
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 387-421 (2020)
DOI: 10.6688/JISE.202003_36(2).0016

387

Received September 6, 2017; revised August 16 & November 1, 2018; accepted March 12, 2019.
Communicated by Xiaohong Jiang.

Enhancing Architecture-level Security of SoC Designs via
the Distributed Security IPs Deployment Methodology

ZHAO HUANG AND QUAN WANG

School of Computer Science and Technology
Xidian University

Xi’an, 710071 P.R. China
E-mail: zhhuang@stu.xidian.edu.cn; qwang@xidian.edu.cn

The vulnerability of modern System-on-Chip (SoC) eco-industrial chain model has

incurred a variety of rogue entities, such as hardware Trojans, participating in all stages
of current SoC design-fabrication processes, resulting in serious security risks. To effec-
tively address the security issues, design-for-security (DfS) technology, e.g., incorporat-
ing dedicated on-chip security assurance to facilitate the verification, test, and validation
of SoCs, has become the essential strategies in design-time considerations. However, ex-
isting DfS measures are targeted at intellectual property (IP) core-level security threats
and require specific design modifications to eliminate the dependencies of IP types. In
particular, the heterogeneous characteristics of current SoCs and functional diversity of
IP types make many IP core-level DfS solutions difficult to adapt or scale to the system
level. Moreover, current DfS mechanisms act only at certain stages and thus fail to pro-
vide process-wide defense. In this paper, we propose a novel, robust security architecture
(MSIPS) to enhance the security of SoCs during the test time and runtime. Unlike exist-
ing solutions for the IP core-level problems, our MSIPS also considers the architec-
ture-level security threats and exploits a distributed security IPs deployment strategy to
ensure trusted SoC operations with untrusted IPs. In particular, we realize fine-grained
IP-protection aware security policies in MSIPS to defend against: (1) hardware Trojan
attacks with multi-parameters side-channel analysis primitive; (2) SoC or hardware IP
thefts with physically unclonable function (PUF) primitive; and (3) abnormal behavior
monitoring and verification with anomaly security auditing primitive. We have imple-
mented this framework on an FPGA platform. Experimental results demonstrate the ef-
fectiveness of the proposed approach for providing system protection against diverse at-
tacks. As centralized low-overhead on-chip modules, security IPs reside outside the func-
tional IPs and have the features of flexibility, scalability, and diversity.

Keywords: system-on-chip, design-for-security, security IPs, distributed deployment, hard-
ware trojan detection, IP theft defense, anomaly monitoring

1. INTRODUCTION

The highly-globalized trend of modern System-on-Chip (SoC) design and fabrica-
tion supply chain has involved a large number of geographically dispersed participants,
such as intellectual property (IP) vendor, system design and integration house, the
foundry, and product suppliers, coordinating into the development of electronic devices
[1, 2]. However, this distributed nature of current SoC design-fabrication processes has
raised a corresponding increased concern about the security and trustworthiness of SoC
hardware. This is primarily due to the fact that traditional formal post-manufacturing
detection techniques alone are inadequate to detect them completely. Fig. 1 displays di-

ZHAO HUANG AND QUAN WANG

388

verse hardware security issues at different stages of SoC development and deployment
cycle [3]. Such hardware-based vulnerabilities might be exploited by any player to
launch malicious alterations or surreptitiously compromise the reliability and integrity at
some point of this complex ecosystem [2, 4]. In particular, they can potentially incur
serious consequences even in the area of mission-critical applications spanning the do-
mains of communications, space, military and nuclear facilities [5, 6].

IP Tool ModelStd. cells

-IP Piracy
-H/W Trojan

-IP Piracy
-H/W Trojan

-Reverse Eng.
-Side-channel attack

-Scan attack
-Fault attack

Design Fab. TestSpec. Deployment

Trusted

Either

Untrusted

 Threats

Fig. 1. Security threats at different stages of SoC development and deployment cycle [3].

Typical hardware-based threats that are currently being focused include hardware
Trojans, IP thefts, and physical attacks [3, 7-9]. In order to protect SoC hardware against
these threats, researchers have directed the design-time considerations as an effective
mechanism to prevent or facilitate verification (or recovery) in the case of an attack. For
hardware Trojan attacks, security assistance modules, such as multiplexer units [10] and
on-chip sensors [11], have been presented as effective design-for-security (DfS) ap-
proaches to increase the activity of rare nodes/nets, facilitate Trojan detection or prevent
implantation or activation of a Trojan instance. For hardware IP thefts, passive or active
hardware protection could be achieved by utilizing the techniques like obfuscation de-
sign [12] and physically unclonable function (PUF) [13, 14]. Similarly, diverse mitiga-
tion measures have been proposed to prevent the physical attacks such as side-channel
attacks [15] and scan-based attacks [16]. These solutions collectively illustrate the appli-
cable of DfS approaches in addressing hardware-based security issues.

However, with the increase of chip integration, SoC designs become more complex,
functionally interdependent, and thus incorporating or scaling these DfS mechanisms
into SoC designs will encounter the following challenges: (1) these solutions are typi-
cally targeted at IP core-level threats and might be insufficient to resist architecture-level
issues; (2) the heterogeneous characteristic of modern SoC designs makes it difficult to
implement and need to be specifically modified so as to implant or integrate the DfS
schemes into an SoC design. This, however, may incur extra overhead and also affect
other IPs in the SoC designs; (3) multiple DfS approaches should be incorporated to-
gether to address various attacks for a certain type of IPs, which, in turn, may incur de-
sign or test conflicts; (4) there are many functional-difference IP cores in the SoC de-
signs, it is difficult to achieve comprehensive protections by solely relying on some cer-
tain DfS mechanisms. In particular, the prevalent use of third-party (3P) IPs has also
exacerbated the difficulty of incorporating DfS features to provide system-level protec-
tion. Considering the above situation, it is critical and challenging to ensure the security
of modern SoCs at the architecture level.

In this paper, we propose a Multi-tiered Security IPs architecture, referred to as
MSIPS, to provide protections for SoCs. Our idea is expanded on the basis of [1, 3]. Ra-

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 389

ther than depending on IP core-level features, our solution can address the SoC threats
from a perspective of the architecture level. MSIPS is established on a variety of security
IPs deployed through distributed strategies and can comprehensively defend against di-
verse attacks. In particular, security IP acts as a plug-and-play IP and serves as a security
defense module, like the firewall in Cyber Defense System. It can not only effectively
protect SoC hardware against IP core-level threats by preventing attacks or facilitating
detection/recovery during manufacturing test, but also discover and handle the potential
security risks and anomalies from the architecture level of SoC systems during runtime.
We have shown how to design the security IP and associated security policies in this
paper. Furthermore, we use three major attack models to validate its performance after
integrating different security primitives in MSIPS. With minimal modifications and less
overhead, MSIPS can provide comprehensive security protection for SoC designs. In
particular, the major contributions of this paper are as follows:

(1) This paper proposes, for the first time to our knowledge, a security architecture based

on the distributed deployment of multiple on-chip security IPs. Our method is spe-
cifically considered at design time and can provide fine-grained IP-protection for
SoCs against various hardware-based threats during test time and run time.

