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Recent works have shown that convolutional neural networks (CNNs) are now the 

most effective machine learning method for solving various computer vision problems. A 
key advantage of CNNs is that they extract features automatically; users do not need to 
know what features should be extracted for a certain task. It is typically believed that the 
deeper the CNNs are, the higher the features that can be extracted and the more power-
fully the resulting representations networks will be. Therefore, present-day CNNs are 
becoming substantially deeper. Previous works have proven that not all features extracted 
by deep CNNs are useful. In this paper, we tentatively consider a question: how do we 
simply remove the useless features? We propose a simple pooling method called feature 
pooling to compress features extracted in deep CNNs. In contrast to traditional CNNs, 
which input feature maps from the previous layer directly to the next layer, feature pool-
ing compresses features from the channel below, reconstructs feature maps and then 
sends them to the next layer. We evaluate feature pooling based on two tasks: image 
classification and image denoising. Each task has a distinct network architecture and uses 
several benchmarks. Promising results are achieved in both tasks, especially image de-
noising, in which we obtain state-of-the-art results. This finding verifies the previous 
proposition that feature pooling is a straightforward method to perform further feature 
compression in CNNs. We have also observed that feature pooling has several competi-
tive advantages: it reduces the number of parameters, increases the compactness of the 
networks, and strengthens the representation power with both high effectiveness and 
wide applicability.    
 
Keywords: convolutional neural network, features compression, pooling, image classifi-
cation, image denoising 
 
 

1. INTRODUCTION 
 

Convolutional neural networks (CNNs) have emerged as the premier algorithm for 
visual object recognition. These networks were originally introduced over 20 years ago; 
however, only in the past few years have they been dramatically improved and enabled 
to train truly deep CNNs. These progresses were due not only to advanced hardware and 
expanded datasets but also to improved network architectures. 

CNNs have seen a gradual increase in the number of layers in the last few years. 
The original LeNet-5 [1] consisted of 5 layers; VGG-Net [2] increased the number to 19, 
and residual networks (ResNets) [3] reached 152 layers. Recent evidence reveals that 
network depth is of crucial importance, and the leading results on the challenging 
ImageNet data et al. exploit deep models. Deeper networks show marked superiority in 
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many visual recognition tasks; moreover, network width has also proven to be an im-
portant factor that can affect the network’s capabilities. While deeper and wider net-
works bring about better model performance, these characteristics also make the training 
and design of the network more difficult due to the growing number of hyperparameters. 
Many recent publications acknowledge that training deep neural networks will introduce 
many problems, such as vanishing/exploding gradients [36, 37] and degradation [38]. 

Various techniques have been suggested to enable the training of deeper neural net- 
works, such as layer-wise pretraining, well-designed initialization strategies, better opti-
mizers, skip connections and batch normalization [4]. The two most influential methods 
are skip connections and batch normalization. Batch normalization performs normaliza-
tion for each training minibatch, reducing the influence of the internal covariate shift and 
making neural networks less careful about learning rate and initialization. Skip connec-
tions route the signal from one layer to the next via identity connections, bypassing in-
termediate stages as in highway networks [5], and ResNets have proven to be an effec-
tive way to alleviate the vanishing gradient and degradation problems. 

 Although skip connections make it possible to build an extremely deep neural net- 
work, they also have some limitations. The top-5 classification error rates in the ImageNet 
dataset of ResNet-50, ResNet-101 and ResNet-152 are 5.25%, 4.60%, and 4.49%, respec-
tively. However, when the ResNets became deeper, the classification error rate did not de- 
crease significantly. Instead, the amount of calculation markedly increased. In other words, 
the benefits of depth are diminishing. Many studies have tried different methods to solve 
this problem. Mutual integration between different networks or structures is a good net-
work enhancement approach, as ResNeXt [6] and Inception-ResNet [7] have demonstrated. 

Driven by the above facts, a question arises: is there a simple way to increase net-
work capabilities when the network is deep enough? Some publications have reported 
that deep neural networks are typically feature redundant and overparameterized [18]. 
We believe that this problem can be solved from the perspective of reducing feature re-
dundancy. In this paper, we propose a method for compressing features in deep neural 
networks called feature pooling. Our method is implemented as a non-weighted linear 
spatial aggregation on the feature maps. 

We present comprehensive experiments on the Modified National Institute of Stan- 
dards and Technology (MNIST), Canadian Institute for Advanced Research (CIFAR)-10 
and ImageNet datasets to show that feature pooling promotes network expression and 
reduces the number of learning parameters. Using a shallow network with feature pool-
ing on MNIST, we prove that after compression, features do not lose much expressive 
power, but the learning parameters are reduced. Using a modified VGG-16 with feature 
pooling, we achieve a 6.31% top-1 error rate, which is close to the best reported results 
using VGG-16 for CIFAR-10 classification. Using a modified ResNet-50 with feature 
pooling, we achieve a top-1 error rate that improves upon the results of training without 
feature pooling on ImageNet classification. Similar phenomena are also shown in the 
image denoising task. We add feature pooling to our designed image denoising network 
and achieve improved denoising results. 

