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Seed optimization has been successfully tested on many games such as Go, Domi-

neering, Breakthrough, among others. Fixed seeds can outperform random seeds by select-
ing locally optimal seeds as different playing policies. In this article seed optimization has 
been tested for the Draughts program Scan. We provide a framework which can optimize 
a draughts program for competition. It does not affect the original program structure, so it 
improves the strength with no modifying algorithm and no penalty when executing. With 
the new Best Promise Seed framework, the win rate can be improved by replacing the 
random seeds with some pretested locally optimal seeds. The optimized program won the 
championship in the Computer Olympiad in 2015 and 2016. It shows that self learning 
methodology improves the strength of Scan against other competing programs. In addition, 
better locally optimal seed(s) may be discovered with a longer learning time, so further 
strength improvement is possible. All current draughts programs and other different game 
programs might gain benefit from this framework.     
 
Keywords: draughts, seed optimization, BestSeed, policy optimization, machine learning 
 
 

1. INTRODUCTION 
 

Computer international draughts is a popular game in the Computer Olympiad; there 
are many draughts programs competing each year. The program Scan with the seed opti-
mization strategy won the championship in the Computer Olympiad in 2015 (12 programs) 
and 2016 (10 programs). Computer Olympiad is the most important computer game tour-
nament in the world. Scan achieves a level of play competitive with that of human profes-
sionals. This paper implements the Best Promise Seed framework which learns by self-
play games. As a result, 34 Elo points are gained, which is a big success since the program 
already was able to play at a strength similar to that of human champions. The training 
started two months before the 2015 ICGA Computer Olympiad. This research is the first 
result showing improvements in competitive play to show that seed optimization can, by 
self-play, further improve a program strategy that is already state of the art. Also, the learn-
ing improves the win rate against other programs. 

Random numbers are often used in board game programs. As a result, the program 
may not produce the same move in the same situation every time. Some moves may be 
better than others. For example, Scan uses random numbers to generate hash keys used in 
a transposition table, and it affects how a move is chosen. The BestSeed [1] method con-
siders that “fixed suboptimal” seeds can play good moves. However, it is impossible to 
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find the best seed(s) in an infinite space. Seed optimization refers to finding locally optimal 
seed(s) in a finite seed space and using them in place of random seeds. The performance 
after seed optimization plays at least equal to or better than playing with random seeds (by 
cross-validation and the central limit theorem). This research applies the enhanced Best-
Seed method to the game of draughts and shares the positive results. The fixed seed meth-
ods have outperformed the random seeds in many experiences [1-5]. Similarly, seed opti-
mization is a method to evaluate seeds’ performance by constructing a self-play matrix and 
then confirming that it is locally optimal by cross-validating. If no locally optimal seed is 
found, a larger self-play matrix can be built and verified. Finally, select the locally optimal 
seed(s) to replace the random seed(s). On the other hand, using fixed seed(s) to optimize a 
program is similar to constructing an opening book. It can be confirmed that this opening 
book plays better than random playing, but since the number of games required for confir-
mation is unknown, scalability becomes a practical bottleneck. 

This paper contains five noteworthy innovations. First, our best promise seed frame-
work improves the game performance more than did the previous BestSeed method. Sec-
ond, we show that our framework succeeded in a real world application. In the 2015 and 
2016 Computer Olympiad it never lost any game to the other competing programs. In ad-
dition, since our framework focuses only on adjusting a single random seed, it does not 
require a major revision of the program. For this reason, it might be efficiently generalized 
to other programs because most programs use at least one random seed to compete with 
different opponents in a game competition. A few tips are given to encourage readers to 
try it in their own programs. Third, this is the first research to optimize an already very 
strong program; always a difficult challenge. It does so without modifying any algorithm, 
and without requiring additional resources. Fourth, our framework is practical because it 
can scale up in a distribution system more easily than other methods. Fifth, on the basis of 
4 million games, it shows that the game of draughts is slightly biased in favor of the player 
moving second, and the draw rate is very high when two players are equally strong. 