(2) With security IPs integrated, it describes the low-overhead, general wrapper interfac-
es connecting the functional IPs and MSIPS. Such wrappers can eliminate the heter-
ogeneous impacts of SoCs. In particular, the IP cores in SoC need appropriate design
modification for interfacing with MSIPS architecture.

(3) Considering three dominant threat models, i.e. hardware Trojan, IP theft, and archi-
tecture-level abnormal event or behavior, it studies the design requirements of secu-
rity policies and the general process for protection against these threats.

(4) Experimental results are presented to demonstrate the functionality of MSIPS, as well
as its capability and effectiveness in achieving the security demands of SoC against
the threats considered.

The remainder of the paper is organized as follows: In Section 2 we provide the re-

lated work on architecture-level protection for SoC designs. Section 3 presents the de-
signs of security policies, followed by the implementation of MSIPS in Section 4. Sec-
tion 5 provides the implementations of security policies. Simulation steps and experi-
mental results are described in Section 6. Section 7 discusses the functional flexibility,
scalability, security, and execution time analysis of the proposed MSIPS. Finally, we
conclude this paper in Section 8.

2. RELATED WORKS

In order to achieve the security requirements of the architecture level, some excel-
lent work has been carried out in recent years. Current DfS solutions in this aspect
mainly incorporate dedicated on-chip modules into the SoC designs so as to enhance the
security and trustworthiness of SoC systems. Such modules are usually programmable or
reconfigurable. The demand for dedicated on-chip security modules to facilitate the veri-
fication, test, and validation is rising now due to the increasing complexity of modern

ZHAO HUANG AND QUAN WANG

390

SoCs [3]. According to the on-chip modules utilized, existing DfS schemes can be
roughly classified into three categories: namely on-chip classifiers, dedicated security IPs,
and design-for-debug (DfD) features.

(1) On-chip Classifiers: research advances on this aspect primarily exploit the incorpo-
rated on-chip classifiers to implement the hardware Trojan detection during the deploy-
ment or application stage of integrated circuits (ICs). For example, Jin et al. proposed a
general security architecture for wireless cryptographic ICs [17, 18]. It was built on an
on-chip neural-network classifier and can discover the inserted hardware Trojans during
runtime. However, such approach is only a trust evaluation solution and fails to eliminate
the impact created by the Trojan instances embedded. Guha et al. presented an intelligent
architecture for crypto SoCs [19]. It was established on an on-chip adaptive resonance
theory neural-network classifier and can resist the confidential-compromised type hard-
ware Trojan attacks at runtime. However, this solution can only cope with the hardware
Trojans which will incur the leakage of sensitive information. On-chip classifiers based
security architecture is typically targeted at the IP core-level Trojans. It’s Trojan-resis-
tant and aims to complete hardware Trojan detection separately. When it comes to other
security threats, these schemes may not be enough.

(2) Dedicated Security IPs: dedicated security IPs based security architecture mainly
focuses on providing system-level protection for SoCs with untrusted IPs so as to defend
against diverse security threats. It is developed based on the design-for-test (DFT) policy
and now becoming the major research hotspot. For example, Wang et al. proposed an
infrastructure IP for SoC security architecture, referred to as IIPS [3], which can elimi-
nate the heterogeneous impacts of current SoCs. However, IIPS is limited to preventing
low-level hardware security vulnerabilities [20]. Basak et al. expanded the IIPS and pre-
sented a novel SoC security architecture [2, 20]. It implemented a fine-grained IP-trust
aware security policy for runtime monitoring. While Kim et al. introduced a dynamic
function verification (DFV) IP blocks based architecture and can complete the dynamic
functions monitoring and hardware Trojan detection at runtime [21]. However, the extra
logic for online monitoring will incur the extra area and power overhead of the SoC de-
signs. Dedicated security IPs based security architecture can significantly enhance the
security and trustworthiness of SoC designs. However, it requires each functional IP core
in SoC designs to be specifically modified at design time, i.e. augmented with a custom-
ized wrapper. Unfortunately, such situation will raise the complexity, defect rate, and test
time or cost of the SoC designs, especially for those contain a large number of IP cores.

(3) DfD Features: In order to reduce the hardware overhead introduced by using the
wrapper interfaces, architects attempt to establish the security architectures by recon-
structing the infrastructures already available on the chip. Among them, DfD instrumen-
tation is the most widely used one for the reason that it exists in almost all IPs and is of-
ten utilized to facilitate the post-silicon validation [22]. There have been some research
in this respect. For instance, Basak et al. proposed a security architecture which exploits
DfD features for system-level trusted validation [23]. It not only contributes to improv-
ing test coverage, but also achieving on-field update of security policies. However, such
technique is only a trusted evaluation scheme and the security of the SoC designs relies

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 391

on the validation functions exploited. In addition, DfD is likewise a double-edged sword.
It can in turn be utilized by an adversary (or attacker) to reveal internal information.

In general, current DfS mechanisms are primarily handling the architecture-level or

IP core-level threats separately at runtime. Thus, they cannot provide process-wide pro-
tections for modern SoCs. Moreover, existing DfS solutions mainly consider incorporat-
ing dedicated security IPs as the most frequently used on-chip features into the SoCs
because of their flexibility and programmability to withstand diverse security threats.
However, such centralized control engines would be restricted by the various security
policies they imposed. And they might have not yet considered the type-differences of
functional IPs. So it is inappropriate and difficult to integrate all security policies in a
single security IP. In particular, most of them may regard the security factors as accesso-
ries, rather than the necessaries. To this end, we suggest that dedicated security modules
should be built at the very beginning of the SoC designs, be implanted at design time,
and provide protection across the entire lifecycle. For type-differences of functional IPs,
we also present to build corresponding security blocks and deploy them distributedly,
based on which, our security architecture is obtained. And this is the motivation and ob-
jective of our work.

3. DESIGN OF SOC SECURITY POLICIES

This section describes the threats model and the defense measures involved in the
MSIPS. Among them, Section 3.1 gives a brief description of the architecture-level secu-
rity issues caused by 3PIPs and highlights the specific examples considered in this paper.
The corresponding defense policies and security primitives are outlined in Section 3.2.

3.1 Architecture-Level Security Threats Model

Modern SoC designs utilize a large number of 3PIPs to complete the overall system
integration, many of which are acquired from untrusted third-party design houses or
vendors [20]. Such situation has created opportunities for an adversary to malicious
compromise the trustworthiness of the fabricated hardware [24]. In addition to IP core-
level security threats, e.g. hardware Trojans, IP theft, etc., some existing and emerging
threats are also beginning to threaten the security and reliability of SoC designs from the
architecture level [3, 5]. Among them, representative examples are currently being con-
sidered in an SoC design include IP core-level hardware Trojan attacks, IP theft, archi-
tecture-level event or behavior, and so forth [2].