The rest of the paper is organized as follows. Section 2 introduces work related to 
feature compression. Section 3 introduces the working mechanism of the feature pooling 
method we proposed. Our experiments and results are presented in Section 4. Finally, we 
summarize our work in Section 5. 
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2. RELATED WORK 

2.1 Compact Representation of Feature Maps 

Compact representation of feature maps achieves the purpose of compressing the 
network by reducing the dimensionality of the feature maps. In the early stage, many tra- 
ditional methods were applied for dimensionality reduction, such as locally linear em- 
bedding (LLE) [8], principal component analysis (PCA), isometric feature mapping 
(Isomap) [10] and locality-preserving projection (LPP) [11]. 

In 2013, M. Lin [12] proposed the NIN (Network in Network) structure, which won 
first place in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2014, 
to enhance model discriminability for local patches within the receptive field. The NIN 
structure uses a 1 × 1 convolution as a multilayer perceptron (MLP) for cross-channel in- 
formation integration on the convolutional feature map. The purpose is to merge addi-
tional feature parameters when entering the next layer. Inspired by the NIN structure, the 
bottleneck layer in GoogLeNet [13] reduces the number of feature maps in each layer 
and thereby reduces the number of operations. Moreover, not only the bottleneck layer 
but also the translation layer, which can reduce the dimension of the output to half of the 
input, was used in DenseNet [14] to save memory and avoid overfitting. 

With intensive research on deep neural networks, increasingly many structures for 
feature map compression have been proposed. SqueezeNet [15], which consists of fire 
modules, not only compresses the weights but also reduces the number of input channels. 
The reduction in the number of input channels is achieved by the squeeze layers. This 
network structure reduces the number of parameters by at least 50 times and does not 
have any effect on the accuracy of models. In [16], a similar method was proposed by 
using nonlinear dimensionality reduction (NDR) layers embedded in a deep neural net-
work to achieve the goal of dimensionality reduction on feature maps. As a result, this 
method sacrifices a few accuracy rates in exchange for tens of times the compression of 
the model. In 2017, Z. Liu [17] et al. proposed network slimming, a simple yet effective 
network training scheme to deploy large CNNs while using limited resources. The main 
idea of network slimming is to introduce a scale factor  in each channel of the convolu-
tional layer and then multiply  by the output of the channel to measure the importance 
of the channel. Then, unimportant channels are eliminated to compress the model and 
increase the speed of operation. 

Similar to the above structures, we propose feature pooling to reduce the dimension 
of the output by reducing the redundant feature maps, thereby saving memory and impr- 
oving network performance. We also compare our feature pooling method with the 1 × 1 
convolution in the CIFAR-10 task. 

2.2 Reducing the Parameters of CNNs 

Recent studies demonstrate that neural networks are typically overparameterized, 
and there is significant redundancy in deep learning models [18]. Hence, it is necessary 
to improve the utilization of networks by extracting useful features and removing useless 
features. 

Decomposition of convolutions is a method to compress parameters by replacing 
the convolution layers with multiple smaller convolution layers. For example, Inception 
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V2 [19] replaces a single 5 × 5 convolutional layer with a small network consisting of two 
consecutive 3 × 3 convolutional layers. This measure not only maintains the scope of the 
receptive field and reduces the number of parameters but also avoids bottlenecks and 
deepens the capabilities of nonlinear expression. Xception [20] employs depthwise sep-
arable convolution, which maps the spatial correlation separately for each output channel, 
and then a 1 × 1 depth-wise convolution is employed to obtain cross-channel correlation. 
Xception has greater final accuracy and a faster convergence rate than Inception V2. 

It has been found that the role of high-precision parameters in a well-performing 
network is not very important. Therefore, quantization is another method to compress the 
original network by reducing the number of bits required to represent each weight. The 
8-bit quantization of the parameters introduced in [21] and the stochastic rounding-based 
16-bit fixed-point representation used in [22] significantly reduce memory usage and 
floating-point operations, while a slight loss of classification accuracy occurs. An ex-
treme case is binary quantization, which employs 1 bit to represent each weight. For in-
stance, binary connect (BC) [23] binarizes the real weights used for forward propagation 
and backward propagation. Binary neural networks (BNNs) [24] binarize the weights 
and activation values of each layer and turn a large number of mathematical operations 
into bit manipulations. In addition, Xnor-net [25] binarizes the filters and their inputs of 
the CNN networks. All these binarized quantization methods save considerable space 
and speed up calculations but lose a certain amount of accuracy. 

Similar to the effect of the above methods, the feature pooling we proposed reduces 
the parameters of the deep neural network, but the difference is that we do not reduce the 
accuracy rates but instead improve the performance of the network. 