The rest of the paper is divided as follows: Section 2 introduces the latest technology 
of computer draughts, the draughts program Scan and seed optimization. Section 3 shows 
in detail how to tune a program in this framework with the use of a self-play matrix, cross-
validation and the best promise seed selection. Section 4 presents the experimental results. 
Section 5 gives a conclusion. 

2. RELATED WORKS 

2.1 Computer Draughts 
 

Draughts is EXPTIME-complete [6]. International (10×10) draughts cannot be weak- 
ly solved by current technology. Although draughts programs had already appeared by the 
1970s [7], recent ones are still making progress. The current top programs are, in no par-
ticular order: Dragon Draughts by Michel Grimminck [8], Kingsrow International by Ed 
Gilbert [9], and Scan by Fabien Letouzey [10]. Experts generally believe that the best pro-
grams and human champions are of similar strength. The high draw rate (> 90%) might be 
delaying the computer domination that we are witnessing in other games.  

Similarly, to chess engines, draughts programs combine alpha beta search with a fast 
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evaluation function. 
Commonly used enhancements are: Principal Variation Search (PVS), quiescence 

search for captures, transposition tables, history heuristics, forward pruning, and parallel 
search. Furthermore, implementations rely heavily on bitboards for move generation and 
position evaluation. Null move pruning, however, does not work in draughts because it is 
a game of Zugzwang [11]. 

Tactics are ubiquitous in the game, but easily covered by short searches since captures 
[12]. Therefore, the focus is on positional play. Programmers used to spend a lot of time 
translating positional knowledge from strategy books or personal experience into actual 
code. Recently there has been an increased interest in machine learning techniques to im-
prove evaluation. Although convolutional neural networks (CNNs) have good accuracy, 
they are also computationally intensive. The current top programs now all use “patterns” 
[13, 14] which are much faster. 

Most programs include an opening book, which is often constructed automatically 
using best first search variants such as dropout expansion [15, 16]. They also access end-
game table bases built using retrograde analysis [17]. To help com pression, only win/ 
loss/draw information is used during search. All positions with up to six or eight pieces 
(depending on the program) are covered, and some programs have partial information 
(such as “draw or better”) on selected positions with more than eight pieces. 

A good presentation of computer draughts techniques can be found in [18], although 
positional patterns are not covered. Many technical terms are described on [19]. Up to date 
information can be found on the draughts programmers’ forum [20]. 
 
2.2 Scan 
 

Scan is a new program, first released in 2015 but already state of the art. It won the 
Computer Olympiad in 2015 and 2016. Scan is open source and freely available [10]. 

Scan is a traditional game program as described in the previous subsection 2.1. Its 
design is rather close to Othello programs, combining a fast and accurate evaluation with 
heavy forward pruning. The pruning heuristics are a simplified variant of ProbCut [13], 
and late move reductions [21]. More details can be found on the programmers’ forum [22]. 

Scan’s evaluation function is centered around patterns [13, 14]. The board is divided 
into overlapping regions (the patterns) and every possible instance (a configuration) in a 
region gets a score, computed using machine learning. The final evaluation is the sum of 
local scores. 

Scan uses 4×4 patterns (see Fig. 1 for an example). Since only the dark squares are 
used in draughts, each pattern actually covers eight squares. For a given pattern (group of 
squares), the white/empty/black square contents are combined into a base three integer, 
one digit per square, which is used to index an array containing the corresponding score 
[14]. 