(A) IP Core-Level Hardware Trojan Attacks

Hardware Trojan is the primary security threat in current SoCs or IPs [3, 5]. It can
perform an attack independently or in cooperating with software. Furthermore, it can
bypass the software defense to incur executions failure, information leakage, perfor-
mance degradation, and even physical destruction while users may know nothing about
that [5]. Due to the stealthy nature of hardware Trojans and practically infinite Trojan
space, it is difficult to detect them by traditional formal verification and test [6, 8]. In
particular, with the increasing complexity and integration of modern SoCs, hardware

ZHAO HUANG AND QUAN WANG

392

Trojan is now expanding from IP core-level to architecture-level. Architecture-level
hardware Trojans are different from the IP core-level ones, whose features are more
manifested in the event granularity or behavioral level. For example, rogue elements in a
3PIP core can impact the overall system functions, not just IP core itself [23]. Table 1
highlights the distinction between them in details. Here we specifically consider the IP
core-level Trojans and arrange the architecture-level Trojans into architecture-level event
or behavior item. Because an architecture-level hardware Trojan can typically influence
more about the system level behavior and the activities of other IPs at runtime [2].

Table 1. The distinction between IP core-level and architecture-level trojans.

IP core-level hardware Trojans Architecture-level hardware Trojans

Feasibility and impact analysis of
Trojans in IP modules or processor unit

Impact analysis of IP core-level
Trojan on SoC or system

Utilize static IP trust verification
for hardware Trojan detection

Potentially suspicious IP behavior detection
that affects SoC or system at runtime

No error correction or recovery mechanisms
when perform runtime methods

Fine-grained IP-protection security policies
and appropriate assert-aware security controls

(B) IP Theft attacks
The theft attack to the functional IPs of an SoC, such as reverse engineering, crack-

ing, counterfeiting, and overbuilding, has become another threat to the SoC hardware [5],
[14]. A malicious attacker or foundry with access to IPs may illegally steal and claim the
ownership of IPs, or build more than the required number of them without the know-
ledge and consent of the designers and sell the excess IPs in the gray market [24, 25].
This is called IP thefts. It is noted that the global electronic piracy market is growing
rapidly and is now estimated to be $1B/day, of which a significant part is related to
hardware IP theft [26]. The counterfeit IPs seriously affect the security of various elec-
tronic systems.

(C) Architecture-level Event or Behavior threats

Architecture-level hardware Trojans in untrusted IPs may corrupt the confidentiality
and integrity of a SoC design. They could illegally intercept, tamper, and reveal the sen-
sitive information of other IPs or SoCs. For instance, they may maliciously forward
messages originally sent to IP A to IP B [27]. Moreover, they can also disguise them-
selves as some other blocks and send spurious communications or access to other IPs. In
addition, the firmware in some IP cores may also cause them to perform unexpected op-
erations [28]. What’s more, the debug interfaces could be utilized to viciously update
inauthentic firmware and sniff the sensitive information or information flow inside a SoC
[29].

3.2 Mitigation Strategies

To effectively address these security problems, various defense measures have been
developed in academia and industries to ensure trusted operations with untrusted com-

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 393

ponents [26, 30]. These countermeasures mainly encompass fingerprinting, hardware
Trojan detection, and certain analytic methods derived from the structural or activation
characteristics of SoCs, which can be utilized to defend against various hardware threats
and enhance the security of SoCs or IPs. In addition, recovery from abnormal states (or
error correction) is another consideration to ensure the security and reliability of SoC.

(A) For IP core-level hardware trojan attacks.

Reverse anatomy based hardware Trojan detection has been considered to be the
most effective method, but it’s an invasive mechanism and the test overhead is unaf-
fordable [24, 30]. Non-invasive techniques such as logic testing and side-channel analy-
sis have been proposed as effective solutions to address the hardware Trojan problems.
Logic testing uses the specially designed test vectors to activate hardware Trojans and
compares the output with the truth table. Any difference will indicate the presence of a
hardware Trojan. On the other hand, side-channel analysis takes advantage of the circuit
parameters such as power consumption and path delay to identify the Trojan circuits [8,
31-33]. Here we force on the combination of the latter two methods integrated in MSIPS
due to the following reasons. First, logic testing based method is conducive to detecting
the explicit or small Trojan, but it fails to detect large scale Trojan instances. While
side-channel analysis based method is propitious to discover the implicit or large Trojans,
but it’s susceptible to process variation and system noise [31, 34, 35]. They can comple-
ment each other. Second, on-chip monitoring module such as security monitors (SM)
makes the collection of power consumption information possible [8, 36].

(B) For IP theft attacks.

Various mitigation strategies, such as watermarking, fingerprint, obfuscation design,
IP metering, split manufacturing, have been proposed to address IP theft threats [14, 24,
25]. Among them, device fingerprint has been considered as an effective approach to
preventing IP theft attacks. By assigning each legally manufactured SoC or functional IP
with a unique identification (ID), called integrated circuit (IC) fingerprints, and register-
ing it in a trusted database, consumers can validate each chip before they use it and thus
the illegitimate ones cannot be activated and deployed [3, 37]. However, they could still
suffer from the threats of cloning or counterfeiting [38, 39]. An adversary may reveal the
stored device ID by invasive or non-invasive methods, and program the cloned devices
with the same ID [3, 14]. They will deceive the users and enter into the IC supply chain
ultimately. In the content of MSIPS, one measure to solve this problem is to assign each
device a unique and unclonable ID and register it in a trusted database, so as to verify the
uniqueness of it.

PUF based method has been adapted as a reliable technique to enhance the security.
It exploits the uniqueness of inter-device process variations in circuit parameters, such as
path delay and frequency, to generate unique and unclonable device signatures [3, 40,
41]. Furthermore, due to the low silicon overhead and configurable nature of the current
PUF, as well as the features of easy to integrate and implement, the signature generation
and extraction achieve the requirements of standard SoC-level testing process. According
to these reasons, configurable ring oscillator based PUF (CRO-PUF) described in [50]
is employed here.

ZHAO HUANG AND QUAN WANG

394

(C) For Architecture-level Event or Behavior Threats
Existing static security verification methods cannot adequately monitor or verify the

systematic event or behavior of SoCs during runtime, nor completing a good recovery or
fault tolerance mechanism. Therefore, we need to exploit a novel, effective technique to
alleviate this situation. Access control model has been considered as an effective method
to guarantee the security of information systems [42]. It can be sufficient to prevent un-
authorized users or systems from accessing the resources and prevent legal users or sys-
tems from accessing unauthorized resources [43-45]. In particular, authorization and
audit strategies are the main advantages of access control.

Among the current access control models, the principle of role-based access control
(RBAC) technique can be adopted in MSIPS for the following reasons. First, RBAC can
assign specific permissions to different IPs [46]. Based on this, a trusted matrix table can
be formed inside the security IPs so as to constrain the resource access privilege of the
functional IPs. Second, the user, role, permission, and resource in MSIPS are limited and
simple. Therefore, it can overcome the drawbacks of RBAC used in information systems
such as computer, network, server, etc., [47, 48]. In particular, auditing strategy of the
RBAC model is consistent with the on-field trusted evaluation function of the architec-
ture-level event or behavior at runtime. Thus, we primarily exploit the auditing idea of
RBAC to construct the security policies for architecture-level event or behavior verifica-
tion and monitoring. As far as our knowledge is concerned, this is the first time that the
auditing idea of an access control model is applied to achieve architecture-level security
of SoCs at runtime.

4. MSIPS: SECURITY POLICY IMPLEMENTATION ARCHITECTURE

In this section, Section 4.1 provides a description of the proposed MSIPS architec-
ture. And then, a general security threats handling process is introduced in Section 4.2.