3. FEATURE POOLING 

Considering that features in CNN are organized as feature maps, we believe that the 
feature compression procedure can be understood as some form of compression and re-
construction of the feature maps. The idea of feature pooling for feature compression is 
very simple, considering a reasonable reduction in the number of feature maps.  

The easiest and most direct method is top-k selection, that is, choosing the k largest 
(or smallest) pixels at the same location from n generated feature maps to reconstruct k 
new feature maps as the input of the next layer, as Fig. 1 shows. The calculation per-
formed by the top-k method is shown as follows: 

 

 
Feature maps generated 

From previous layer 
n pixels and each 
located at (i, j) in 
every feature map  

Selected top-k 
pixels from all 

ordered feature maps 

Reconstructed 
feature maps 

Fig. 1. Feature pooling method implemented using top-k. 
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where l   
i,j,p  denotes the (i, j) position on the pth feature map of the lth layer. The top-k 

method is easily understood. However, due to the existence of the sorting process (as-
cending or descending), this is a time-consuming operation, especially when the size and 
the number of feature maps are relatively large. 

Since spatial pooling operations are optimized for graphics processing units (GPUs), 
we designed a method that uses spatial pooling to achieve an approximate top-k effect, 
as Fig. 2 shows; we refer to this method as feature pooling. Unlike the top-k method that 
needs to use all the input feature maps for calculation, feature pooling borrows the con-
cept of stride from spatial pooling. Specifically, our method groups the input feature 
maps by stride size and performs a spatial pooling process across feature maps within the 
group. The following formula shows the calculation of feature pooling: 
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Feature maps generated 

From previous layer 
n pixels and each 
located at (i, j) in 
every feature map  

Selected top-k 
pixels from k 
ordered sets 

Reconstructed 
feature maps 

Fig. 2. Feature pooling implemented using spatial pooling. The pooling operation across feature 
maps uses a stride to control the number of output features in the next layer. 

 

We still assume that the number of input and output feature maps are n and k, re-
spectively, and s = n/k represents the size of the stride. It should be noted that s, as a 
stride size, must be an integer. Obviously, the feature maps can be divided into k groups 
according to the stride s. After the operation of selecting the first element, which can be 
understood as taking the largest or the smallest value, the maximum (or the minimum) 
value of s feature values in each group can be obtained. Then, concatenating the selected 
features will achieve the purpose of compressing the feature maps. Eq. (2) indicates the 
concatenating result of the k maximum (or minimum) values from k groups. In addition, 
it should be noted that the maximum (or minimum) operation for each position of the s 
feature maps within each group can be achieved by a pooling process along the channel, 
which is why we call it feature pooling. 

Feature pooling uses spatial pooling to implement the feature compression process. 
There are similarities between the two, but there are also differences. First, the purpose is 
not the same. Spatial pooling is a downsampling process whose main purpose is to re-
duce the amount of computation while maintaining a certain feature invariance (rotation, 
scaling, etc.). Another important difference is that feature pooling is performed across 
feature maps, and spatial pooling affects only a single feature map. 



GE PEI, HAI-CHANG GAO, XIN ZHOU, NUO CHENG 

 

582

 

Feature pooling is a linear aggregation of feature maps. In addition, due to the com-
pression of features, the number of network hyperparameters can also be reduced to 
some extent. 

4. EXPERIMENTS 

We empirically demonstrate the effectiveness of feature pooling on two computer 
vision tasks: image classification and Gaussian image denoising. We compare it with 
state-of-art network architectures on several benchmark datasets. For each experiment, 
the results are obtained by the best results in two tests. The implementation is in the ma-
chine learning framework TensorFlow [9], and all experiments are carried out on a PC 
with an Intel Xeon (R) E5-1620 (3.5 GHz*8) CPU and a single Nvidia GTX 1070 GPU. 

4.1 Image Classification 

(A) MINIST Classification 
Assuming that feature pooling is effective as a feature compression method, it mere- 

ly compresses features without or slightly affecting the overall expression of the network. 
To verify the effectiveness of feature pooling, we considered the problem of predicting 
the digit class on the MNIST dataset. We used a very simple network as shown in Fig. 3, 
with a 28 × 28 grayscale image as input, two convolutional layers with 16 and 32 filters 
each, and two fully connected layers with 512 and 10 activations, respectively. All con-
volution kernels are 3 × 3 sizes. The weights of all convolutional layers are initialized 
with Xavier, and the biases are set to 0. We trained the network for 5 epochs, with 100 
examples per minibatch. Then, the network was tested on the entire test set. 

 
Fig. 3. The overall architecture of networks on MNIST. 

