
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 577-596 (2020)
DOI: 10.6688/JISE.202005_36(3).0007

577

Feature Pooling  A Feature Compression Method Used
in Convolutional Neural Networks

GE PEI1, HAI-CHANG GAO1, XIN ZHOU1 AND NUO CHENG2

1School of Computer Science and Technology
2School of Cyber Engineering

Xidian University
Xi’an, Shaanxi, 710071 P.R. China

E-mail: hchgao@xidian.edu.cn

Recent works have shown that convolutional neural networks (CNNs) are now the

most effective machine learning method for solving various computer vision problems. A
key advantage of CNNs is that they extract features automatically; users do not need to
know what features should be extracted for a certain task. It is typically believed that the
deeper the CNNs are, the higher the features that can be extracted and the more power-
fully the resulting representations networks will be. Therefore, present-day CNNs are
becoming substantially deeper. Previous works have proven that not all features extracted
by deep CNNs are useful. In this paper, we tentatively consider a question: how do we
simply remove the useless features? We propose a simple pooling method called feature
pooling to compress features extracted in deep CNNs. In contrast to traditional CNNs,
which input feature maps from the previous layer directly to the next layer, feature pool-
ing compresses features from the channel below, reconstructs feature maps and then
sends them to the next layer. We evaluate feature pooling based on two tasks: image
classification and image denoising. Each task has a distinct network architecture and uses
several benchmarks. Promising results are achieved in both tasks, especially image de-
noising, in which we obtain state-of-the-art results. This finding verifies the previous
proposition that feature pooling is a straightforward method to perform further feature
compression in CNNs. We have also observed that feature pooling has several competi-
tive advantages: it reduces the number of parameters, increases the compactness of the
networks, and strengthens the representation power with both high effectiveness and
wide applicability.

Keywords: convolutional neural network, features compression, pooling, image classifi-
cation, image denoising

1. INTRODUCTION

Convolutional neural networks (CNNs) have emerged as the premier algorithm for
visual object recognition. These networks were originally introduced over 20 years ago;
however, only in the past few years have they been dramatically improved and enabled
to train truly deep CNNs. These progresses were due not only to advanced hardware and
expanded datasets but also to improved network architectures.

CNNs have seen a gradual increase in the number of layers in the last few years.
The original LeNet-5 [1] consisted of 5 layers; VGG-Net [2] increased the number to 19,
and residual networks (ResNets) [3] reached 152 layers. Recent evidence reveals that
network depth is of crucial importance, and the leading results on the challenging
ImageNet data et al. exploit deep models. Deeper networks show marked superiority in

Received November 4, 2018; revised May 25 & June 22 & June 30, 2019; accepted July 22, 2019.
Communicated by Chu-Song Chen.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

578

many visual recognition tasks; moreover, network width has also proven to be an im-
portant factor that can affect the network’s capabilities. While deeper and wider net-
works bring about better model performance, these characteristics also make the training
and design of the network more difficult due to the growing number of hyperparameters.
Many recent publications acknowledge that training deep neural networks will introduce
many problems, such as vanishing/exploding gradients [36, 37] and degradation [38].

Various techniques have been suggested to enable the training of deeper neural net-
works, such as layer-wise pretraining, well-designed initialization strategies, better opti-
mizers, skip connections and batch normalization [4]. The two most influential methods
are skip connections and batch normalization. Batch normalization performs normaliza-
tion for each training minibatch, reducing the influence of the internal covariate shift and
making neural networks less careful about learning rate and initialization. Skip connec-
tions route the signal from one layer to the next via identity connections, bypassing in-
termediate stages as in highway networks [5], and ResNets have proven to be an effec-
tive way to alleviate the vanishing gradient and degradation problems.

 Although skip connections make it possible to build an extremely deep neural net-
work, they also have some limitations. The top-5 classification error rates in the ImageNet
dataset of ResNet-50, ResNet-101 and ResNet-152 are 5.25%, 4.60%, and 4.49%, respec-
tively. However, when the ResNets became deeper, the classification error rate did not de-
crease significantly. Instead, the amount of calculation markedly increased. In other words,
the benefits of depth are diminishing. Many studies have tried different methods to solve
this problem. Mutual integration between different networks or structures is a good net-
work enhancement approach, as ResNeXt [6] and Inception-ResNet [7] have demonstrated.

Driven by the above facts, a question arises: is there a simple way to increase net-
work capabilities when the network is deep enough? Some publications have reported
that deep neural networks are typically feature redundant and overparameterized [18].
We believe that this problem can be solved from the perspective of reducing feature re-
dundancy. In this paper, we propose a method for compressing features in deep neural
networks called feature pooling. Our method is implemented as a non-weighted linear
spatial aggregation on the feature maps.

We present comprehensive experiments on the Modified National Institute of Stan-
dards and Technology (MNIST), Canadian Institute for Advanced Research (CIFAR)-10
and ImageNet datasets to show that feature pooling promotes network expression and
reduces the number of learning parameters. Using a shallow network with feature pool-
ing on MNIST, we prove that after compression, features do not lose much expressive
power, but the learning parameters are reduced. Using a modified VGG-16 with feature
pooling, we achieve a 6.31% top-1 error rate, which is close to the best reported results
using VGG-16 for CIFAR-10 classification. Using a modified ResNet-50 with feature
pooling, we achieve a top-1 error rate that improves upon the results of training without
feature pooling on ImageNet classification. Similar phenomena are also shown in the
image denoising task. We add feature pooling to our designed image denoising network
and achieve improved denoising results.