4.1 Overview of MSIPS

The security architecture we proposed in this article is built on a series of dedicated,

policy-implemented IP blocks called security IPs. These security IPs have been devel-
oped and achieved in our preliminary work [1]. Note that previous work focused only on
IP core-level Trojan threats, regardless of architecture-level abnormal events or behav-
iors caused by internal or external attacks. Below we will briefly describe the MSIPS
architecture and highlights its advantages in the content of architecture-level event or
behavior detection and verification. Following sections will introduce the security poli-
cies extension of MSIPS for PUF based signature generation against IP thefts, system
level abnormal behavior verification and monitoring.

MSIPS contains many different kinds of IPs, e.g. security IPs and functional IPs.
These functional different IP blocks could be assigned into different tiers at design time
according to the services they provide. The “tier” here is a logical partitioning. The secu-
rity feature of MSIPS is reflected on the various security policies the security IPs per-
form. MSIPS architecture is specially established on the basis of these dedicated security
IPs which are deployed through the distributed strategies and connected to specific func-

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 395

tional IPs through the security interface wrappers (or routing nodes) for individual IPs.
Security wrapper interfaces are extended on existing debug/test wrappers and can ab-
stract the internal implementation of individual IPs so as to eliminate the effects of het-
erogeneity. In particular, the security IPs focus on completing the security requirements
of the MSIPS, while the functional IPs are devoted to achieving the functional demands
of applications.

Table 2. The different tiers of MSIPS architecture in a generic SoC.
System tiers IP types Security policies

System tier Main security IP
Architecture-level security policies like abnormal

event or behavior monitoring and verification

Component tier Sub security IPs
IP core-level security policies like hardware
Trojan detection and signature generation

Functional tier Functional IPs
Corresponding functional implementations

according to the practical requirement

Sy
st
e
m

B
o
u
n
d
a
ry

DebugJTAG

APB SoC BUS

Interface
Wrapper

Ethernet

802.11

Interface
Wrapper

USB

UART

Interface
Wrapper

Audio

VGA

In
te

rf
ac

e
W

ra
pp

er

PLL

Power
Mgmt. WDT

Interrupt
Cntrl.

In
te

rf
ac

e
W

ra
pp

erInternal
Processor

Cores

Interface
W

rapper

Crypto
Core (µP)

Hash
Engine

Interface
W

rapper

DRAM

Flash

ROM

A
H

B
 S

oC

B
U

S

Bus Bridge

SIP

SIP

SIP

SIP

SIP SIP SIP SIP

MSIP

Interface
Wrapper

Bus
Controller

Interface
Wrapper

External
Memory
Interface

Debug
Port

JTAG
Port

Internet Voice & Display Comm. Device

External
Memory

3rd party design IPs

Trust modules

Custom designs

Main Security IPs

Connection for
security operation

Connection for
normal operation

Sub Security IPs

User or remote
host system

Fig. 2. Block diagram of the proposed MSIPS architecture in a generic SoC.

Fig. 2 illustrates the block diagram of the proposed MSIPS architecture in a generic
SoC. It contains three tiers, as shown in Table 2. The bottom tier of MSIPS is the func-
tional tier. It includes a series of functional IPs which are dedicated to achieving the
functional requirements of practical applications for user/system or tasks. Functional tier
will provide the basic services that SoCs can perform. The middle is the component tier.
This tier includes certain numbers of sub security IPs (abbreviated as SIPs). SIPs serve
as user-customized security modules and can present IP core-level security verification,
testing, and monitoring, so as to protect functional IPs against hardware Trojan attacks,
hardware IPs theft, etc. Such security policies are designed and programmed according
to the target IPs they serve. The top is the system tier which contains a centralized secu-

ZHAO HUANG AND QUAN WANG

396

rity policy control IP called main security IP (MSIP for short). Such security IP can ver-
ify and handle the architecture-level abnormal event or behavior by the continuously
track of system security states and enforce necessary restrictions imposed by security
policies so as to prohibit the illegal access of sensitive assets.

The biggest difference between our solution and the previous works is that previous
works only utilize a centralized on-chip security module to address all the security trans-
actions while our solution explores the distributed security IPs to do that, i.e. MSIP han-
dles global SoC system level security threats and SIPs local IP core-level security issues.
Such scheme makes the SoC systems highly trustworthy and fault-tolerant. The proposed
MSIPS architecture shares the same motivations and design principles.

4.2 Security Policies Execution Processes

The entire procedure of security verification, test, and monitoring at test time or run

time can be represented by a finite state machine (FSM). When enabled, MSIP and SIP
are initialized based on the configuration of the users or the remote host system. Then,
the testing control procedure of IP core-level security verification and test is performed.
Upon the completion of the signature generation and ID verification of MSIP or SIPs
during the authentication stage, security IP will then send standard test vectors generated
by the security policy control unit to the input ports of functional IPs. As the outputs
have been acquired from the output ports, security IP then makes a comparison of the
results with those gotten from the reliable trusted library to confirm whether the func-
tional IP verified is security during PUF based authentication and hardware Trojan de-
tection. After that, SIP will monitor each functional IP and send current states to MSIP.
Finally, MSIP will analyze the system security states and ensure whether the behavior is
trusted or not according to the architecture-level security policies and restrictions preset.
In short, MSIPS serves as a programmable control & management system. Security IP
block generates the required test patterns, processes the output results with correspond-
ing security primitives, compares with the truth tables and then draws a conclusion. In
particular, the continuous track of IP states performed by SIPs constitutes the foundation
of architecture-level security policies. Following presents the specific process of IP core-
level security protection.

State transition diagram of each SIP achieving the IP core-level verification, test
and monitoring is illustrated in Fig. 3. After the SIP is turned on, it starts from the IDLE
state. A request from the requestor can bring the SIP to SIP_INIT state to complete the
initial configuration. After the requestor receives the response from SIP, it then sends the
ID authentication request to verify the legality of SIP itself. If failed or time out, this
process will be executed again. After accepted, SIP can be set to SIP_EN state to per-
form testing, verification and monitoring of the functional IPs. Either or both of testing
mode and monitoring mode can be performed. During the testing mode, PUF based au-
thentication and hardware Trojan detection of functional IPs will be executed, respec-
tively. Testing model is designed to precede the PUF state and hardware Trojan state
because both PUF based authentication and hardware Trojan detection require at least
one active test vector. During the monitoring mode, specific control signals are required
so as to obtain current state information of functional IPs. In order to switch between
different models, specific test vector sequence has to be applied to SIP, and when the

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 397

task is completed, SIP can be reset to IDLE state with the reset signal SIP_RST and send
the results to MSIP for trust evaluation. In the overall processes of SIP working, all of
the operations and state information should be recorded into the logging units.

IDLE

Reliable
Library

SIP_EN

SIP_I
NIT

IDENTIFIC
ATION

IP1_PUF TrojanDet1

MonitoringTesting

IP2_PUF

IP3_PUF

TrojanDet2

TrojanDet3

Requestor

IP1_Monitor

IP2_Monitor

IP3_Monitor

REQ.

ACK.

ID.

REJ.

ACP.

