybrid ABC with DE (HABCDE).   

2.1 Differential Evolution (DE) 

Differential evolution is an evolutionary algorithm introduced by Price and Storn in 
1997 [6]. DE is also a kind of direction-based search that maintains a population with in-
dividuals, and has mutation, crossover operators, and a selection process. In DE, the cur-
rent population members are mutated by scaled differences of randomly distinct individu-
als of the population. Thus, unlike GA, generating the offspring does not use separate 
probability distribution [7]. The simple version of DE is shown in Fig. 1.  

2.2 Artificial Bee Colony (ABC) 

ABC is a robust algorithm with a few control parameters and easy to implement. It is, 
therefore, a hot spot area for the last decade’s research and development. Although it was 
first introduced in 2005 by Karaboga, the number of ABC publications is exponentially 
increasing. ABC’s studies and development took two paths, either by adding a modifica- 
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tion to the ABC standard to improve performance or by incorporating the ABC standard 
into other soft computing algorithms. 

In ABC, the number of employee bees and onlooker bees is equal. Steps of ABC can 
be described in detail as the following: 

1. Initialization 
Randomly initialize solutions of the employee bees = {x1, x2, x3, …, xNP/2}. 

2. Employee bee phase 
At each iteration, each employee bee searches in a straight-line direction about the solution. 
In its search, it depends on the random selected solution according to Eq. (4). Then a 
greedy selection is performed to choose the best between the new solution and the old one.  
 
Begin 
Randomly initialize a population of NP individuals = {X1, X2, X3, …, XNP}. 
Repeat 

For each individual in the population  
Select three indexes randomly (r1  r2  r3) 
Mutate a base vector Xr1 by using a scaled difference vector (FDE is the scale vector) 

Vi = Xr1 + FDE(Xr3  Xr2)                                         (1) 

Generate a trial vector Ui for the target vector Xi using binomial crossover (CR is 
the crossover rate) 

             If [0,1]
.

            otherwise
id

id
id

V rand CR
U

X


 


                                (2) 

Select the vector with the better fitness objective function value to survive into the 
next iteration. 

             If ( ) ( )
( 1)

( )         otherwise
i i i

i
i

U f U f X
X t

X t


  


                              (3) 

End for 
   Until maximum iteration is reached 
End  

Fig. 1. Pseudocode of DE algorithm. 

Xnewij = Xij + r(Xkj  Xij)     (4) 

where r is random numbers uniformly distributed in [1, 1], Xnew is the new solution, 
i and k are random selected solution X, j is a random selected index of dimension. 

3. Onlooker bee phase 
In this phase, the employee bees introduce their experience to the onlooker bees to 

help them find a better solution. This experience measured by the probability of the so- 
lution and is calculated by Eqs. (5) and (6). As the probability of the solution increases, 
the chance to be selected by the onlookers increases too. After selecting the solution, the 
onlooker moves according to Eq. (4), and a greedy selection is applied. 
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0.9 0.1
max( )

i
i

fitness
probability

fitness
      (5) 

1
                if 0

(1 )

1 ( )            if 0

i
ii

i i

f
ffitness

abs f f

   
  

    (6) 

where fi is the cost value of the solution. 
4. Scout bee phase 

At each iteration, ABC checks the improvement in each solution. If any solution fails 
to improve for a predetermined limit parameter, it is replaced by a random solution. 

2.3 Hybrid ABC with DE (HABCDE) 

To make a compromise between exploration and exploitation, HABCDE updates the 
equation of employee bee. It makes employee bee searches the solution using the experi-
ence of the best solution besides random solution in Eq. (7). To benefit from the fast con-
vergence of DE, the updated equation of the onlooker bee is done using DE equation with 
selecting the best solution as the base vector in Eq. (8). The new solution of the onlooker 
is considered as a trial vector and then crossover operator and selection, as in DE, are applied. 

Xnewij = Xij + r(Xkj  Xij) + r2(bestj  Xij)     (7) 

where r2 is random numbers uniformly distributed in [0,1], best is the best solution. 