The pattern configuration scores were learned as a preprocessing step using logistic 
regression. A large database of self-play games was used as the training set (supervised 
learning). Note that no learning is taking place during game play. The impact of random 
numbers in Scan is on Zobrist hash keys [23], which affect the transposition table. This 
Zobrist hash keys are generated once at the initialization. There are total 201 (2×2×50+1) 
random number generated because there are 2 players, 2 piece types and 50 legal squares. 
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The extra one is to present the current playing color. The transposition table implement- 
tation is the same as all modern programs [20]: There are 64 bits whose first 20 bit is for 
the index and the next 32 bit is for “lock” (states) which is to detect different positions in 
the same index. The remaining stores the depth, score, boundary status and the best move. 
There are 4 buckets in each entry. For the replacement strategies, the one with smallest 
search depth is replaced by the new one. If the depth is the same, older entries are always 
picked when it is available. The time for each entry is increased by one before every new 
search (the game move). 
 

 
Fig. 1. A 4×4 pattern on a draughts board. 

 

2.3 Seeds Optimization 
 

Seed optimization is suitable both for two player games such as Chess and for multi-
player games such as Bridge or Mahjong. It is an offline learning process that treats 
different seeds as different policies. Instead of randomly choosing policies, learning how 
to efficiently implement policies resulted in better performance. There are several different 
policy selection methods such as the BestSeed and Nash Equilibrium (NE) distribution. 
The study [2] showed that choosing policies with an NE probability distribution outper-
forms the random seeds in the game of Go. However, the BestSeed method is superior in 
most cases. The partially observable game Phantom Go [4] has been tested as well. Be-
cause the seed is fixed, the policy remains the same, which is similar to playing a game 
with the same opening moves. However, the games will be different because the opponent 
move is changed in certain depth with constraints as time, search space, random seeds, 
among others. Lately, there are more games such as Bridge, Chess, Havannah, Batoo and 
Variants that have been tested and gained solid improvement [3, 5]. 

Since seeds optimization is successful in many games, how to efficiently reduce ma-
trix density becomes an important issue because constructing a full matrix is computation-
ally intensive. The research [1] provides a method to construct part of the full matrix. The 
rectangular matrix which is constructed comprises a fraction such as 1/10, 2/10, ... of the 
full matrix. The performance of the partial matrix in the games of Domineering, AtariGo 
and Breakthrough does not degrade too much in comparison to the full matrix, when the 
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size of the partial matrix is big enough. Also, there are Exp3 and Bandit [1] methods to 
construct a partial matrix without sacrificing significant performance. 

However, the above tests are verified with cross-validation exclusively. No test is 
performed against another program. Only in the game of Go, a GNU Go Monte Carlo with 
different seed policies against a traditional GNU Go is tested which is considered as two 
different programs; the one with fixed seeds shows a slightly better win rate. The random 
seeds are used in many parts: Pattern weights, Zobrist hashing and Move selection. In the 
Monte Carlo version, it is used on random simulation additionally. In addition, the Bridge 
program “Wbridge5” [5] won the World Computer Bridge Championship in 2016 with the 
similar BestSeed method. First, it builds a self-play 40 × 40 matrix. Because it is a partial 
information game, each element in this matrix is decided by 64 games. Then, it uses cross-
validation to confirm that there are local optimal seeds. Finally, it plays games uniformly 
selecting from the best k% seeds. Other methods might be used to find the best seeds, but 
most lack parallel scalability. For example, the use of a Genetic algorithm is difficult to 
scale up to thousands of processes in a distribution system. 

3. BEST PROMISE SEED OPTIMIZATION FRAMEWORK 

The major difference between the best promise framework and previous BestSeed 
methods lies in selecting the best seed(s) from multiple overlapping submatrices in a matrix 
instead of the seed(s) with the most winning games in this matrix. The best promise seed 
framework is defined so as to enhance the BestSeed method for a more concrete result. 

There are three steps to implement the best promise seed framework in ap plications: 
self-play matrix, cross-validation and seed selection. First, construct a matrix with your 
application by self-play games which uses the same program but different seeds. Second, 
cross-validate the result in this matrix to ensure that learning makes progress. Finally, se-
lect those seeds that demonstrate the best performance on this program. In practice, for 
playing in a competition with few games, using the best promise framework or the Best-
Seed method is preferred. 
 