 

We are interested in comparing the network before and after adding the feature 
pooling layer, rather than achieving state-of-the-art performance on MNIST. As a com-
parative experiment, we added a feature pooling layer using the top-k method and spatial 
pooling method after the second convolution layer, where the stride is 2, that is, the 
number of output feature maps is set to 16. On the test set, the classification success rates 
of these three networks described above are 0.9791, 0.9891 and 0.9782, respectively. 
Obviously, the network with feature pooling achieved higher accuracy, which indicates 
that feature pooling as a feature compression method not only does not cause loss of 
feature expression but also improves performance. The main reason for the oscillation in 
the network success rates is that the network is too shallow, and the number of features is 
not large enough (which can be demonstrated in subsequent experiments). Fig. 4 shows 
the fraction of correct predictions on test data as training progresses, where s = 2 means 
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Fig. 4. The test accuracy of MNIST networks without feature pooling and with feature pooling us- 
ing spatial pooling and top-k, respectively. 
 

that 50% of the output is compressed. All curves rise gradually and eventually reach sat-
uration, and the curves representing the methods with feature pooling are more stable. 
Moreover, the method with feature pooling using spatial pooling surpasses the other two 
methods, both in terms of the convergence speed or the classification accuracy. 

To further verify the effect of feature pooling methods, we compared them with the 
method that reduces the input dimension of the next layer by compressing the output 
dimension of the convolutional layer (shown in the 6th and 7th rows of Table 1). The 
method, called dimension reduction of Conv in Table 1, directly reduces the output di-
mensions of the convolution layer without adding additional layers. This approach can 
achieve comparable compression effects using feature pooling methods. In order to con-
trol the variables, the operation of compressing the output dimensions of convolutional 
layer is performed at the position where the feature pooling layer is added.  

 

Table 1. The test results on the MNIST dataset. 
 Compression Accuracy Training time Testing time Parameters Flops 

Baseline  0.9791 4.68s 0.256s 12.260M 2.571×107 
Feature pooling 
(spatial pooling) 

50% 0.9891 4.14s 0.262s 6.135M 1.286×107 
75% 0.9909 4.63s 0.250s 3.072M 6.442×106 

Feature pooling 
(top-k) 

50% 0.9857 80.31s 12.624s 6.135M 1.286×107 
75% 0.9857 64.31s 8.930s 3.072M 6.442×106 

Dimension reduc-
tion of Conv  

50% 0.9788 3.48s 0.207s 6.133M 1.286×107 
75% 0.982 2.94s 0.190s 3.069M 6.435×106 

 

The results are shown in Table 1, where the compression indicates that the reduc-
tion ratio of the input dimensions of the next layer relative to the output of the previous 
layer, the training time is calculated on all training data for one epoch, and the testing 
time is calculated on all test data. Compared to the baseline model, the model with fea-
ture pooling, especially using spatial pooling, not only achieved superior accuracy but 
also reduced the number of parameters and FLOPs (floating-point operations per second). 
For the model that achieved the best accuracy, the numbers of parameters and FLOPs 
were maintained at approximately 75%, meaning that feature pooling is an effective 
method to compress the model and increase the expression of the model. In terms of the 
training time and test time, the network with feature pooling using top-k consumes much 
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more time than other methods, and other methods have similar performance in speed. 
To verify the expressive power of the compressed features, we directly visualized 

the features extracted before the fully connected layers; the results are shown in Fig. 5. 
The visualization results of feature maps extracted from various networks are similar. 
That is, the compressed features still retain information such as shape and structure con-
text. Merely in terms of the network with feature pooling, when using spatial pooling, 
the visualization results are smoother and closer to the feature maps extracted from the 
network without feature pooling. It can be concluded that feature pooling using spatial 
pooling can achieve effective compression of features. Moreover, under the premise of 
faithfully approximating the original and uncompressed data, this method can retain the 
useful information learned from the previous layer. Hence, in the remaining classifica-
tion experiments in this section, we will focus on the performance of the feature pooling 
method using spatial pooling, and the feature pooling mentioned latter refers to the fea-
ture pooling method using spatial pooling. 

 

 
Fig. 5. The visualization results of feature maps extracted from the networks with or without fea-
ture pooling. 

 

We found that as a side effect of feature pooling, the activations of the hidden units 
become compact in both mean and variance. Thus, feature pooling automatically leads to 
compact representations. To observe this effect, we collected activations from the last 
hidden layer of each network and observed how their distribution evolves in the training 
stage. Comparing the value of activations from Fig. 6, we can see that the network with 
added feature pooling will be smaller, whether it is in the mean or the variance. 

 

 
Fig. 6. Effect of feature pooling on activations. The activations of the network with feature pooling 
have a diminishing mean and variance as training progresses. 
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(B) CIFAR-10 classification 
We used the original VGG-16 structure as our baseline, which contains 13 convolu-

tion layers, 5 max pooling layers and 3 fully connected layers. Some modifications were 
made to VGG-16, including removing the last max pooling layer and the first two fully 
connected layers of the original VGG-16. We used the full CIFAR-10 set, which consists 
of 50K training images and 10K testing images. Data augmentation, including flipping 
and random cropping, has also been used. To prevent overfitting, we added batch norma- 
lization behind each convolutional and fully connected layer. Models were trained with a 
minibatch size of 250 and a total of 180 epochs. Stochastic gradient descent (SGD) [41] 
was used as the optimizer, with a momentum rate of 0.9. When the epoch was 80, 120, 
and 150, the learning rates dropped from 0.1 to 0.01, 0.001 and 0.0005, respectively. 