Testing
Mode

Monitoring
Mode

SIP_RST

SIP_RST

SIP_RST

SIP_RST

SIP_RST

SIP_RST

Wait
Match

Ipuf_v1

Ipuf_v2

Ipuf_v3

TD_v1

TD_v2

TD_v3

Core_v1

Core_v2

Core_v3

Information
Logging

Record

Match

Fig. 3. State transition diagram of the sub security IP module.

5. SECURITY POLICY IMPLEMENTATION

This section describes the specific implementation of security policies. To achieve
the target security requirements, Section 5.1 first designs and completes the security IPs
required. Then, security wrappers for connecting security IPs and functional IPs are im-
plemented in Section 5.2. Specific security primitives corresponding to security policies
are explained in Section 5.3. Section 5.4 provides a use case analysis by applying our
proposed architecture.

SoC BUS

Wrapper

IP core

Security IP

µC

User or
host system

Fig. 4. Block diagram of Security IPs connected to other individual IPs.

Fig. 4 illustrates a block diagram of security IP modules connected to the functional

IPs. It contains three main components: (1) a centralized on-chip dedicated IP; (2) the

ZHAO HUANG AND QUAN WANG

398

custom-designed security interface wrappers; and (3) the security policies. Under ideal
conditions, security IPs can implement various architecture-level or IP core-level securi-
ty policies. These security policies are incorporated into the security IPs in the form of
microcode or firmware so as to provide fine-grained IP protection for SoC designs. Be-
low we provide a concrete implementation of each component.

5.1 Security IPs Implementation

Security IPs refer to a range of IP cores that are specifically designed by the security
team and implanted into SoCs as a DfS mechanism at design time. These dedicated secu-
rity modules are devoted to facilitating the trust verification, test, or detection of func-
tional IPs so as to defend against thefts, abnormal event or behavior, and hardware Tro-
jan attacks. For example, Synopsys Inc. provides a set of security-IP products to enhance
the security capability of hardware-level SoCs [55, 56]. Furthermore, these IPs are in-
stantiated into SoCs after manufacturing test and acts as on-chip modules to achieve the
target security standards such as anti-theft, abnormal behavior monitoring and Trojan
detection.

The block diagram of a generic security IP module is shown in Fig. 5. It consists of
a security management component that enforces the security policies, and a security
support component that provides the necessary hardware resources to assist the imple-
mentation of security policies.

Security IP

JTAG/
Debug

Data
memory

Micro-controller
Processor

(µC)

Se
cu

rit
y

 B
uf

fe
r

Se
cu

rit
y

B
uf

fe
r

Security
Policies

Key

Se
cu

rit
y

B
uf

fe
r

Trusted root

Data

Control

U
se

r
or

 h
os

t
S

ys
te

m

Frame
Controllor

Frame
Interpretation

Frame
Creation

Fig. 5. Block diagram of security IP module.

(A) Security Management Component
Security management component is mainly composed of a micro-control processor

IP. Such microprocessor is a programmable central security policy controller established
on the trusted root. It plays the role of CPU, together with security wrappers to enforce
the predefined restrictions for each functional IP. Functionally, microprocessor serves as
a finite state machine (FSM) whose primary responsibility is to manage the executions of
various security policies according to the custom-designed security requirements. In par-
ticular, trusted root is equivalent to a programmable and updated firmware module. It
can assist in the initialization of security IPs according to the contents of configurable
register at the beginning of procedures.

(B) Security Support Component

As an indispensable part of security IPs, security support component provides the

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 399

security management component with the hardware resources necessary to accomplish
various security transactions. It typically consists of five major components, viz., (1) in-
struction memory; (2) data memory; (3) frame controller; (4) JTAG port; and (5) security
buffer registers. The details of each unit are described in the following.

Instruction memory and data memory are all internal storage. In particular, instruc-
tion memory is utilized to store the security policies enforced by micro-control processor
cores, while data memory contains the data required to execute the security policies such
as event log, test vector, truth table, or test results, etc. All of these data are stored in the
static segment manners and have fixed offset addresses. Due to the features of security
IPs distributed deployment within SoCs, the communication between the MSIP and SIPs
is achieved in the form of frame. Thus, the frame controller can interpret and package
the event frames received or sent. Fig. 6 shows the format of a typical frame. Moreover,
JTAG port permits users or system to update the security policies and data to fulfill the
specific security applications or use cases. In addition, security buffer registers are allo-
cated for the temporary storage of intermediate data.

A Generic format of the Frame

SA DA F_len F_mode E_dataE_type F_endF_head E_id

F_head -- Header of Frame

SA -- Source Address

DA -- Direction Address

F_len -- Frame Length

F_mode -- Test Mode for individual IPs

E_id -- The ID of individual IPs

E_data -- Data about the Event

E_type -- The Type of security Event

F_end -- Ender of Frame
Fig. 6. Fields of a generic event frame.

5.2 Security Interface Wrappers Implementation

To eliminate the effects of heterogeneity and implement the DFT mechanism, each

IP core in the SoC designs should have a security wrapper [3]. Such security interface
wrapper can obtain the security-critical information from the operating states of the un-
derlying IPs and provides a standard way for security IPs to communicate with each in-
dividual IP [20]. Furthermore, the input-output ports of an individual IP can be selec-
tively connected to the security IPs for on-field trust verification and abnormal detection;
at other time they can be connected to the SoC bus or chip input-output pins as required
to ensure normal system operations [21].

Typical block diagram of the proposed security interface wrapper is shown in Fig. 7.
The control logic component is similar to a configuration register which could be con-
figured by security IPs at boot time to achieve particular security applications or user
cases. The wrapper permits each input-output port of individual core contains a boundary
register cell, referred as wrapper boundary registers (WBR), for data buffer. The security
policies to defend against three major threats considered in this paper are completed by
PUF control logic, activity detect logic, and on-chip current sensor, respectively. They

ZHAO HUANG AND QUAN WANG

400

Wrapper

Design IP core

PUF

Activity Logic

Control Logic

W
B

R

W
B

R

MODE_SEL [1:0]

Current Sensor

TEST_CONTROL [5:0]

ADC

PUF Control Logic

Timer
Config. data

WCLK

Test
Input

Function
Input

WRSTN

Buffer

Buffer

Buffer

State

Current

Digital
Signature

Test
Output

Function
Output

Fig. 7. Block diagram of security IP module.

are controlled by the control logic. The wrapper also provides local clock domains to
satisfy the demand of some events. In general, the security wrapper acts as a control &
switch component which can change the communication paths IP cores connect to other
modules and enable the acquisition of security-critical information.

5.3 Security Primitives Implementation

In order to effectively address the security threats considered in this paper, we have

specified the considered mitigation strategies as hardware security primitives and im-
plemented them here.