3.1 Self-play Matrix 
 

A matrix is built from the result of self-play games with fixed seeds. In this matrix, 
the row is seeds playing first and the column is seeds playing second. This matrix is used 
to find the locally optimal seed(s). 

For example, program A with seed equal to 1 plays first against program A with seed 
equal to 2. If playing first (seed 1) wins, the M [1, 2] is set to 1. If playing second (seed 2) 
wins, the M [1, 2] is set to 0. Similarly, M [2, 9] is set to 1/2 if the game is draw between 
program A with seed equal to 2 playing first and program A with seed equal to 9 playing 
second. The result is set to 1, 1/2, 0 when playing first wins, draws, and loses respectively. 
A matrix of three or more dimensions can be constructed for games of more than two 
players. For partial information games such as Chinese Dark Chess, the result in a matrix 
can be calculated by averaging many different games (different initial boards) with the 
same seed setting.  
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3.2 Cross-validation 
 
The cross validation is to ensure there is at least one locally optimal seed in the current 

matrix. Divide this matrix for training and validating data. If the learning result is greater 
than 50% when validating it, it means playing with the fixed seed(s) outperforms playing 
with the random seed(s) in this matrix. In Algorithm 1, randomly choose i seeds as training 
data until 95% of the matrix size N (i starting from size equal to 2). Then the training 
process begins. There are a total of S samples in each iteration. In each sample, one best 
seed can be calculated. Then this seed is validated with the remaining seeds. If the win rate 
is greater than 50%, it has succeeded. Then, the final win rate for each iteration is the 
average of the win rate of total samples. The sampling size affects the standard deviation. 
In addition, if the win rate increases when the training size increases, the learning is pro-
gressing. 
 
Algorithm 1: Cross-validation 
Require: Matrix M of size N+1, Sample size S 
Ensure: exist array aFirst, aFirstR, aSecond, aSecondR, Matrix MR of size N+1 
 for i = 1 to N do  
  for j = 1 to N do  
   MRij = 1  Mij   
  end for   
 end for 
 for i = 2 to N  95% do 
  ValidateFirstWin = 0, ValidateSecondWin = 0 
  for j = 1 to S do 
   aFirst  randomly choose i numbers from 1 to N 
   aFirstR  {k|1  k  N, k  aFirst}  
   aSecond  randomly choose i numbers from 1 to N 
   aSecondR  {k|1  k  N, k  aSecond}  
   TrainFirstBestSeed  arg max(M[aFirst][aSecond]) 
   TrainSecondBestSeed  arg max(M[aFirst][aSecond]) 
   ValidateFirstWin = ValidateFirstWin + M[TrainFirstBestSecond][aSecondR] 
   ValidateSecondWin = ValidateSecondWin + MR[aFirstR][TrainSecondBestSeed] 
  end for 
  Win Rate = 50%ValidateFirstWin/(Si)+50%ValidateSecondWin/(Si) 
 end for 
 

Table 1. Left is the 5×5 matrix E for playing first and right is the 5×5 matrix ER for 
playing second. 

seed 1 2 3 4 5 
1 1 1/2 0 1 0 
2 1 1/2 0 1 1/2
3 1/2 1/2 0 1 1/2
4 1/2 1/2 0 1 0 
5 0 1/2 0 1 0 