The rest of the paper is organized as follows. Section 2 introduces work related to
feature compression. Section 3 introduces the working mechanism of the feature pooling
method we proposed. Our experiments and results are presented in Section 4. Finally, we
summarize our work in Section 5.

FEATURE POOLING  A FEATURE COMPRESSION METHOD 579

2. RELATED WORK

2.1 Compact Representation of Feature Maps

Compact representation of feature maps achieves the purpose of compressing the
network by reducing the dimensionality of the feature maps. In the early stage, many tra-
ditional methods were applied for dimensionality reduction, such as locally linear em-
bedding (LLE) [8], principal component analysis (PCA), isometric feature mapping
(Isomap) [10] and locality-preserving projection (LPP) [11].

In 2013, M. Lin [12] proposed the NIN (Network in Network) structure, which won
first place in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2014,
to enhance model discriminability for local patches within the receptive field. The NIN
structure uses a 1 × 1 convolution as a multilayer perceptron (MLP) for cross-channel in-
formation integration on the convolutional feature map. The purpose is to merge addi-
tional feature parameters when entering the next layer. Inspired by the NIN structure, the
bottleneck layer in GoogLeNet [13] reduces the number of feature maps in each layer
and thereby reduces the number of operations. Moreover, not only the bottleneck layer
but also the translation layer, which can reduce the dimension of the output to half of the
input, was used in DenseNet [14] to save memory and avoid overfitting.

With intensive research on deep neural networks, increasingly many structures for
feature map compression have been proposed. SqueezeNet [15], which consists of fire
modules, not only compresses the weights but also reduces the number of input channels.
The reduction in the number of input channels is achieved by the squeeze layers. This
network structure reduces the number of parameters by at least 50 times and does not
have any effect on the accuracy of models. In [16], a similar method was proposed by
using nonlinear dimensionality reduction (NDR) layers embedded in a deep neural net-
work to achieve the goal of dimensionality reduction on feature maps. As a result, this
method sacrifices a few accuracy rates in exchange for tens of times the compression of
the model. In 2017, Z. Liu [17] et al. proposed network slimming, a simple yet effective
network training scheme to deploy large CNNs while using limited resources. The main
idea of network slimming is to introduce a scale factor  in each channel of the convolu-
tional layer and then multiply  by the output of the channel to measure the importance
of the channel. Then, unimportant channels are eliminated to compress the model and
increase the speed of operation.

Similar to the above structures, we propose feature pooling to reduce the dimension
of the output by reducing the redundant feature maps, thereby saving memory and impr-
oving network performance. We also compare our feature pooling method with the 1 × 1
convolution in the CIFAR-10 task.

2.2 Reducing the Parameters of CNNs

Recent studies demonstrate that neural networks are typically overparameterized,
and there is significant redundancy in deep learning models [18]. Hence, it is necessary
to improve the utilization of networks by extracting useful features and removing useless
features.

Decomposition of convolutions is a method to compress parameters by replacing
the convolution layers with multiple smaller convolution layers. For example, Inception

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

580

V2 [19] replaces a single 5 × 5 convolutional layer with a small network consisting of two
consecutive 3 × 3 convolutional layers. This measure not only maintains the scope of the
receptive field and reduces the number of parameters but also avoids bottlenecks and
deepens the capabilities of nonlinear expression. Xception [20] employs depthwise sep-
arable convolution, which maps the spatial correlation separately for each output channel,
and then a 1 × 1 depth-wise convolution is employed to obtain cross-channel correlation.
Xception has greater final accuracy and a faster convergence rate than Inception V2.

It has been found that the role of high-precision parameters in a well-performing
network is not very important. Therefore, quantization is another method to compress the
original network by reducing the number of bits required to represent each weight. The
8-bit quantization of the parameters introduced in [21] and the stochastic rounding-based
16-bit fixed-point representation used in [22] significantly reduce memory usage and
floating-point operations, while a slight loss of classification accuracy occurs. An ex-
treme case is binary quantization, which employs 1 bit to represent each weight. For in-
stance, binary connect (BC) [23] binarizes the real weights used for forward propagation
and backward propagation. Binary neural networks (BNNs) [24] binarize the weights
and activation values of each layer and turn a large number of mathematical operations
into bit manipulations. In addition, Xnor-net [25] binarizes the filters and their inputs of
the CNN networks. All these binarized quantization methods save considerable space
and speed up calculations but lose a certain amount of accuracy.

Similar to the effect of the above methods, the feature pooling we proposed reduces
the parameters of the deep neural network, but the difference is that we do not reduce the
accuracy rates but instead improve the performance of the network.

3. FEATURE POOLING

Considering that features in CNN are organized as feature maps, we believe that the
feature compression procedure can be understood as some form of compression and re-
construction of the feature maps. The idea of feature pooling for feature compression is
very simple, considering a reasonable reduction in the number of feature maps.

The easiest and most direct method is top-k selection, that is, choosing the k largest
(or smallest) pixels at the same location from n generated feature maps to reconstruct k
new feature maps as the input of the next layer, as Fig. 1 shows. The calculation per-
formed by the top-k method is shown as follows:

Feature maps generated

From previous layer
n pixels and each
located at (i, j) in
every feature map

Selected top-k
pixels from all

ordered feature maps

Reconstructed
feature maps

Fig. 1. Feature pooling method implemented using top-k.

FEATURE POOLING  A FEATURE COMPRESSION METHOD 581

1
, , , ,1 , ,2 , ,[(, ,...,)] .

th

l l l l
i j p i j i j i j n pSORT     (1)

where l
i,j,p denotes the (i, j) position on the pth feature map of the lth layer. The top-k

method is easily understood. However, due to the existence of the sorting process (as-
cending or descending), this is a time-consuming operation, especially when the size and
the number of feature maps are relatively large.