(A) Hardware Trojan Detection Primitive

Hardware Trojans will inevitably incur some deviations in circuit parameters, which
could be exploited to discover the Trojan instances. Much progress has been made in this
area. However, current single-parameter side-channel analysis based methods cannot
detect the hardware Trojans effectively due to the effects of environmental noise, process
variations, and system noise [8, 32]. Therefore, multi-parameter side-channel analysis
based approaches for hardware Trojan detection proposed in [6] could be utilized as the
hardware Trojan detection primitive to incorporate into the security IPs. Such ap-
proaches exploit the intrinsic relationship between transient supply current (Iddt) and the
maximum operating frequency (Fmax) of a circuit to identify the Trojan-infected circuits.
In particular, the total transient current of an IC can be approximately expressed as the
following formula:

() .ddt g av tot DD T T
g IC

I I k n V V V

 (1)

While the delays for the gates on the critical path of the IC can be approximated by:

() .
crit

crit dg av crit DD T T
g P

T t n V V V

 (2)

Hence, the maximum operating frequency of the IC is given by:

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 401

max

1 1
() .DD T T

crit av crit

F V V V
T n

 (3)

Combining Eqs. (2) and (3), the relationship between Iddt and Fmax is given by:

max

.ddt
av av tot crit

I
k n n

F
 (4)

Where kav and av are the gate-dependant constant, ntot is the total number of switching
gates in the IC, and ncrit is the number of gates on the critical path Pcrit of the IC. If a
Trojan circuit, with ntrojan switching gates, is implanted in an IC, the value of the transi-
ent current will change to:

, () () .ddt trojan g av tot trojan DD T T
g IC

I I k n n V V V

 (5)

The relationship between Iddt and Fmax will become:

,

max

() .ddt trojan
av av tot trojan crit

I
k n n n

F
 (6)

Hence, the slope value of Iddt and Fmax can be used to identify the hardware Trojan
circuit. In addition, logic testing solutions, as another hardware Trojan detection primi-
tive, could also be used here. Both logic testing based method and side-channel analysis
based method together constitute the hardware Trojan detection primitive of MSIPS.

(B) CRO-PUF Primitive

An RO is a simple circuit which is composed of a set of inverters connected in a loop.
The basic idea of CRO-PUF is to generate random sequences by using the delay differ-
ence among ROs [40, 49, 50]. The simplest form to generate the output logic-0 and log-
ic-1 is to compare the frequency difference between a pair of ROs. Multiple pairs of ROs
can be utilized to generate more bits in the same way. The frequency depends on the path
delay of each inverter and the wires, and it varies randomly with the intrinsic process
variations of ICs due to the impact of manufacturing process and other uncertain factors.

0

1

0

1

0

1
Enable

C1 C2 C3

Output

Fig. 8. The basic structure of a CRO circuit.

Fig. 8 illustrates the basic structure of a CRO circuit integrated in each functional IP.
We can obtain eight different ROs via the control inputs C1, C2, and C3 of the three 2:1
MUXs rather than using eight separate RO circuits [50]. The configurable logic signifi-
cantly reduces the silicon area overhead.

ZHAO HUANG AND QUAN WANG

402

Enable

C[M-1:0]

CRO1

Counter2CRO2

Counter1

>? Output
0 or 1

Fig. 9. A general structure of CRO-PUF module.

Fig. 9 presents a typical example of the CRO-PUF circuit. It contains two CRO cir-

cuits with which the number of control inputs is M. In theory, the length of each bit
string generated by the CRO-PUF is 2M. By applying the same control input value, these
two CRO circuits can be configured into the identical structure. It is desirable that these
2M pairs of RO circuits will have varying frequency difference due to the process varia-
tions in circuit parameters.

The output value of CRO-PUF can be expressed by the following formulation:

01 021,
.

0, otherwise
CR CRf f

output

 (7)

Therefore, because of the negligible hardware overhead, as well as the high uni-
queness and robustness, it is appropriate to integrate the low-overhead CRO-PUF pro-
posed in [50] as a security primitive into each functional IP in order to generate the
unique ID signature for device authentication.

(C) Anomalies Verification Primitive

Architecture-level abnormal events or behaviors include communication interrup-
tion, message interception, data modification, information sniffing, malicious access or
control, denial of service (DoS), fault injection, spoofing attacks, etc. Unlike IP core-
level threats, these anomalies are more reflected in the impacts to the SoC system. To
effectively identify these security issues, we need to construct a trusted matrix table
based on the RBAC and predefine the systematic abnormal events or behaviors first.
When a particular exception occurs at runtime, MSIPS will then handle it depending on
the corresponding security policies. Unfortunately, security policies in SoC designs are
extremely complicated and current IP core-level protection strategies rely on the scheme
of static verification [20].

To overcome these problems, the runtime architecture-level behaviors must be val-
idated by either dynamic or formal analysis with the help of trusted matrix table. Table 3
provides the trusted matrix table required. It contains the representative set of architec-
ture-level exceptions and the priority of IPs in each tier. For example, MSIP in Role 3
has the highest operational authority and it can interrupt the operations of other IPs. In
particular, to satisfy the requirements of SoC dynamic verification, we translate the be-
havior characteristics of security events into formal metadatas and simplify the complex
security execution strategies into simple operation primitives like permit, reset, avoid,
disable, etc. Finally, the trusted matrix table must be integrated into the data memory of
security IPs so that the runtime security verification could be executed accordingly to
prevent the malicious manipulations introduced by untrusted IPs.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 403

Table 3. Trusted matrix table of architecture-level abnormal events or behaviors.

Role Type of IPs Abnormal Events
Associated
Metadata

Security
Executions

Role 1

Processor IPs
tamper threads, DoS, interrupt or firm-

ware update request, failure, Trojan, theft
status flag, circuit

parameters, outputs

permit, re-
set, avoid,

disable

Memory IPs
read/write specific address, execution

mode, failure, theft
status flag, address,

data, timestamp

permit, dis-
able, seg-

ment

Communication
IPs

invalid, hijack, DoS, Trojan, theft, tamper
address or data

packet size, baud
rate, address, data,

transfer power

permit, dis-
able, avoid

System-required
IPs

power or frequency change, Trojan, theft
frequency, flag,

voltage
permit, re-
set, avoid

User-defined
Hard logic IPs

key exposure, invalid, DoS, failure,
Trojan, theft, malicious request

local clock do-
main, timestamp

permit, re-
set, avoid,

disable
Role 2 Sub security IPs trust frame
Role 3 Main security trust frame

5.4 Use Case Scenario Analysis

Here we consider a practical application of MSIPS in the SoC execution scenario.

In this use case, we assume that the adversary has already implanted a rogue Trojan in-
stance, which will incur a DoS attack, into the 3PIPs and design the rare conditions
based trigger logic for it. The attack model is as follows:

(A) DoS Attacks via Hardware Trojans

Consider such a situation where a hardware Trojan has been implemented into IP B.
Once triggered, this Trojan circuitry will modify the values of the configuration register,
causing the firmware of IP B to perform malicious operations. For example, IP B keeps
asking IP A to perform some specific computations. When IP A receives the request, it
executes the corresponding operation and responds the replies to IP B. However, when
IP C also asks IP A to perform other particular operations, the request of IP C cannot be
executed since IP B continuously sends requests to IP A, thereby resulting in DoS attack.

(B) Assumptions

We assume that the attacker (e.g. IP B) can utilize the rare input act as a trigger
condition for the inserted Trojan instance. The firmware in IP B contains a piece of ma-
licious code and cooperates with the Trojan circuitry to complete the attack. We also
assume that IP B is malicious independent and does not collude with other IPs. All ac-
cess requests to IP A will be prohibited by the associated security IPs until the dynamic
analysis or verification of the architecture-level abnormal events or behaviors are in-
tended correlation. MSIP will then check the status flag and the event log of each IP, so
as to eliminate the effects caused by IP B. Below are the as illustrated in Fig. 10.