seed 1 2 3 4 5 
1 0 1/2 1 0 0 
2 0 1/2 1 0 1/2 
3 1/2 1/2 1 0 1/2 
4 1/2 1/2 1 0 0 
5 1 1/2 1 0 0 
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For example, suppose there is a matrix E and a matrix ER as in Table 1. The matrix 
E is the result of playing first with seeds 1 to 5; the matrix ER is a complementary matrix 
of E which is helpful for future calculation. The row is seeds of the current player which 
is playing first in the matrix E and playing second in the matrix ER. The column is seeds 
of the opposite player which is playing second in the matrix E and playing first in the 
matrix ER. In this sample, there are two seeds randomly chosen: seed 1 and seed 4 for 
playing first; seed 1 and seed 3 for the playing second. TrainFirstBestSeed can be learned 
by calculating E[1, 1] + E[1, 3] = 1 + 0 and E[4, 1] + E[4, 3] = 1/2 + 0, so the seed 1 is the 
best seed learned for playing first. In the same way, TrainSecondBestSeed is calculated as 
ER[1, 1] + ER[1, 4] = 0 + 0, ER[3, 1] + ER[3, 4] = 1/2 + 0, so the seed 3 is the best seed 
learned for playing second. For validation, calculate the win rate with the trained best seed 
and the seeds that are not in the training data. These results are E[1, 2] + E[1, 4] + E[1, 5] 
= 1/2 + 1 + 1 for playing first and ER[3, 2] + ER[3, 3] + ER[3, 5] = 1/2+1+ 1/2 for playing 
second. Finally, the win rate is 50% ∗ 2.5/3 + 50% ∗ 2/3 = 75%. This learning is an impro-
vement because using this pair of seeds achieves a better win rate than 50%. 
 
3.1 Seeds Selection 

 
If the win rate of cross validation is increasing when the learning size increases, the 

seeds selection can be processed. Otherwise, a larger matrix is required to be constructed 
(go back Subsection 3.1). Since there is at least one locally optimal seed in the matrix, the 
better seed(s) can be used to replace the random seed(s). In previous Best Seed method [1], 
choose the seed(s) which has the most winning games. However, in Algorithm 2, the best 
promise seed selection chooses the seed(s) which has the highest “promise score”. The 
promise score gives a higher value to the seeds in a larger submatrix because the score in 
the larger submatrix is more statistically robust than the one in the smaller submatrix. Here, 
the score is defined as the sum of winning points from the winning games (1 for a win, 1/2 
for a draw, and 0 for a loss). As a result, averaging all the scores from the small to large 
submatrices in the same matrix gives the promise score. To calculate the promise score, 
the sample interval I and top rank K% must be defined. Then, there are N/I square subma-
trices formed by taking the first N/I, N/I ∗ 2, ..., N rows and columns in this matrix. In ith 
submatrix (i = 1, 2, ..., N/I), the best ranked K% of seeds are collected out of the first N/I ∗ 
i seeds. The promise score for each seed is the number of times it was collected divided by 
the times it was considered. Finally, the best promise seed(s) is the seed(s) with the highest 
promise score when playing first and playing second. It is possible that there is more than 
one best promise seed. When this occurs, more tests can be done with certain seeds since 
the number of seeds are greatly reduced. 

 
Algorithm 2: The best promise seed selection 
Require: Matrix M of size N + 1, Sample interval I, Top rank K 
Ensure: exist array PromiseScoreFirst, PromiseScoreSecond, ScoreFirst, ScoreSecond, 
Matrix MR of size N + 1 

for i = 1 to N do 
for j = 1 to N do 

MRij = 1 − Mij 
end for 
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end for 
submatrixNumber  N

I  
for i = 1 to submatrixNumber do 

indexBound  I  i 
indexNumber  {k|1  k  indexBound} 
for j = 1 to indexBound do 

ScoreFirstij = M[j][indexNumber] 
ScoreSecondij = MR[j][indexNumber] 

end for 
end for 
for i = 1 to N do 

PromiseScoreFirsti  0 
PromiseScoreSecondi  0 

end for 
for i = 1 to submatrixNumber do 

indexBound  I  i 
indexNumber  {k|1  k  indexBound} 
indexScore  {k|1  k  ScoreFirst[i][indexNumber]} 
rankSeed  choose the K% highest score seed(s) from indexScore 
for j  rankSeed do 

PromiseScoreFirstj = PromiseScoreFirstj + 1 
end for 
indexScore  {k|1  k  ScoreSecond[i][indexNumber]} 
rankSeed  choose the K% highest score seed(s) from indexScore 
for j  rankSeed do 