Since spatial pooling operations are optimized for graphics processing units (GPUs),
we designed a method that uses spatial pooling to achieve an approximate top-k effect,
as Fig. 2 shows; we refer to this method as feature pooling. Unlike the top-k method that
needs to use all the input feature maps for calculation, feature pooling borrows the con-
cept of stride from spatial pooling. Specifically, our method groups the input feature
maps by stride size and performs a spatial pooling process across feature maps within the
group. The following formula shows the calculation of feature pooling:

1
, , , , 1 , , 2 , ,(1) 1

1,...,
[(, ,...,)] .

th

l l l l
i j p i j p s i j p s i j p s

p k
concat   

     
 (2)

Feature maps generated

From previous layer
n pixels and each
located at (i, j) in
every feature map

Selected top-k
pixels from k
ordered sets

Reconstructed
feature maps

Fig. 2. Feature pooling implemented using spatial pooling. The pooling operation across feature
maps uses a stride to control the number of output features in the next layer.

We still assume that the number of input and output feature maps are n and k, re-
spectively, and s = n/k represents the size of the stride. It should be noted that s, as a
stride size, must be an integer. Obviously, the feature maps can be divided into k groups
according to the stride s. After the operation of selecting the first element, which can be
understood as taking the largest or the smallest value, the maximum (or the minimum)
value of s feature values in each group can be obtained. Then, concatenating the selected
features will achieve the purpose of compressing the feature maps. Eq. (2) indicates the
concatenating result of the k maximum (or minimum) values from k groups. In addition,
it should be noted that the maximum (or minimum) operation for each position of the s
feature maps within each group can be achieved by a pooling process along the channel,
which is why we call it feature pooling.

Feature pooling uses spatial pooling to implement the feature compression process.
There are similarities between the two, but there are also differences. First, the purpose is
not the same. Spatial pooling is a downsampling process whose main purpose is to re-
duce the amount of computation while maintaining a certain feature invariance (rotation,
scaling, etc.). Another important difference is that feature pooling is performed across
feature maps, and spatial pooling affects only a single feature map.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

582

Feature pooling is a linear aggregation of feature maps. In addition, due to the com-
pression of features, the number of network hyperparameters can also be reduced to
some extent.

4. EXPERIMENTS

We empirically demonstrate the effectiveness of feature pooling on two computer
vision tasks: image classification and Gaussian image denoising. We compare it with
state-of-art network architectures on several benchmark datasets. For each experiment,
the results are obtained by the best results in two tests. The implementation is in the ma-
chine learning framework TensorFlow [9], and all experiments are carried out on a PC
with an Intel Xeon (R) E5-1620 (3.5 GHz*8) CPU and a single Nvidia GTX 1070 GPU.

4.1 Image Classification

(A) MINIST Classification
Assuming that feature pooling is effective as a feature compression method, it mere-

ly compresses features without or slightly affecting the overall expression of the network.
To verify the effectiveness of feature pooling, we considered the problem of predicting
the digit class on the MNIST dataset. We used a very simple network as shown in Fig. 3,
with a 28 × 28 grayscale image as input, two convolutional layers with 16 and 32 filters
each, and two fully connected layers with 512 and 10 activations, respectively. All con-
volution kernels are 3 × 3 sizes. The weights of all convolutional layers are initialized
with Xavier, and the biases are set to 0. We trained the network for 5 epochs, with 100
examples per minibatch. Then, the network was tested on the entire test set.

Fig. 3. The overall architecture of networks on MNIST.

We are interested in comparing the network before and after adding the feature
pooling layer, rather than achieving state-of-the-art performance on MNIST. As a com-
parative experiment, we added a feature pooling layer using the top-k method and spatial
pooling method after the second convolution layer, where the stride is 2, that is, the
number of output feature maps is set to 16. On the test set, the classification success rates
of these three networks described above are 0.9791, 0.9891 and 0.9782, respectively.
Obviously, the network with feature pooling achieved higher accuracy, which indicates
that feature pooling as a feature compression method not only does not cause loss of
feature expression but also improves performance. The main reason for the oscillation in
the network success rates is that the network is too shallow, and the number of features is
not large enough (which can be demonstrated in subsequent experiments). Fig. 4 shows
the fraction of correct predictions on test data as training progresses, where s = 2 means

FEATURE POOLING  A FEATURE COMPRESSION METHOD 583

Fig. 4. The test accuracy of MNIST networks without feature pooling and with feature pooling us-
ing spatial pooling and top-k, respectively.

that 50% of the output is compressed. All curves rise gradually and eventually reach sat-
uration, and the curves representing the methods with feature pooling are more stable.
Moreover, the method with feature pooling using spatial pooling surpasses the other two
methods, both in terms of the convergence speed or the classification accuracy.

To further verify the effect of feature pooling methods, we compared them with the
method that reduces the input dimension of the next layer by compressing the output
dimension of the convolutional layer (shown in the 6th and 7th rows of Table 1). The
method, called dimension reduction of Conv in Table 1, directly reduces the output di-
mensions of the convolution layer without adding additional layers. This approach can
achieve comparable compression effects using feature pooling methods. In order to con-
trol the variables, the operation of compressing the output dimensions of convolutional
layer is performed at the position where the feature pooling layer is added.