ZHAO HUANG AND QUAN WANG

404

MSIP SIP A IP A SIP B IP B IP C
Bus

Controller
Configure
the SoC

according
to security

requirement

Function
mode

Checking
question IP

A program
execution

Trigger
condition ?

No
Always
request

Yes

New TaskBusy
Request

Reject
Request
prohibit

Event logs

Reset

Find IP B

Task
associated

With
IP A ?

Yes
(Ignore)

No

Disable &
Hardware

Trojan
detection

Ti
m
e

B
oo

t
ph
as
e

N
o
rm

al
 E
xe
c.

A
n
o
m
a
ly

Se
cu
ri
ty
 P
o
lic
ie
s
Ex
ec
.

Function
mode

DoS
attack

Fig. 10. Operation flow of the proposed solution for preventing DoS attacks.

(C) Flow of the Procedure

(1) At the boot phase, SoC completes the initialization of each security IP as the target
requirements of the user or system. For example, all the security IPs are assigned to
configure the functional IPs to function mode, so as to perform normal system oper-
ations;

(2) During the normal execution, for a program executing on the IP B, a rare condition
is achieved and then the hardware Trojan in IP B is activated. It modifies the con-
figuration register to incur the execution of the malicious code in firmware. At this
time, the relevant SIP may not enable the dynamic verification security primitive;

(3) IP B starts up secretly and sends the requests to IP A so as to execute some specific
calculations. Such process continues, keeping the request buffers queue of the IP A
always in a filled status;

(4) When another IP (IP C) asks IP A to perform a new operation, the request message
is always blocked and never gets a response. And after a period of time, IP C reports
a feedback to MSIP that the requested operations cannot be executed by IP A. Such
situation triggers the dynamic monitors and verification policies;

(5) MSIP sends a request frame to the associated security IP to execute the dynamic
verification security policies and feedback the current running status of IP A.

(6) After MSIP receives the response frame, it then discovers that IP A is always work
ing now, thus the execution request is never responded. MSIP then sends the event
logs for checking that whether a task is associated with IP A (assuming the event
logs to be legitimate);

(7) MSIP discovers that IP A is communicating with IP B via the bus controller, then
repeats the step (6) again to identify the illegal operations of IP B. A reset command

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 405

is sent to IPA. Simultaneously, the disable and verify commands are sent to IPA and
IPB;

(8) The DoS attack is now been thwarted by the proposed solution, thus the adversary
fails to block the IP A.

6. EXPERIMENTAL RESULTS

In order to evaluate the security and effectiveness of MSIPS, a representative SoC
benchmark system has been performed on an FPGA platform where the Altera FPGA
development boards were used to emulate the ASIC scenario. The MSIPS was imple-
mented on TMSC 90nm Cyclone II FPGA devices used in our self-developed boards. It
includes three reference circuits (s1423, s5378, and s9234 from ISCAS-89 benchmark
suite) and a security IP (established as a micro-control finite state machine) [51, 52]. Fig.
11 presents the SoC benchmark system created on FPGA platform.

User/system、PC

Qsys Interconnect

Wrapper

s1423

Wrapper

s5378

Wrapper

s9234

Security IP

Fig. 11. Block diagram of our SoC benchmark system.

ER ER*

K-bit
Counter

A
B
C
D

Fig. 12. A generic hardware Trojan circuits implanted in SoC benchmark system.

6.1 Hardware Trojan Detection

A golden chip and its variant with a hardware Trojan instance (called Comb. HTI)
are mapped on the FPGA platform. Generally speaking, most hardware Trojan circuits
are composed of two basic components: Trigger logic and effective Payload [31, 33]. Fig.
12 shows the hardware Trojan circuits inserted in each functional IPs. Trigger logic
monitors a set of trigger inputs for the sake of activating the Trojan under the prove con-
ditions. Once triggered under rare events or conditions, the hardware Trojan becomes
activated and the payload circuit injects an error signal which will alter the values of data
bus or control bus [34]. Comb. HTI has 4-trigger inputs (i.e. A, B, C, and D) and one

ZHAO HUANG AND QUAN WANG

406

k-bit counter. It will be activated as long as the k-bit counter reaches a predetermined
time. The payload circuits are a XOR gate. Assume that the switching probability of each
trigger input is 0.5, the activation probability is only (3/16)k. Hence, such hardware Tro-
jan is more difficult to be triggered under the normal conditions.

(A) Test Steps

Hardware validation of the hardware Trojan detection is performed using the FPGA
platform to emulate the practical scenario. In our experiment, we take the s1423 circuit
as an example to validate the hardware Trojan detection technique. The detailed proce-
dure involves three steps, as described follows:

(1) Acquisition of Iddt values. The identical test vectors are applied to the golden chips

and its variants separately, and then obtaining the Iddt values.
(2) Extracting Fmax values. At the same time, we extract the corresponding frequency

values (Fmax) of each chips.
(3) Calculating the slope. According to the Iddt and Fmax values acquired, we have calcu-

lated the slope values of each FPGA chip and infer whether the chip under detection
is infected with a Trojan circuit.

In order to measure the Iddt of each sample circuit, we first insert eight 30mR preci-

sion current sense resistors at each Vicco port of an FPGA device. The shunt Iddt values are
acquired and recorded through a dedicated current/voltage collecting module. Then, the
frequency, Fmax, are measured through a 15-inverter RO circuit with an on-chip counter.
Here we choose a 1GHz clock signal as reference to complete the counting. Furthermore,
we perform the detection procedure on ten different FPGAs, which are from the same lot
and placed in the same platform. The same designs are also mapped into each FPGA
chip. In particular, we randomly select two of the FPGA chips, chip 3 and chip 4, to im-
plement the Comb. HTI Trojan infected s1423 circuits and the remaining eight FPGA
devices are selected as golden chips to map the gate-level netlists of s1423 original cir-
cuits.

(B) Results

The experimental results for the side-channel analysis based hardware Trojan detec-
tion approach are provided in Figs. 13 and 14. Among them, Fig. 13 shows the single-
parameter based hardware Trojan detection results on FPGA while Fig. 14 illustrates the
results for multi-parameter based testing method. The results in Fig. 13 demonstrates that
since the impact of a Trojan circuit on the circuit parameters may be drowned in the pro-
cess noise, the measurement values of Iddt (Fig. 13 (a)) or Fmax (Fig. 13 (b)) only may not
be able to capture the effects of a Trojan under parameter variations and isolate the
FPGA chips infected with Trojan instances from the uninfected ones. Taking the chip C9
as an example, the Trojan effect on the Iddt and Fmax is respectively 0.407mA and 1.7
MHz, which are less than the process noise (i.e. 0.458mA and 11.4MHz). Thus, the de-
viations in Iddt or Fmax due to variation can easily mask the effect of the inserted Comb.
HTI Trojan, making it infeasible to isolate from the process noise. In addition, since the
boundary between them is not clear, a simple comparison can result in a large number of
false detection (as shown in Fig. 13).