PromiseScoreSecondj = PromiseScoreSecondj + 1 
end for 

end for 
for i = 1 to N do 

proportion  1i
IsubmatrixNumber      

PromiseScoreFirsti = iPromiseScoreFirst

proportion
 

PromiseScoreFirsti = iPromiseScoreSecond

proportion
 

end for 
   The best promise seed  arg max(PromiseScoreFirst,PromiseScoreSecond) 

 
To illustrate Algorithm 2, we use a mini example with ten seeds. We construct a 

10×10 matrix M (see Table 2). The sample interval I is set to 5 and top rank K is set to 20. 
Therefore, there is two square submatrices formed by taking the first 5 and 10 rows and 
columns in M. In the 5×5 submatrix. The score of seed 1 is M [1, 1] + M [1, 2] + M [1, 3] 
+ M [1, 4] + M [1, 5] = 3.5, similarly, the score for seed 2, 3, 4, and 5 can be calculated as 
3.0, 2.5, 3.0, 1.5. Because K is 20, the top 20% rank seeds are chosen in each sub-matrix. 
Thus, the best seed in this submatrix is seed 1. Similarly, we calculate the 10×10 submatrix, 
the Top 2 ranked seeds are chosen which are seed 7 whose score is 9.0 and seed 1 whose 
score is 8.0.  
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Table 2. 100 games result of a self-play 10×10 matrix. 
seed 1 2 3 4 5 6 7 8 9 10 

1 1 1/2 0 1 1 1 1 1 1/2 1 
2 1 1/2 0 1 1/2 0 1/2 0 0 0 
3 1/2 1/2 0 1 1/2 1 1 1 1 1 
4 1/2 1/2 0 1 1 0 0 1/2 0 0 
5 0 1/2 0 1/2 1/2 1 1 1 1/2 1/2 
6 1/2 1/2 0 1 1/2 1 1 0 0 1 
7 1 0 1 1 1 1 1 1 1 1 
8 0 1/2 0 1 1/2 1 1 1/2 1 1 
9 0 0 0 0 0 0 1 0 1 1 

10 0 1 0 1 1 1 1/2 1/2 1/2 1 
 

 
Now, we can calculate the promise score of each seed. Since seed 1 was considered 

in two submatrices and was chosen both times, the promise score is 2/2. Seed 7 was con-
sidered once and was selected, so its Promise Score is 1/1. Similarly, we calculate the 
Promise Score when playing second as same as previously. Finally, the best promise seed 
are 1, 7 and 9 whose Promise Score is 1. This selection is efficient, there are only three 
seeds required to be tested instead of ten seeds after the selection. 

For another example, in our experiments, we construct a 2000×2000 matrix. When I 
is set to 100 and K is set to 1, there would be 20 square submatrices formed by taking the 
first 100, 200, ..., 2000 rows and columns in this matrix. In each submatrix, the bestranked 
1% of seeds are collected. In the 100×100 submatrix, the seed with the highest score is 
selected; In the 1000×1000 submatrix, the ten seeds with the highest scores are collected. 
Then we can find PromiseScore by averaging of the overall occurrence frequency for each 
seed in all submatrices and find the best promised seed(s). 

4. EXPERIMENTAL RESULTS 

All the self-play games are computed on INRIA Tompouce Cluster. A matrix is con-
structed using the result of games, the index is the seed number. Each game whose com-
putational resource limits is equal to what the Gigabyte P34 notebook (i74710HQ) is able 
to play in the 2015 ICGA Computer Olympiad draughts tournament time setting which is 
30 minutes for each side. All win rate is tested with the strong opensource draughts pro-
gram Moby Dam [24] as the baseline. Moby Dam is the only other strong open source 
program available currently, the default opening book and the 6piece endgame database 
are used. All tests are run on the same machine (Gigabyte P34) as used in the Computer 
Olympiad. Scan rarely loses to this opponent (< 0.01%), so most results are wins or draws. 
Each test is composed of 2000 games as half playing first and half playing second; the 
standard error is around 1.118%. 