Table 1. The test results on the MNIST dataset.
 Compression Accuracy Training time Testing time Parameters Flops

Baseline  0.9791 4.68s 0.256s 12.260M 2.571×107
Feature pooling
(spatial pooling)

50% 0.9891 4.14s 0.262s 6.135M 1.286×107
75% 0.9909 4.63s 0.250s 3.072M 6.442×106

Feature pooling
(top-k)

50% 0.9857 80.31s 12.624s 6.135M 1.286×107
75% 0.9857 64.31s 8.930s 3.072M 6.442×106

Dimension reduc-
tion of Conv

50% 0.9788 3.48s 0.207s 6.133M 1.286×107
75% 0.982 2.94s 0.190s 3.069M 6.435×106

The results are shown in Table 1, where the compression indicates that the reduc-
tion ratio of the input dimensions of the next layer relative to the output of the previous
layer, the training time is calculated on all training data for one epoch, and the testing
time is calculated on all test data. Compared to the baseline model, the model with fea-
ture pooling, especially using spatial pooling, not only achieved superior accuracy but
also reduced the number of parameters and FLOPs (floating-point operations per second).
For the model that achieved the best accuracy, the numbers of parameters and FLOPs
were maintained at approximately 75%, meaning that feature pooling is an effective
method to compress the model and increase the expression of the model. In terms of the
training time and test time, the network with feature pooling using top-k consumes much

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

584

more time than other methods, and other methods have similar performance in speed.
To verify the expressive power of the compressed features, we directly visualized

the features extracted before the fully connected layers; the results are shown in Fig. 5.
The visualization results of feature maps extracted from various networks are similar.
That is, the compressed features still retain information such as shape and structure con-
text. Merely in terms of the network with feature pooling, when using spatial pooling,
the visualization results are smoother and closer to the feature maps extracted from the
network without feature pooling. It can be concluded that feature pooling using spatial
pooling can achieve effective compression of features. Moreover, under the premise of
faithfully approximating the original and uncompressed data, this method can retain the
useful information learned from the previous layer. Hence, in the remaining classifica-
tion experiments in this section, we will focus on the performance of the feature pooling
method using spatial pooling, and the feature pooling mentioned latter refers to the fea-
ture pooling method using spatial pooling.

Fig. 5. The visualization results of feature maps extracted from the networks with or without fea-
ture pooling.

We found that as a side effect of feature pooling, the activations of the hidden units
become compact in both mean and variance. Thus, feature pooling automatically leads to
compact representations. To observe this effect, we collected activations from the last
hidden layer of each network and observed how their distribution evolves in the training
stage. Comparing the value of activations from Fig. 6, we can see that the network with
added feature pooling will be smaller, whether it is in the mean or the variance.

Fig. 6. Effect of feature pooling on activations. The activations of the network with feature pooling
have a diminishing mean and variance as training progresses.

FEATURE POOLING  A FEATURE COMPRESSION METHOD 585

(B) CIFAR-10 classification
We used the original VGG-16 structure as our baseline, which contains 13 convolu-

tion layers, 5 max pooling layers and 3 fully connected layers. Some modifications were
made to VGG-16, including removing the last max pooling layer and the first two fully
connected layers of the original VGG-16. We used the full CIFAR-10 set, which consists
of 50K training images and 10K testing images. Data augmentation, including flipping
and random cropping, has also been used. To prevent overfitting, we added batch norma-
lization behind each convolutional and fully connected layer. Models were trained with a
minibatch size of 250 and a total of 180 epochs. Stochastic gradient descent (SGD) [41]
was used as the optimizer, with a momentum rate of 0.9. When the epoch was 80, 120,
and 150, the learning rates dropped from 0.1 to 0.01, 0.001 and 0.0005, respectively.

In the experiment, we added different numbers of feature pooling layers at different
positions in the VGG-16 network. In addition, we set the stride of the feature pooling
layer to 2 and 4, respectively. Tables 2 and 3 list the results of the test accuracy, the
number of parameters and FLOPs in various situations. Note that ConvX (X = 1~5) indi-
cates that the feature pooling layer was added behind the max pooling layer of the Xth
convolutional block of the VGG-16 network. The baseline model, which achieves
93.25% accuracy, is defined in [16].

Table 2. The test results on CIFAR-10 (stride = 2).

Model Conv1 Conv2 Conv3 Conv4 Conv5 Accuracy Parameters FLOPs

Baseline [16] 93.25% 14.06M 2.949×107

Baseline+FP1 √ 93.53% 14.02M 2.941×107

Baseline+FP2 √ 93.33% 13.92M 2.919×107

Baseline+FP3 √ 93.60% 13.50M 2.831×107

Baseline+FP4 √ 93.55% 12.93M 2.713×107

Baseline+FP5 √ 93.68% 14.05M 2.947×107

Baseline+2FP √ √ 93.56% 12.37M 2.595×107

Baseline+3FP √ √ √ 93.69% 12.36M 2.593×107

Baseline+4FP √ √ √ √ 93.41% 12.22M 2.563×107

Baseline+5FP √ √ √ √ √ 93.21% 12.19M 2.556×107

Table 3. The test results on CIFAR-10 (stride = 4).
Model Conv1 Conv2 Conv3 Conv4 Conv5 Accuracy Parameters FLOPs

Baseline [16] 93.25% 14.06M 2.949×107
Baseline+FP1 √ 93.61% 14.01M 2.937×107
Baseline+FP2 √ 93.43% 13.85M 2.904×107
Baseline+FP3 √ 93.65% 13.22M 2.772×107
Baseline+FP4 √ 93.67% 12.37M 2.595×107
Baseline+FP5 √ 93.6% 14.05M 2.946×107
Baseline+2FP √ √ 93.44% 11.53M 2.418×107
Baseline+3FP √ √ √ 93.65% 11.51M 2.415×107
Baseline+4FP √ √ √ √ 93.25% 11.30M 2.371×107
Baseline+5FP √ √ √ √ √ 92.55% 11.25M 2.360×107