Vi = bestk + FDE  (Xr3  Xr2)    (8) 

3. OBJECTIVE FUNCTION 

The objective function to be minimized is total cost Ctot of STHE [2]: 

Ctot = Ci + CoD     (9) 

where Ci is the capital investment and CoD is the total discounted operating cost. It is found 
that Ci is a function of the surface area of STHE: 

Ci = a1 + a2Sa3    (10) 

where S is the surface area of heat transfer, a1 = 8000, a2 = 259.2, a3 = 0.91 for stainless 
steel STHE. CoD is a function of pumping power as in the following equations: 

1

,
(1 )

yn
o

oD k
k

C
C

i


  (11) 

Co = P  CE  H,      (12) 

1
,t s

t s
t s

m m
P P P

  
 

    
 

    (13) 
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where Co annual operating cost, P pumping power, ny equipment life, i annual discount 
rate, CE energy cost, H annual operating time, P pressure drop, m mass flow rate,  den-
sity,  overall pumping efficiency. For calculating S and P, please see Appendix A. 

4. SETTING AND RESULTS 

4.1 Setting 
 
The design of STHE is done using the values H = 7000 hour/year, i = 10%, CE = 0.12 

€/kW h, ny = 10 year,  = 0.8 [2, 3, 8, 9]. STHE is tested on two different cases as shown in 
Table 2. In case1, the number of passes = 2 and the type of pitch type is triangular. In case 
2, the number of passes = 4 and the type of pitch type is square. The parameters of 
HABCDE are population size = 100, number of iteration = 150, Limit = 100, FDE = 0.5, CR 

= 0.9.  

Table 2. Design specifications for different cases [8]. 
 m Ti To  Cp  k Rf 

Case 1 
Shell side: methanol 
Tube side sea water 

        
27.8 95 40 750 2.84 0.00034 0.19 0.00033 
68.9 25 40 995 4.2 0.0008 0.59 0.00020 

Case 2 
Shell side: kerosene 
Tube side crude oil 

        
5.52 199 93.3 850 2.47 0.0004 0.13 0.00061 
18.8 37.8 76.7 995 2.05 0.00358 0.13 0.00061 

4.2 Results 

HABCDE is compared against four optimization methods (i.e. GA [2], ABC [3], BBO 
[9], PSO [8]) beside the Kern design [10]. The results are shown in Tables 3 and 4. The 
most striking result to emerge from these tables is that HABCDE get the minimum total 
cost. In Case 1, the capital investment Ci is decreased by 14.94%, 11.06%, 5.69%, 1.68%, 
1.63% compared to Kern design, GA, PSO, ABC, and BBO respectively. Further analysis 
showed that annual operating cost Co is increased comparing to ABC and BBO algorithms 
due to the increase in pressure drop. The total cost Ctot is decreased by 22.29%, 9.02%, 
5.87%, 1.35%, 0.93% compared to Kern design, GA, PSO, ABC and BBO respectively. 
In Case 2, the total cost Ctot is decreased by 28.83%, 5.29%, 3.48%, 4.92%, 2.93% com-
pared to Kern design, GA, PSO, ABC, and BBO respectively. The cost results are shown 
in Figs. 2 and 3 for Cases 1 and 2 respectively. 

 

Table 3. STHE parameters for Case 1 using different algorithms. 
 Kern [10] GA [2] PSO [8] ABC [3] BBO [9] HABCDE 

Ds 0.894 0.83 0.81 1.3905 0.801 0.7134 
L 4.83 3.379 3.115 3.963 2.04 1.89 
B 0.356 0.5 0.424 0.4669 0.5 0.5549 
do 0.02 0.016 0.015 0.0104 0.01 0.011 
Pt 0.25 0.02 0.0187  0.0125 0.01375 
Cl 0.005 0.004 0.0037  0.0025 0.00275 
Nt 918 1567 1658 1528 3587 2484 
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vt 0.75 0.69 0.67 0.36 0.77 0.916683 
Ret 14,925 10,936 10,503  7642.497 10,033.1 
Prt 5.7 5.7 5.7  5.7 5.69492 
ht 3812 3762 3721 3813 4314 5137.01 
ft 0.028 0.031 0.0311  0.034 0.0314507 
Pt 6251 4298 4171 3043 6156 8992.11 
as 0.0320 0.0831 0.0687  0.0801 0.0791731 
De 0.014 0.011 0.0107  0.007 0.00782007 
vs 0.58 0.44 0.53 0.118 0.46 0.468172 