In Subsection 4.1, we compare the different seed methods with the self-play 300×300 
matrix used in the 2015 Computer Olympiad. In Subsection 4.2, When the time setting is 
decreased, the selected seeds might not result in as much improvement. In Subsection 4.3, 
we compare the performance of different seed methods in a larger self-play 2000×2000 
matrix. We use the result of cross validation to show the effect of increasing the matrix 
size. Then, we describe how to select the seeds with BestSeed and the best promise seed 
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methods. Finally, we test the performance among BestSeed, the best promise seed and the 
random seeds. In Subsection 4.4, since there are so many games, a statistical analysis will 
be presented. 
 
4.1 Best Promise Seed Method Performance Against Other Seed Methods 
 

In the 2015 and 2016 Computer Olympiads, we find seed 12 of the best promise seed 
framework based on the self-play 300×300 matrix available at that time. After constructing 
the matrix, we use cross validation to test the effect. Fig. 2 shows that the win rate rises 
when the matrix size increases. There exist some local optimal seeds.  
 

 
Fig. 2. Result of cross validation of the 300×300 matrix. The sample size (S) is set to 10000, so the 
standard deviation is small 
 

In Table 3, the seed 12 and seed 178 are selected as the best promise seeds because 
their promise scores are 1 (3/3 and 2/2) when I is set to 100 and K is set to 1. We choose 
seed 12 to play in the tournament. In comparison, BestSeed method chooses the seed(s) 
that has the most winning games, which is seed 12 for playing first and seed 178 for playing 
second. 

 
Table 3. Table of the result of top 1% Seeds when the interval is set to 100 at a self-play 
300×300 matrix.  

 3 2 1   
1 12 44 12 288 3 
2 241 12 57 249 2 
3 240 59 178 178 1 
  1 2 3  

In the upper left triangle, the row is the rank of winning scores and the column is the interval number. Seed 12 is 
at row 1 and column 1 which indicates the highest score in the 100×100 submatrix. Also, it is at row 2 and column 
2 which indicates the second highest score in the 200×200 submatrix. 
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Table 4. Winning rate of different seed methods against Moby Dam. Each test is composed of 
2000 games as half playing first and half playing second; the standard error is around 1.118%. 

Methods Winning Rate
Best promised seed 60.8%

BestSeed 59.3%
Random seeds 55.95%

 

In Table 4, the best promise seed method performs slightly better than Best Seed 
method. Both fixed seed methods perform better than using random seeds. 
 
4.2 Different Time Setting 
 

The seed optimization is specific for a fixed time setting. The result of using Scan 
with the seed equal to 12 in the tournament time setting (20 minutes) is statistically better 
than random seeds (See Table 5); the time setting is less than 30 minutes because operators 
must play on a real board and use a clock in the tournament. However, others are slightly 
better but under two standard deviations in the 95% confidence interval. 
 
Table 5. Result of different time settings. Each test is composed of 2000 games as half play- 
ing first and half playing second; the standard error is around 1.118%. 

Time setting(minutes) 20 10 5 1 
Seed 12 60.8 59.4% 61.64% 68.49% 
Random 55.95% 57.2% 59.5% 66.3% 

 

4.3 The Effect of Increasing the Matrix Size 

After the Computer Olympiad, a larger self-play matrix is constructed. We use cross 
validation to test the effect when increasing the matrix size. After constructing the 2000× 
2000 matrix, the cross validation win rate grows slowly. Even though the draw rate is so 
high, the cross validation confirms that increasing the matrix size works. Fig. 3 shows that 
the win rate rises when the matrix size increases in the 2000×2000 matrix. 
 