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

586

According to Tables 2 and 3, adding feature pooling behind different layers can
achieve different test accuracies. For the case of adding a single feature pooling layer to
the network, whether the stride is set to 2 or 4, the network obtains substantially compa-
rable accuracy, and the stride set is 4, saving more parameters and FLOPs. For the case
of adding multiple feature pooling layers to the network, when we added feature pooling
layers with both stride = 2 and stride = 4 behind Conv3, Conv4 and Conv5, the networks
achieved nearly the greatest accuracy. To the best of our knowledge, this is also close to
the best results obtained using the VGG-16 network on the CIFAR-10 dataset. However,
when too many feature pooling layers are added in the network, as in the case of Base-
line+5fp in Tables 2 and 3, the accuracy is reduced, although the numbers of parameters
and FLOPs are the accuracy is also reduced decreased.

(C) ImageNet classification

ImageNet is a dataset of over 15 million labeled high-resolution images belonging
to approximately 22,000 categories. Starting in 2010, as a part of the Pascal Visual Ob-
ject Challenge, an annual competition called the ILSVRC has been held. ILSVRC uses a
subset of ImageNet with approximately 1000 images in each of 1000 categories. In all,
there are approximately 1.2 million training images, 50,000 validation images, and
150,000 testing images. In this section, we used ILSVRC 2012 as our dataset. The mod-
els are trained with a minibatch size of 64. RMSProp is used as the optimizer with a
momentum rate of 0.9 and a decay term of 0.9. The initial learning rate is 0.1, the end
learning rate is 0.0001, the learning rate decays after 2 epochs, and the learning rate de-
cay factor is 0.94.

Due to the limitation of time and resources, we merely exploratory attempt to ob-
serve whether the feature pooling added in a large-scale network will affect its perfor-
mance. Hence, we added only one feature pooling layer in the large-scale network, and
we focused only on its classification accuracy. We used the original ResNet-50 [3] as the
baseline; its structure won first place in the ILSVRC 2015 classification task. We re-
trained ResNet on ImageNet by using our workstation with a top-1 classification accu-
racy of 71.434% and a top-5 classification accuracy of 89.882%. The experimental re-

Fig. 7. Structure of ResNet-50 before and after modification.

FEATURE POOLING  A FEATURE COMPRESSION METHOD 587

sults in Section 4.1.1 demonstrate that better results can be obtained when adding a fea-
ture pool layer in the middle of the network. ResNet-50 can be divided into 4 blocks, that
is, adding a feature pooling layer before the second or the third block may achieve the
best performance. According to the experiments, adding a feature pooling layer before
the second block can achieve better performance with a top-1 classification accuracy of
71.476% and a top-5 classification accuracy of 89.756%. Fig. 7 shows the structure of
ResNet-50 before and after modification.

Comparing the results before and after adding the feature pooling layer, the top-1
accuracy increased by 0.032%, but the top-5 accuracy decreased by 0.126%. It can be
proved that for large-scale networks, compressing some features from the network will
not influence the performance. However, the ResNet-50 network is deep, and only one
feature pooling layer was added; therefore, the ResNet-50 network was not affected
meaningfully.

4.2 Gaussian Image Denoising

(A) Network Architecture
The input of our network is a noisy image y = x + v. Different from some discrimina-

tive denoising models, we adopt the residual learning formulation to obtain a residual
mapping (y) = v instead of learning a direct mapping function (y) = x. After obtaining
the residual mapping, we have x = y  (y). Formally, the averaged mean squared error
between the desired residual images and the estimated ones from noisy inputs can be
adopted as the loss function. The framework is fully convolutional and deconvolutional.
Instead of using the convolution and deconvolution layers directly, we assembled them
into blocks as the basic components of the network, as shown in Fig. 8. The convolu-
tional blocks act as feature extractors, which preserve the primary components of objects
and simultaneously capture the features of the noise. The deconvolutional blocks are
then combined to recover the details of the image noise.

Fig. 8. The overall architecture of our proposed image-denoising network. The network contains
convolution and deconvolution blocks. The output is the learned image noise.

Fig. 9. The inception block.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

588

Our denoising network contains three types of building blocks: inception block, re-
sidual block and deconvolution block.

(1) Inception Block. The inception block has proven to be an effective feature extraction
structure and is widely used in convolutional neural network design. We used the basic
version of inception, and the difference is that we removed the 3 × 3 max pooling. The
inception kernel sizes are 1 × 1, 3 × 3, 5 × 5, 7 × 7 and 9 × 9. Batch normalization is also
used to speed up training. Ultimately, we used the Conv + BN + Tanh format instead of a
single convolution, as Fig. 9 shows.

(2) Residual Block. Residual learning strategy shows a strong ability to train extremely
deep networks and improve model performance. As depicted in Fig. 10, we combined
residual learning with the inception structure. The approach is to use a residual block
instead of convolutional layers on each branch of the inception structure. The residual
block used here follows the guidance of [3].

Fig. 10. The residual block (combined with Inception structure).

Fig. 11. The deconvolution block.

(3) Deconvolution Block. The basic structure of the inception block and the deconvolu-
tion block is the same, except that the deconvolution block replaces the convolution layer
in the inception block with a deconvolution layer (see Fig. 11).

FEATURE POOLING  A FEATURE COMPRESSION METHOD 589

The numbers of convolution kernels in the three inception blocks are 32, 64, and
256. The number of output feature maps of the first feature pooling layer is 128, and that
of the second feature pooling layer is 64. The number of convolution kernels for all re-
sidual blocks is 128, and those of the three deconvolution blocks are 64, 32 and 3.