In the experiment, we added different numbers of feature pooling layers at different 
positions in the VGG-16 network. In addition, we set the stride of the feature pooling 
layer to 2 and 4, respectively. Tables 2 and 3 list the results of the test accuracy, the 
number of parameters and FLOPs in various situations. Note that ConvX (X = 1~5) indi-
cates that the feature pooling layer was added behind the max pooling layer of the Xth 
convolutional block of the VGG-16 network. The baseline model, which achieves 
93.25% accuracy, is defined in [16]. 

 
Table 2. The test results on CIFAR-10 (stride = 2). 

Model Conv1 Conv2 Conv3 Conv4 Conv5 Accuracy Parameters FLOPs 

Baseline [16]      93.25% 14.06M 2.949×107 

Baseline+FP1 √     93.53% 14.02M 2.941×107 

Baseline+FP2  √    93.33% 13.92M 2.919×107 

Baseline+FP3   √   93.60% 13.50M 2.831×107 

Baseline+FP4    √  93.55% 12.93M 2.713×107 

Baseline+FP5     √ 93.68% 14.05M 2.947×107 

Baseline+2FP   √ √  93.56% 12.37M 2.595×107 

Baseline+3FP   √ √ √ 93.69% 12.36M 2.593×107 

Baseline+4FP  √ √ √ √ 93.41% 12.22M 2.563×107 

Baseline+5FP √ √ √ √ √ 93.21% 12.19M 2.556×107 

 

Table 3. The test results on CIFAR-10 (stride = 4). 
Model Conv1 Conv2 Conv3 Conv4 Conv5 Accuracy Parameters FLOPs 

Baseline [16]      93.25% 14.06M 2.949×107 
Baseline+FP1 √     93.61% 14.01M 2.937×107 
Baseline+FP2  √    93.43% 13.85M 2.904×107 
Baseline+FP3   √   93.65% 13.22M 2.772×107 
Baseline+FP4    √  93.67% 12.37M 2.595×107 
Baseline+FP5     √ 93.6% 14.05M 2.946×107 
Baseline+2FP   √ √  93.44% 11.53M 2.418×107 
Baseline+3FP   √ √ √ 93.65% 11.51M 2.415×107 
Baseline+4FP  √ √ √ √ 93.25% 11.30M 2.371×107 
Baseline+5FP √ √ √ √ √ 92.55% 11.25M 2.360×107
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According to Tables 2 and 3, adding feature pooling behind different layers can 
achieve different test accuracies. For the case of adding a single feature pooling layer to 
the network, whether the stride is set to 2 or 4, the network obtains substantially compa-
rable accuracy, and the stride set is 4, saving more parameters and FLOPs. For the case 
of adding multiple feature pooling layers to the network, when we added feature pooling 
layers with both stride = 2 and stride = 4 behind Conv3, Conv4 and Conv5, the networks 
achieved nearly the greatest accuracy. To the best of our knowledge, this is also close to 
the best results obtained using the VGG-16 network on the CIFAR-10 dataset. However, 
when too many feature pooling layers are added in the network, as in the case of Base-
line+5fp in Tables 2 and 3, the accuracy is reduced, although the numbers of parameters 
and FLOPs are the accuracy is also reduced decreased. 

 
(C) ImageNet classification 

ImageNet is a dataset of over 15 million labeled high-resolution images belonging 
to approximately 22,000 categories. Starting in 2010, as a part of the Pascal Visual Ob-
ject Challenge, an annual competition called the ILSVRC has been held. ILSVRC uses a 
subset of ImageNet with approximately 1000 images in each of 1000 categories. In all, 
there are approximately 1.2 million training images, 50,000 validation images, and 
150,000 testing images. In this section, we used ILSVRC 2012 as our dataset. The mod-
els are trained with a minibatch size of 64. RMSProp is used as the optimizer with a 
momentum rate of 0.9 and a decay term of 0.9. The initial learning rate is 0.1, the end 
learning rate is 0.0001, the learning rate decays after 2 epochs, and the learning rate de-
cay factor is 0.94. 

Due to the limitation of time and resources, we merely exploratory attempt to ob-
serve whether the feature pooling added in a large-scale network will affect its perfor-
mance. Hence, we added only one feature pooling layer in the large-scale network, and 
we focused only on its classification accuracy. We used the original ResNet-50 [3] as the 
baseline; its structure won first place in the ILSVRC 2015 classification task. We re-
trained ResNet on ImageNet by using our workstation with a top-1 classification accu-
racy of 71.434% and a top-5 classification accuracy of 89.882%. The experimental re- 

 

 
Fig. 7. Structure of ResNet-50 before and after modification. 
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sults in Section 4.1.1 demonstrate that better results can be obtained when adding a fea-
ture pool layer in the middle of the network. ResNet-50 can be divided into 4 blocks, that 
is, adding a feature pooling layer before the second or the third block may achieve the 
best performance. According to the experiments, adding a feature pooling layer before 
the second block can achieve better performance with a top-1 classification accuracy of 
71.476% and a top-5 classification accuracy of 89.756%. Fig. 7 shows the structure of 
ResNet-50 before and after modification. 