 
Fig. 3. Result of cross validation of the 2000×2000 matrix. The sample size (S) is set to 10000, so 
the standard deviation is small. 
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Table 6 describes those seeds with the highest scores found when the interval is set to 
100 (I = 100) and the top rank is set to 1% (K = 1) in the 2000×2000 matrix. The upper left 
triangle is the playing first matrix, and the lower right triangle is the playing second matrix. 
The column indices refer to the interval numbers. For example, the index 17 refers to the 
1700×1700 submatrix. The bold text means the rank of the seeds. For example, seed 826 
is the top 2 scoring seed when playing first in the 1900×1900 submatrix and seed 775 is 
the top 8 scoring seed when playing second in the 900×900 submatrix. 

Using the BestSeed method, seed 826 at the top left corner and seed 1924 at the bot-
tom right corner are selected because they are both seeds with the highest winning scores. 
On the other hand, with the best promise seed method, those top 1% score seeds in each 
submatrix are identified as good seeds. There are a total of 16 seeds (178, 314, 412, 456, 
664, 909, 924, 1082, 1173, 1269, 1296, 1376, 1425, 1440, 1924, 1938) whose promise 
scores are 1. However, seed 826 is not selected because it does not appear in the 900×900, 
1000×1000, …, 1500×1500 submatrices. It does not perform well against smaller seeds. 

Table 7 shows the win rate of the seeds selected by the best promise seed method. 
Each seed is different for playing first and playing second. For the best promise seeds, only 
16 seeds are required to be verified which reduces the searching space enormously com-
pared to checking seeds from 1 to 2000 for 2000 games each. 
 

Table 6. Table of the result of top 1% Seeds when the interval is set to 100. In the upper 
left triangle, the lower row is the rank of winning scores and the column is the interval 
number. 

Seed 178 314 412 456 664 909 924 1082 
First 59.2% 59.3% 57.0% 61.4% 57.1% 56.9% 56.7% 54.9% 

Second 56.4% 60.5% 60.5% 55.4% 59.2% 60.6% 59.0% 58.8% 
 
Table 7. Table of the win rate against Moby Dam. Each test is composed of 2000 games as 
half playing first and half playing second; the standard error is around 1.118%. 

Seed 1173 1269 1296 1376 1425 1440 1924 1938 
First 58.9% 58.7% 57.5% 55.3% 55.3% 55.2% 54.8% 57.6% 

Second 60.8% 56.7% 59.5% 55.2% 61.3% 59.3% 63.1% 61.0% 
 

Table 8. Winning rate of different seed methods against Moby Dam. Each test is composed 
of 2000 games as half playing first and half playing second; the standard error is around 
1.118%. 

Methods Winning Rate
Best promised seed 62.25%

BestSeed 59.85%
Random seeds 55.95%

 

Table 8 shows that both fixed seed methods perform better than using random seeds. 
With the best promise seed method, selecting seed 456 as playing first and seed 1924 as 
playing second achieves a 62.25% win rate. With BestSeed method, selecting seed 826 as 
playing first and seed 1924 as playing second results in a 59.85% win rate. Both methods 
have better win rate than 55.95% with random seeds. 
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4.4 Draw Rate and Playing Second Benefit 
 

Table 9 shows that in draughts the draw rate is very high especially when two pro-
grams are close. These games are played with fixed seeds. For example, Scan with seed 1 
plays against Scan with seed 100 in the same 2015 Computer Olympiad time setting. The 
seed is set from 1 to 2000 for each side, so there are 4 million games played. It seems that 
playing second gains some benefit. 
 

Table 9. Table of the result of 4 million scan self-play games with seeds 1 to 2000. 
 

 

5. CONCLUSION 

This is the first real world case showing that fixed seeds can tune a strong program to 
become better. This framework can be constructed by self-play. Also, it improves the over-
all strength against another program which was not used during training. This framework 
does not affect the original program structure, so it improves the strength with no penalty 
when executing. However, the matrix construction is computationally intensive. How to 
reduce the size of the matrix element without decreasing performance remains an interest-
ing research topic. 

In the future, we will test the existing 2000×2000 matrix with the partial matrix, Exp3 
and Bandit methods to check the trade off between density and performance. Also, there 
are more real world applications tested such as games of Chess and Chinese Dark Chess 
(partial information). 
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