(B) Experimental Setting

Training and Testing Data. In the denoising experiment, we utilized two datasets
including the whole CIFAR-10 set and Microsoft COCO. In COCO, we randomly se-
lected 15,000 images as our training set (in the experiment, we found that a training set
of only 15,000 images can achieve a desirable result), and the images were resized to
224 × 224. We performed image denoising only on color images. To train our network
for Gaussian denoising with a known noise level, we considered five noise levels,  = 20,
30, 40, 50 and 60. For the test images corresponding to the training set of COCO, we
used two different test datasets for a thorough evaluation: a test dataset containing 500
natural images from the Berkeley Segmentation Dataset (BSD500) and the TID 2008
dataset, which contains 25 natural images. Note that all these datasets are widely used for
the evaluation of Gaussian image denoising.

Parameter Setting and Network Training. The output of the network is the re-
sidual image estimated from the noisy input. We use the mean squared error between the
desired residual image and the network output as our loss function. We initialize the
weights by the Xavier initializer and use Adam with an initial learning rate of 0.1. In our
experiment, network training with Adam converges faster than traditional SGD with the
momentum approach. We train 20 epochs for our denoising model with a minibatch size
of 32. The learning rate drops to 0.01 and 0.001 after 5 and 10 epochs, respectively. The
peak signal-to-noise ratio (PSNR) is used for evaluation.

Comparison of Methods. Currently, there are a variety of image denoising meth-
ods available, including nonlocal similarity-based methods (i.e., BM3D [32]), sparse
coding-based methods (i.e., K-SVD [33]), Gaussian mixture model-based methods (i.e.,
SURE-GMM [34]), Bayesian-based methods (i.e., NL-Bayes [35]), deep learning-based
methods (i.e., VDSR [26], DnCNN [27], RED-Net [28]), etc. Many studies show that
deep learning-based methods are better than other methods in image denoising. We
mainly compare methods based on deep learning.

(C) Denoising Results

Our Gaussian image denoising model consists of multiple building blocks and two
feature pooling layers. To explore the effect of feature pooling on image denoising, we
will use a model that does not include the two feature pooling layers as our baseline
model, represented as baseline. In addition, we refer to the model with two feature pool-
ing layers using spatial pooling as Baseline+2FP. If the model contains only the first
feature pooling layer, we refer to it as Baseline+1FP.

Table 4. The average PSNR results on the BSD500 dataset.
 20 30 40 50 60

Model PSNR
Baseline 29.67 27.60 26.67 25.97 25.21

Baseline +1FP 30.76 28.72 27.79 26.93 26.19
Baseline +2FP 31.68 29.83 28.64 27.71 26.99

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

590

The average PSNR results of the three models on the BSD500 dataset are shown in
Table 4. Both Baseline+1FP and Baseline+2FP have better PSNR results than the base-
line model. At the same noise level, the PSNR values of the Baseline+1FP and Base-
line+2FP models are nearly 1-2 dB higher than that of the baseline model. In the experi-
ment, we also tried to add three feature pooling layers in the baseline model and found
that the PSNR was lower than Baseline+2FP. The possible reason is that the features are
over-compressed, causing a relatively large loss in the expressiveness of the features.

Based on the result, we also test the effect of feature pooling methods using spatial
pooling and top-k on image denoising. In this part, we used CIFAR-10 as our dataset
because we are interested only in the performance differences of the networks with these
two feature pooling methods. The results, including PSNR, the number of parameters,
FLOPs, training time and testing time, are shown in Table 5, where the training time is
calculated on all training data for one epoch and the testing time is calculated on all test
data. According to the results, both of the networks with feature pooling methods can
obtain higher PSNR than the baseline model, especially the network with the method
using top-k achieving the best PSNR. Both feature pooling methods preserved the pa-
rameters and FLOPs and consume less time when training and testing. However, com-
pared with the spatial pooling method, the top-k method is time consumption. Hence,
after balancing the time consumption and performance, we believe that the feature pool-
ing method using spatial pooling is the better of the two methods for feature compression.
When we refer to feature pooling in the experiments below, we are specifically referring
to feature pooling using spatial pooling.

Table 5. PSNR, parameters, FLOPs, training time, and testing time on CIFAR-10.
 20 30 40 50

Model PSNR Parameters FLOPs Training Testing time
Baseline 27.81 26.11 24.54 23.82 67.71M 1.42×108 91.05s 10.34s

Baseline+2SP 28.30 26.18 24.74 23.96 19.37M 4.06×107 59.81s 7.07s
Baseline+2top-k 28.19 26.32 24.99 24.02 19.37M 4.06×107 65.15s 7.35s

Table 6. PSNR results of different methods on the BSD500 and TID2008 datasets.

Dataset  20 30 40 50 60
Model PSNR

BSD500

BM3D 31.19 29.11 27.51 26.56 25.68
K-SVD 30.69 28.66 27.69 25.93 25.10

SURE-GMM 31.01 29.02 27.68 26.23 25.22
NL-Bayes 31.09 29.09 27.53 26.48 25.66

Baseline+2FP 31.68 29.83 28.64 27.71 26.99

TID2008

BM3D 31.46 29.28 28.02 26.66 25.39
K-SVD 30.87 28.97 27.89 26.04 24.92

SURE-GMM 31.22 29.23 27.91 26.53 24.89
NL-Bayes 31.51 29.31 28.04 26.67 25.43

Baseline+2FP 31.73 29.99 28.89 27.95 27.17

Table 6 lists the PSNR results of different methods on the BSD500 and TID2008
datasets. Our method shows a greater advantage than other traditional methods. In addi-
tion, the advantage of our method becomes considerably more obvious as the noise level

FEATURE POOLING  A FEATURE COMPRESSION METHOD 591

increases. When the noise level  is 20, 30, 40, 50 and 60, our method outperforms
BM3D, which is the second best method on the BSD500 dataset, by 0.49 dB, 0.72 dB,
1.13 dB, 1.15 dB and 1.31 dB, respectively, and outperforms NL-Bayes, which is the
second best method on the TID2008 dataset, by 0.22 dB, 0.68 dB, 0.85 dB, 1.28 dB and
1.74 dB, respectively.