Comparing the results before and after adding the feature pooling layer, the top-1 
accuracy increased by 0.032%, but the top-5 accuracy decreased by 0.126%. It can be 
proved that for large-scale networks, compressing some features from the network will 
not influence the performance. However, the ResNet-50 network is deep, and only one 
feature pooling layer was added; therefore, the ResNet-50 network was not affected 
meaningfully. 

4.2 Gaussian Image Denoising 

(A) Network Architecture 
The input of our network is a noisy image y = x + v. Different from some discrimina-

tive denoising models, we adopt the residual learning formulation to obtain a residual 
mapping (y) = v instead of learning a direct mapping function (y) = x. After obtaining 
the residual mapping, we have x = y  (y). Formally, the averaged mean squared error 
between the desired residual images and the estimated ones from noisy inputs can be 
adopted as the loss function. The framework is fully convolutional and deconvolutional. 
Instead of using the convolution and deconvolution layers directly, we assembled them 
into blocks as the basic components of the network, as shown in Fig. 8. The convolu-
tional blocks act as feature extractors, which preserve the primary components of objects 
and simultaneously capture the features of the noise. The deconvolutional blocks are 
then combined to recover the details of the image noise. 

 

 
Fig. 8. The overall architecture of our proposed image-denoising network. The network contains 
convolution and deconvolution blocks. The output is the learned image noise. 
 

 
Fig. 9. The inception block. 
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Our denoising network contains three types of building blocks: inception block, re-
sidual block and deconvolution block. 

 
(1) Inception Block. The inception block has proven to be an effective feature extraction 
structure and is widely used in convolutional neural network design. We used the basic 
version of inception, and the difference is that we removed the 3 × 3 max pooling. The 
inception kernel sizes are 1 × 1, 3 × 3, 5 × 5, 7 × 7 and 9 × 9. Batch normalization is also 
used to speed up training. Ultimately, we used the Conv + BN + Tanh format instead of a 
single convolution, as Fig. 9 shows. 
 
(2) Residual Block. Residual learning strategy shows a strong ability to train extremely 
deep networks and improve model performance. As depicted in Fig. 10, we combined 
residual learning with the inception structure. The approach is to use a residual block 
instead of convolutional layers on each branch of the inception structure. The residual 
block used here follows the guidance of [3]. 
 

 
Fig. 10. The residual block (combined with Inception structure). 

 

 
Fig. 11. The deconvolution block.  

 

(3) Deconvolution Block. The basic structure of the inception block and the deconvolu-
tion block is the same, except that the deconvolution block replaces the convolution layer 
in the inception block with a deconvolution layer (see Fig. 11). 
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The numbers of convolution kernels in the three inception blocks are 32, 64, and 
256. The number of output feature maps of the first feature pooling layer is 128, and that 
of the second feature pooling layer is 64. The number of convolution kernels for all re-
sidual blocks is 128, and those of the three deconvolution blocks are 64, 32 and 3. 

 
(B) Experimental Setting 

Training and Testing Data. In the denoising experiment, we utilized two datasets 
including the whole CIFAR-10 set and Microsoft COCO. In COCO, we randomly se-
lected 15,000 images as our training set (in the experiment, we found that a training set 
of only 15,000 images can achieve a desirable result), and the images were resized to 
224 × 224. We performed image denoising only on color images. To train our network 
for Gaussian denoising with a known noise level, we considered five noise levels,  = 20, 
30, 40, 50 and 60. For the test images corresponding to the training set of COCO, we 
used two different test datasets for a thorough evaluation: a test dataset containing 500 
natural images from the Berkeley Segmentation Dataset (BSD500) and the TID 2008 
dataset, which contains 25 natural images. Note that all these datasets are widely used for 
the evaluation of Gaussian image denoising. 

Parameter Setting and Network Training. The output of the network is the re-
sidual image estimated from the noisy input. We use the mean squared error between the 
desired residual image and the network output as our loss function. We initialize the 
weights by the Xavier initializer and use Adam with an initial learning rate of 0.1. In our 
experiment, network training with Adam converges faster than traditional SGD with the 
momentum approach. We train 20 epochs for our denoising model with a minibatch size 
of 32. The learning rate drops to 0.01 and 0.001 after 5 and 10 epochs, respectively. The 
peak signal-to-noise ratio (PSNR) is used for evaluation. 