Ret 18,381 11,075 12,678  7254.007 8076.05 
Prs 5.1 5.1 5.1  5.1 5.08211 
hs 1573 1740 1950.8 3396 2197 2119.11 
fs 0.330 0.357 0.349  0.379 0.373493 
Ps 35,789 13,267 20,551 8390 13.799 9538.82 
U 615 660 713.9 832 755 772.064 
S 278.6 262.8 243.2  229.95 224.938 
Ci 51,507 49,259 46,453 44,559 44,536 43,810.6 
Co 2111 947 1038.7 1014.5 984 1025.05 
CoD 12,973 5818 6778.2 6233.8 6046 6298.52 
Ctot 64,480 55,077 53,231.1 50,793 50.582 50,109.1 

 

Table 4. STHE parameters for case 2 using different algorithms. 
  Kern [10] GA [2] PSO [8] ABC [3] BBO [9] HABCDE 

Ds 0.539 0.63 0.59 0.3293 0.74 0.6471 
L 4.88 2.153 1.56 3.6468 1.199 1.1 
B 0.127 0.12 0.1112 0.0924 0.1066 0.1653 
do  0.025 0.02 0.015 0.0105 0.015 0.0066 
Pt  0.031 0.025 0.0187  0.0188 0.00825 
Cl 0.006 0.005 0.0037  0.0038 0.00165 
Nt  158 391 546 511 1061 5072 
vt  1.44 0.87 0.93 0.43 0.69 0.680546 

Ret  8227 4068 3283  2298 9986.92 
Prt  5.52 5.52 5.52  5.52 5.52 
ht  619 1168 1205 2186 1251 1851.86 
ft  0.033 0.041 0.044  0.05 0.0314914 
Pt  49,245 14,009 16,926 1696 5109 9733.33 
as 0.0137 0.0148 0.0131  0.0158 0.021393 
De  0.025 0.0190 0.0149  0.0149 0.00653028 
vs  0.47 0.43 0.495 0.37 0.432 0.303561 

Ret  25,281 18,327 15,844  13,689 4212.47 
Prs  7.5 7.5 7.5  7.5 7.5 
hs  920 1034 1288 868 1278 1388.08 
fs  0.315 0.331 0.337  0.345 0.411796 
Ps  24,909 15,717 21,745 10,667 15,275 10,634.6 
U 317 367 409.3 323 317.75 361.282 
S 61.5 52.9 47.5 61.566 60.35 52.9258 
Ci  19,007 17,599 16,707 19,014 18,799 17,597.8 
Co  1304 440 523.3 197.139 164.414 265.617 
CoD  8012 2704 3215.6 1211.3 1010.25 1632.1 
Ctot  27,020 20,303 19,922.6 20,225 19,810 19,229.9 
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Fig. 2. Case 1 total cost for different algorithms. 

 

 
Fig. 3. Case 2 total cost for different algorithms. 

5. CONCOLUSION 

In literature, many algorithms are used to design STHE as GA, PSO, ABC, and BBO. 
However, each algorithm has its shortcomings. In this paper, a recently developed hybrid 
algorithm (HABCDE) is used to determine the optimal parameters of STHE. HABCDE is 
tested on two cases of different fluids, with different physical structures of STHE, to con-
firm its performance. The results are compared against five different algorithms. From the 
results, HABCDE can obtain the least total cost. The reduction in total cost is ranging from 
22.29% to 0.93% compared to different algorithms. For future work, it is desired to con-
sider multi objectives, besides cost, in the design problem. Many important objectives as 
pressure drop and velocity may be added to the design.  

APPENDIX A 

Tube Layout, Pitch and Clearance are calculated as in the following equations [3]: 
 
Pt = 1.25do    (A1) 

di = 0.8do   (A2) 

s l

s s

s

D B C

a
a



 


    (A3) 
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Cl = Pt  do    (A4) 

where B baffle spacing, Pt tube pitch, Cl clearance, do outside diameter of tube, Ds inside 
diameter of shell, as cross section area normal to flow direction. 
 