Our model is also compared with deep learning-based methods such as DnCNN and
RED-Net. Table 7 shows the comparison results with the DnCNN model on the BSD68
data set at different noise levels. Table 8 is a comparison with RED-Net on the BSD200
data set.

Table 7. PSNR results of DnCNN on the BSD68 dataset.

 15 20 25 30 40 50
Model PSNR

Baseline+2FP 32.53 30.58 29.75 28.62 27.27 26.55
DnCNN 31.46  29.02   26.10

Table 8. PSNR results of RED-Net on the BSDS200 dataset.
 10 20 30 40 50

Model PSNR
Baseline+2FP 33.71 30.44 28.54 27.31 26.53

RED-Net 33.38  27.88  25.69

We evaluate our network based on the 6 noise levels, including those that were used
to train DnCNN and RED-Net. According to Table 7, when the noise level  is 15, 25
and 50, our network is ahead of DnCNN by 1.07 dB, 0.73 dB and 0.45 dB, respectively,
on BSD68. In addition, according to Table 8, when the noise level σ is 20, 30, 40, 50 and
60, our method exceeds RED-Net by 0.33 dB, 0.66 dB and 0.54 dB, respectively, on
BSD200. Our network is not only superior to traditional denoising methods but also bet-
ter than some denoising methods based on deep learning.

(D) Extension to Adversarial Example Detection

Adversarial examples that mislead classifiers by adding perturbations that are qua-
si-imperceptible can be regarded as another form of noise. To date, there are many algo-
rithms that generate adversarial examples, such as the fast gradient sign method (FGSM)
[29], basic iterative methods (BIM) [30] and universal adversarial perturbations [31]. An
interesting study is how to detect these adversarial examples, which are almost identical
to the real ones to the human eye. We attempted to solve the adversarial example detec-
tion problem from the perspective of image denoising.

We randomly selected approximately 16,000 images from ImageNet 2015 and then
used FGSM to generate adversarial examples for these images. To guarantee recognition
by human eyes, no excessive disturbances are added to the samples. Images can be di-
vided into adversarial images and adversarial images with denoising. We use the pre-
training weights of ResNet-101 on ImageNet to classify images into 1,000 categories
directly.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

592

The classification accuracy on adversarial images and adversarial images with de-
noising was 27.18% and 36.05%, respectively. The accuracy increased by 8.87%, de-
monstrating that our denoising algorithm can indeed remove adversarial perturbations to
some extent.

4.3 Analysis

According to the experimental results on image classification and image denoising

above, we believe that feature pooling is an effective feature compression method that
does not affect the performance of networks and can reduce the number of parameters
and FLOPs. It is well known that the role of the convolutional layer is to extract different
features in the input. The role of the pooling layer is to remove redundant information
after the convolution operation. The redundant information is the result of performing
convolution at positions where there is no specific shape in the image. The feature pool-
ing method that we proposed in this paper can further compress the features obtained
after the pooling layer and does not affect the expression of the network. We will explain
why feature pooling can work well.

Although the features extracted by the pooling layer, such as max pooling, have
been compressed, the features represented by each feature map are still sparse. The fea-
ture pooling-method can fuse multiple features from different feature maps into one fea-
ture map. Therefore, employing the feature pooling method will not reduce the diversity
of features extracted by networks but will reduce the number of parameters and FLOPs
of networks. In other words, feature pooling can remove the useless features and achieve
a more compact representation of features.

5. CONCLUSIONS

This paper focuses on the problem of feature compression in deep CNNs. We pro-
posed a pooling method called feature pooling to compress features extracted by deep
CNNs. This method calculates by spatially selecting a maximum or minimum value at
each local location (i, j) with a stride of s from the channel below the feature maps and
then reconstructs feature maps sent to a high-level layer.

We tested the method on two computer vision tasks: image classification and image
denoising. Each task had a distinguished network architecture and used several bench-
marks. Our models achieved inspiring results on both tasks, especially for the image de-
noising task, which achieved state-of-the-art results to our best knowledge. For the image
classification task, we also achieved results that are competitive with the best results of
other methods at present. This outcome demonstrates that not all features extracted by
deep CNNs are useful; additionally, it shows that feature pooling is an effective and ge-
neric approach to help improve the performance of deep CNNs to address computer vi-
sion tasks, and it has wide applicability.

Moreover, feature pooling has several other advantages: first, it strengthens the un-
derlying data, which speeds up the convergence process in training; second, it decreases
the number of feature maps and makes the network more compact so that parameters are

FEATURE POOLING  A FEATURE COMPRESSION METHOD 593

reduced and computation resources are saved; finally, it reduces the redundant features,
which enables a more accurate model to be trained, as we originally expected.

We advanced the idea of conducting feature compression in deep CNNs and ex-
pected it to choose “useful” features for extraction while discarding “useless” ones to
increase the accuracy of the model. However, the feature pooling method we proposed is
merely a tentative attempt. How to design better feature compression methods in deep
CNNs and how to visually define a feature as “useful” or “useless” are facets of our on-
going work. This research will require further analysis and verification, a task that we
share with the whole community.