Comparison of Methods. Currently, there are a variety of image denoising meth-
ods available, including nonlocal similarity-based methods (i.e., BM3D [32]), sparse 
coding-based methods (i.e., K-SVD [33]), Gaussian mixture model-based methods (i.e., 
SURE-GMM [34]), Bayesian-based methods (i.e., NL-Bayes [35]), deep learning-based 
methods (i.e., VDSR [26], DnCNN [27], RED-Net [28]), etc. Many studies show that 
deep learning-based methods are better than other methods in image denoising. We 
mainly compare methods based on deep learning. 

 
(C) Denoising Results 

Our Gaussian image denoising model consists of multiple building blocks and two 
feature pooling layers. To explore the effect of feature pooling on image denoising, we 
will use a model that does not include the two feature pooling layers as our baseline 
model, represented as baseline. In addition, we refer to the model with two feature pool-
ing layers using spatial pooling as Baseline+2FP. If the model contains only the first 
feature pooling layer, we refer to it as Baseline+1FP. 

 

Table 4. The average PSNR results on the BSD500 dataset. 
 20 30 40 50 60 

Model PSNR 
Baseline 29.67 27.60 26.67 25.97 25.21 

Baseline +1FP 30.76 28.72 27.79 26.93 26.19 
Baseline +2FP 31.68 29.83 28.64 27.71 26.99 
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The average PSNR results of the three models on the BSD500 dataset are shown in 
Table 4. Both Baseline+1FP and Baseline+2FP have better PSNR results than the base-
line model. At the same noise level, the PSNR values of the Baseline+1FP and Base-
line+2FP models are nearly 1-2 dB higher than that of the baseline model. In the experi-
ment, we also tried to add three feature pooling layers in the baseline model and found 
that the PSNR was lower than Baseline+2FP. The possible reason is that the features are 
over-compressed, causing a relatively large loss in the expressiveness of the features. 

Based on the result, we also test the effect of feature pooling methods using spatial 
pooling and top-k on image denoising. In this part, we used CIFAR-10 as our dataset 
because we are interested only in the performance differences of the networks with these 
two feature pooling methods. The results, including PSNR, the number of parameters, 
FLOPs, training time and testing time, are shown in Table 5, where the training time is 
calculated on all training data for one epoch and the testing time is calculated on all test 
data. According to the results, both of the networks with feature pooling methods can 
obtain higher PSNR than the baseline model, especially the network with the method 
using top-k achieving the best PSNR. Both feature pooling methods preserved the pa-
rameters and FLOPs and consume less time when training and testing. However, com-
pared with the spatial pooling method, the top-k method is time consumption. Hence, 
after balancing the time consumption and performance, we believe that the feature pool-
ing method using spatial pooling is the better of the two methods for feature compression. 
When we refer to feature pooling in the experiments below, we are specifically referring 
to feature pooling using spatial pooling. 

 

Table 5. PSNR, parameters, FLOPs, training time, and testing time on CIFAR-10. 
 20 30 40 50  

Model PSNR Parameters FLOPs Training Testing time 
Baseline 27.81 26.11 24.54 23.82 67.71M 1.42×108 91.05s 10.34s 

Baseline+2SP 28.30 26.18 24.74 23.96 19.37M 4.06×107 59.81s 7.07s 
Baseline+2top-k 28.19 26.32 24.99 24.02 19.37M 4.06×107 65.15s 7.35s 

 

Table 6. PSNR results of different methods on the BSD500 and TID2008 datasets. 

Dataset  20 30 40 50 60 
Model PSNR 

BSD500 

BM3D 31.19 29.11 27.51 26.56 25.68 
K-SVD 30.69 28.66 27.69 25.93 25.10 

SURE-GMM 31.01 29.02 27.68 26.23 25.22 
NL-Bayes 31.09 29.09 27.53 26.48 25.66 

Baseline+2FP 31.68 29.83 28.64 27.71 26.99 

TID2008 

BM3D 31.46 29.28 28.02 26.66 25.39 
K-SVD 30.87 28.97 27.89 26.04 24.92 

SURE-GMM 31.22 29.23 27.91 26.53 24.89 
NL-Bayes 31.51 29.31 28.04 26.67 25.43 

Baseline+2FP 31.73 29.99 28.89 27.95 27.17 
 

Table 6 lists the PSNR results of different methods on the BSD500 and TID2008 
datasets. Our method shows a greater advantage than other traditional methods. In addi-
tion, the advantage of our method becomes considerably more obvious as the noise level 
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increases. When the noise level  is 20, 30, 40, 50 and 60, our method outperforms 
BM3D, which is the second best method on the BSD500 dataset, by 0.49 dB, 0.72 dB, 
1.13 dB, 1.15 dB and 1.31 dB, respectively, and outperforms NL-Bayes, which is the 
second best method on the TID2008 dataset, by 0.22 dB, 0.68 dB, 0.85 dB, 1.28 dB and 
1.74 dB, respectively. 

Our model is also compared with deep learning-based methods such as DnCNN and 
RED-Net. Table 7 shows the comparison results with the DnCNN model on the BSD68 
data set at different noise levels. Table 8 is a comparison with RED-Net on the BSD200 
data set. 