(A) Calculating S [9] 

LM

Q

U T F
S


    (A5) 

where Q heat transferred per unit time, U overall heat transfer coefficient, TLM logarith-
mic mean temperature difference, F correction factor. 
 
(A.1) Calculating Q 

Q = msCps(Tis  Tos) = mtCpt(Tit  Tot)   (A6) 

where m mass flow rate, Cp specific heat Ti, To inlet and outlet temperature respectively. 
 
(A.2) Calculating TLM 

For cross flow, TLM is calculated as: 

( ) ( )

ln(( ) / ( ))
.is ot os it

LM
is ot os it

T T T T

T T T T
T

  

 
     (A7) 

(A.3) Calculating F 
The correction factor F for a heat exchanger which has one shell pass and two (or 

more even number) of tube passes is: 

2

2

2

1
n

11

1 2 ( 1 1)
n

2 ( 1 1)

l

l

x

x

x

x

P

P RR

R P R R

P R R

F





    

   

 
 
  

 
  
 

   (A8) 

where R, Px are calculated as the following: 

is os

ot it

T T

T T
R




 , (A9) 

ot it
x

is it

T T

T T
P




 . (A10) 

(A.4) Calculating U 

1

1 1
( )o

fs ft

s i t

d
R R

h d h

U
  

    (A11) 
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where Rf fouling resistance, d tube diameter, h heat transfer coefficient. 
(A.4.1) calculating hs 

 1
3

0.14
0.550.36s s s

s t
we

k
Dh Re Pr 

    (A12) 

where  dynamic viscosity, k thermal conductivity, Re Reynolds number, Pr is the Prandtle 
number, De is the hydraulic diameter of the shell. Re, Pr and De are calculated as in the 
next equations:  

2 2

2
4( ( /4))

e
ot

o

P d
d

D 

 ; for square pitch   (A13) 

2 2

2
4(0.43 (0.5 /4))

0.5e
ot

o

P d
d

D 

 ; for triangular pitch   (A14) 

s ps

s

C

s kPr
    (A15) 

s s e

s

v D
sRe 

    (A16) 

s density, v is the fluid velocity and is calculated by: 

s

s ss
m

av     (A17) 

(A.4.2) calculating ht   

1.33

0.3)

0.0677( )

1 0.1 (
3.657 ;

i
t t

t

ii
t t

d

L
t d

L

Re Prk
d Pr Re

h


 
  

 
   (A18) 

For Ret < 2300 

2
3

0.678

8

( 1000)

(1 12.7 (Pr 1)
1 ( ) ;

t
t t

t i

i t
t

f

t f

Re Prk d
Ldh



 

 
     

 

   (A19) 

For 2300 > Ret < 10000 

 1
3

0.14
0.80.027 ;t t t

t t
wi

k
dh Re Pr 

    (A20) 

For Ret > 10000. 

where L is the tubes length, f friction factor, Ret, Prt and f are calculated in the following 
equations: 

t pt

t

C

t kPr
    (A21) 

t t i

t

v d
tRe 

    (A22) 

where v is the fluid velocity and can be calculated as: 
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2

4

t

t
t

i
t d

m n
Nv

 
    (A23) 

Nt is the number of tubes: 

  1

1
s

o

n

t
D
dN K    (A24) 

where K1, n1 are coefficients depends on number of passes n and flow arrangement. For n 
= 2; square tube pitch K1 = 0.249; n1 = 2.207. For n = 4; triangular tube pitch K1 = 0.158; 
n1 = 2.263. 

ft = (1.82log10Ret  1.64)-2   (A25) 

(A) Calculating P[3, 9] 
(B.1) Calculating Ps  

     2

2
s s s

e
s s

v DL
B DP f         (A26) 

where fs friction factor and is calculated as: 

0.15
02s sf b Re  (A27) 

where Re Reynolds number, b0 = 0.72 if Re < 40000 
(B.2) Calculating Pt  

 Pt = Ptube length + Ptube elbow   (A28) 

  2

2
t t

i
i t

v L
dP f p n      (A29) 

Kern assumes that p = 4 [10]. 
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