ACKNOWLEDGMENT

We gratefully acknowledge the reviewers for their careful reading of this paper and
for their helpful and constructive comments. This project is supported by the National
Natural Science Foundation of China (61972306).

REFERENCES

1. Y. Lecun, et al., “Gradient-based learning applied to document recognition,” in Pro-
ceedings of the IEEE, Vol. 86, 1998, pp. 2278-2324.

2. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv:1409.1556, 2014.

3. K. He, et al., “Deep residual learning for image recognition,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.

4. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in Proceedings of the 32nd International Con-
ference on Machine Learning, Vol. 37, 2015, pp. 448-456.

5. R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep networks,”
Advances in Neural Information Processing Systems, 2015, pp. 2377-2385.

6. S. Xie, et al., “Aggregated residual transformations for deep neural networks,” in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1492-1500.

7. C. Szegedy, et al., “Inception-v4, inception-resnet and the impact of residual con-
nections on learning,” in Proceedings of the 31st AAAI Conference on Artificial In-
telligence, 2017, pp. 4278-4284.

8. S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, Vol. 290, 2000, pp. 2323-2326.

9. M. Abadi, et al., “Tensorflow: A system for large-scale machine learning,” in Pro-
ceedings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation, Vol. 16, 2016, pp. 265-283.

10. J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science, Vol. 290, 2000, pp. 2319- 2323.

11. X. He and P. Niyogi, “Locality preserving projections,” Advances in Neural Infor-
mation Processing Systems, 2004, pp. 153-160.

12. M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv:1312.4400, 2013.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

594

13. C. Szegedy, et al., “Going deeper with convolutions,” in Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.

14. G. Huang, et al., “Densely connected convolutional networks,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.

15. F. N. Iandola, et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and < 0.5 MB model size,” arXiv:1602.07360, 2016.

16. D. Gudovskiy, A. Hodgkinson, and L. Rigazio, “DNN feature map compression us-
ing learned representation over GF (2),” in Proceedings of European Conference on
Computer Vision, 2018.

17. Z. Liu, et al., “Learning efficient convolutional networks through network slim-
ming,” in Proceedings of IEEE International Conference on Computer Vision, 2017,
pp. 2736-2744.

18. M. Denil, et al., “Predicting parameters in deep learning,” Advances in Neural In-
formation Processing Systems, 2013, pp. 2148-2156.

19. C. Szegedy, et al., “Rethinking the inception architecture for computer vision,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2818-2826.

20. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1251-1258.

21. V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks
on CPUs,” in Proceedings of Deep Learning and Unsupervised Feature Learning
Workshop, 2011, pp. 1-8.

22. S. Gupta, et al., “Deep learning with limited numerical precision,” in Proceedings of
International Conference on Machine Learning, 2015, pp. 1737-1746.

23. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” Advances in Neural Informa-
tion Processing Systems, 2015, pp. 3123-3131.

24. M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural networks with
weights and activations constrained to +1 or 1,” arXiv:1602.02830, 2016.

25. M. Rastegari, et al., “Xnor-net: Imagenet classification using binary convolutional
neural networks,” in Proceedings of European Conference on Computer Vision, 2016,
pp. 525-542.

26. J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep
convolutional networks,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 1646-1654.

27. K. Zhang, et al., “Beyond a gaussian denoiser: Residual learning of deep cnn for
image denoising,” IEEE Transactions on Image Processing, Vol. 26, 2017, pp. 3142-
3155.

28. X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections,” Advances in Neural
Information Processing Systems, 2016, pp. 2802-2810.

29. I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv:1412.6572, 2015.

30. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv:1607.02533, 2017.

FEATURE POOLING  A FEATURE COMPRESSION METHOD 595

31. S.-M. Moosavi-Dezfooli, et al., “Universal adversarial perturbations,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765-
1773.

32. K. Dabov, et al., “Image denoising by sparse 3-D transform-domain collaborative
filtering,” IEEE Transactions on Image Processing, Vol. 16, 2007, pp. 2080-2095.

33. M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” IEEE Transactions on Image Processing, Vol. 15, 2006,
pp. 3736-3745.

34. Y.-Q. Wang and J.-M. Morel, “SURE guided Gaussian mixture image denoising,”
SIAM Journal on Imaging Sciences, Vol. 6, 2013, pp. 999-1034.

35. M. Lebrun, A. Buades, and J.-M. Morel, “A nonlocal Bayesian image denoising al-
gorithm,” SIAM Journal on Imaging Sciences, Vol. 6, 2013, pp. 1665-1688.

36. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249-256.

37. R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neu-
ral networks,” in Proceedings of International Conference on Machine Learning,
2013, pp. 1310-1318.

38. K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 5353-5360.

39. L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-
ceedings of the 19th International Conference on Computational Statistics, 2010, pp.
177-186.

Ge Pei (裴歌) is currently pursuing the M.S. degree in School
of Computer Science and Technology, Xidian University, Shaanxi.
Her current research interest is computer security and deep learn-
ing.

Hai-Chang Gao (高海昌) is currently a Professor with School
of Computer Science and Technology, Xidian University. He is in
charge of a project of the National Natural Science Foundation of
China. He has published more than 40 papers. His current research
interests include Captcha, computer security, and machine learn-
ing.

GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG

596

Xin Zhou (周鑫) is a master of Xidian University, Shaanxi.
His current research interests are computer security and deep learn-
ing.

Nuo Cheng (程诺) is currently pursuing the M.S. degree in
School of Cyber Engineering, Xidian University, Shaanxi. Her cur-
rent research interests are computer security and deep learning.