 
Table 7. PSNR results of DnCNN on the BSD68 dataset. 

 15 20 25 30 40 50 
Model PSNR 

Baseline+2FP 32.53 30.58 29.75 28.62 27.27 26.55 
DnCNN 31.46  29.02   26.10 

 

Table 8. PSNR results of RED-Net on the BSDS200 dataset. 
 10 20 30 40 50 

Model PSNR 
Baseline+2FP 33.71 30.44 28.54 27.31 26.53 

RED-Net 33.38  27.88  25.69 
 

We evaluate our network based on the 6 noise levels, including those that were used 
to train DnCNN and RED-Net. According to Table 7, when the noise level  is 15, 25 
and 50, our network is ahead of DnCNN by 1.07 dB, 0.73 dB and 0.45 dB, respectively, 
on BSD68. In addition, according to Table 8, when the noise level σ is 20, 30, 40, 50 and 
60, our method exceeds RED-Net by 0.33 dB, 0.66 dB and 0.54 dB, respectively, on 
BSD200. Our network is not only superior to traditional denoising methods but also bet-
ter than some denoising methods based on deep learning. 

 
(D) Extension to Adversarial Example Detection 

Adversarial examples that mislead classifiers by adding perturbations that are qua-
si-imperceptible can be regarded as another form of noise. To date, there are many algo-
rithms that generate adversarial examples, such as the fast gradient sign method (FGSM) 
[29], basic iterative methods (BIM) [30] and universal adversarial perturbations [31]. An 
interesting study is how to detect these adversarial examples, which are almost identical 
to the real ones to the human eye. We attempted to solve the adversarial example detec-
tion problem from the perspective of image denoising. 

We randomly selected approximately 16,000 images from ImageNet 2015 and then 
used FGSM to generate adversarial examples for these images. To guarantee recognition 
by human eyes, no excessive disturbances are added to the samples. Images can be di-
vided into adversarial images and adversarial images with denoising. We use the pre-
training weights of ResNet-101 on ImageNet to classify images into 1,000 categories 
directly. 
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The classification accuracy on adversarial images and adversarial images with de-
noising was 27.18% and 36.05%, respectively. The accuracy increased by 8.87%, de- 
monstrating that our denoising algorithm can indeed remove adversarial perturbations to 
some extent. 

 
4.3 Analysis 

 
According to the experimental results on image classification and image denoising 

above, we believe that feature pooling is an effective feature compression method that 
does not affect the performance of networks and can reduce the number of parameters 
and FLOPs. It is well known that the role of the convolutional layer is to extract different 
features in the input. The role of the pooling layer is to remove redundant information 
after the convolution operation. The redundant information is the result of performing 
convolution at positions where there is no specific shape in the image. The feature pool-
ing method that we proposed in this paper can further compress the features obtained 
after the pooling layer and does not affect the expression of the network. We will explain 
why feature pooling can work well. 

Although the features extracted by the pooling layer, such as max pooling, have 
been compressed, the features represented by each feature map are still sparse. The fea-
ture pooling-method can fuse multiple features from different feature maps into one fea-
ture map. Therefore, employing the feature pooling method will not reduce the diversity 
of features extracted by networks but will reduce the number of parameters and FLOPs 
of networks. In other words, feature pooling can remove the useless features and achieve 
a more compact representation of features. 

5. CONCLUSIONS 

This paper focuses on the problem of feature compression in deep CNNs. We pro-
posed a pooling method called feature pooling to compress features extracted by deep 
CNNs. This method calculates by spatially selecting a maximum or minimum value at 
each local location (i, j) with a stride of s from the channel below the feature maps and 
then reconstructs feature maps sent to a high-level layer. 

We tested the method on two computer vision tasks: image classification and image 
denoising. Each task had a distinguished network architecture and used several bench-
marks. Our models achieved inspiring results on both tasks, especially for the image de-
noising task, which achieved state-of-the-art results to our best knowledge. For the image 
classification task, we also achieved results that are competitive with the best results of 
other methods at present. This outcome demonstrates that not all features extracted by 
deep CNNs are useful; additionally, it shows that feature pooling is an effective and ge-
neric approach to help improve the performance of deep CNNs to address computer vi-
sion tasks, and it has wide applicability. 

Moreover, feature pooling has several other advantages: first, it strengthens the un-
derlying data, which speeds up the convergence process in training; second, it decreases 
the number of feature maps and makes the network more compact so that parameters are 
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reduced and computation resources are saved; finally, it reduces the redundant features, 
which enables a more accurate model to be trained, as we originally expected. 

We advanced the idea of conducting feature compression in deep CNNs and ex-
pected it to choose “useful” features for extraction while discarding “useless” ones to 
increase the accuracy of the model. However, the feature pooling method we proposed is 
merely a tentative attempt. How to design better feature compression methods in deep 
CNNs and how to visually define a feature as “useful” or “useless” are facets of our on-
going work. This research will require further analysis and verification, a task that we 
share with the whole community. 
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