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 407

C10

C10

C9

C9

C7

C7

C8

C8

C6

C6
C5

C5

C4

C4

C3

C3

C2

C2

C1

C1

Process
noise =

0.458 mA
Trojan
effect =

0.407 mA

Trojan
infected

chips

Trojan
infected

chips
C8

C8

C6

C6

C5

C5

C4

C4

C3

C3

C2

C2

C1

C1 C10

C10

C9

C9

C7

C7

Process
noise =

11.4 MHz

Trojan
effect =
1.7 MHz

(a) (b)

Fig. 13. The single-parameter based Trojan detection results on FPGA; (a) Measurement of aver-
age Iddt values only at 10 random process corners; (b) Corresponding Fmax values.

On the other hand, multi-parameter based testing approach can overcome this issue
and effectively differentiate between the original and tampered versions (as shown in Fig.
14). For a set of golden FPGA devices, the relationship values, i.e. Iddt vs. Fmax, follow an
expected variation curve under process noise, while the one which deviates from the
variation curve implies that it may have a Trojan circuit inside. The black breakpoint line
in Fig. 14 shows this variation curve. Since the C3 and C4 already have been implanted a
Trojan instance, multi-parameter based testing will find that they stand out from the var-
iation curve. Moreover, the different trigger conditions of a Trojan circuit will result to
the difference experimental results between the infected chips and the golden ones.

C4'

C3'

Deviation from trend line due to
hardware Trojans

Fig. 14. Variation curve of the slope values (Iddt vs. Fmax) acquired on 10 FPGA chips using multi-
parameter based Trojan detection technique.

ZHAO HUANG AND QUAN WANG

408

6.2 IP Authentication

For IP authentication, a set of test vectors is transmitted by the security IPs to gen-
erate the unique digital signature for the purpose of resisting IP thefts. Here the function-
al IPs are configured and assigned so as to initialize the PUF controller module and then
to proceed with the procedure of digital signature generation, extraction, and verification.
In the experiment, each of the CRO circuits utilized in the CRO-PUF primitive can be
configured to 128 different RO circuits. It includes fourteen inverters and seven 2:1
MUX circuits, and seven inverters are cascaded on each RO circuit as a buffer to analyze
the delay distribution of RO circuits under process variations [50]. Thus, the CRO-PUF
circuits can generate N 128-bit signatures using the control inputs under the ideal condi-
tions. However, due to the impact of structural differences, only the pairs of RO circuits
with the same structure are compared.

(A) Test Steps

The signature generation and authentication are performed as follows:

(1) Security IP initialization: In the testing state, security IPs complete the initialization
of the CRO-PUF design, generate the required test vectors, and reset each port of the
CRO-PUF module simultaneously.

(2) Signature generation: Launch the control input values to C[6:0] ports after the ini-
tialization of security IPs. Then Enable port is set and the counter starts working.
After a period of time tperiod, compare the value of the counting values and output the
result.

(3) Signature extraction and verification: Change the value of control inputs, security IP
first reads the results of output sequentially, then compares the signature obtained
with the results stored in data memory to draw a conclusion whether the functional IP
under validated is security.

(B) Results

Hardware validation of the CRO-PUF scheme is performed on the Altera Cyclone II
FPGA platform. In order to eliminate the influence of systemic variations, the entire con-
figurable RO-PUF circuits are created into the continuous logic array blocks (LABs) [42].
The “Logic lock” function of Altera FPGA makes the region partition on the floorplan of
a FPGA chip come true. Fig. 15 shows the generic LABs with a CRO circuit inside.

We have also implemented a CRO-PUF design with identical routing and layout in
ten different FPGA devices, and validate them from the point of uniqueness and reliabil-
ity through the Hamming distances (HDs). In particular, the HDs can be expressed by the
following formulation which represents the number of positions in two binary strings
corresponding to different bits.

1
(,) [1] [1] [1]

n

i j i i ji
HD R R R R R

 (8)

(1) Uniqueness
Uniqueness represents how unique a PUF response can be, i.e., all the digital sig-

natures generated by each chip are different even the identical silicon PUF silicon with
the same routing and layout. Furthermore, the different routing and layout of the same

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 409

Cyclone II FPGA Floorplan
Logic Array Blocks (LABs)
(32 LUTs each)

CRO CRO
output

CRO
enable

Look-Up Table
(LUT)

(4 data inputs)

DATA
input LUT

output

NOT gate 2-to-1 MUX

Fig. 15. Generic LABs with a CRO circuit implemented on FPGA.

PUF structure in the identical chip will also introduce to different responses. We estimate
the uniqueness of the CRO-PUF by the average inter-die HDs over a group of chips.
With a pair of signatures, Ri and Rj (ij), both having n-bit response, the average inter-
die HDs among a group of k chips can be expressed as:

1

1 1

(,)2
100%.

(1)

k k i j

i j i

HD R R
uniqueness

k k n

 (9)

Here we use 10 FPGA chips to evaluate the uniqueness of the CRO-PUF, and all
the experimental results are obtained under the normal operating condition (20 degrees
operating temperature and 1.2V Vicco voltages). The ten digital signatures are compared
and calculated with each other by the average inter-die HDs. The length of the digital
signature generated is 128 bits. Fig. 16 exhibits the uniqueness distribution among 10
FPGA chips. From Fig. 16, the differences of pairs of path delay for logic-0 to logic-1
transition approximately follow the Gaussian distribution and the CRO-PUFs are more
concentrated on the ideal expected 64 than the common RO-PUFs. In addition, we have
also calculated the average inter-die HDs of the CRO-PUF and the common RO-PUF.

 (a) Inter-die HDs of the CRO-PUFs. (b) Inter-die HDs of the common RO-PUFs.

Fig. 16. The uniqueness distribution among 10 FPGA chips.

ZHAO HUANG AND QUAN WANG

410

Table 4. Uniqueness comparison between common RO-PUF and configurable RO-PUF.
Uniqueness Com. RO-PUF Config. RO-PUF

Average Inter-die HDs 38.1% 42.7%

Table 4 shows the comparison of uniqueness between them. From Table 4, we can

see that the average inter-die HDs of the CRO-PUFs is 42.7% of PUF signature bits and
are a little larger than the RO-PUFs (i.e. 38.1% of PUF signature bits), which means that
the CRO-PUFs are a slight higher unclonable and random than the common RO-PUFs.
In particular, the inter-die HDs will be 50% under the ideal conditions.

(2) Reliability

The PUF responses are expected to be the same under the same challenges. Howev-
er, a variety of environmental variations such as temperature and voltage may introduce
the changes in them, and thus affect the stability of the PUF responses. Reliability means
that the difference between any two signatures generated by the same device should be
slight under different conditions. In particular, the average intra-die HDs can be exploit-
ed to evaluate the reliability of PUFs, i.e. HD(Ri, Ri,y) over k samples. The following
formulation can be defined as:

,

1

(,)1
100%.

k i i y

y

HD R R
reliability

k n
 (10)

To estimate the reliability of the CRO-PUF, we randomly select a FPGA chip i from
the 10 FPGA chips and extract a 128-bit signature from the chip i at the normal operating
condition. After that, we extract the same 128-bit response under different operating
conditions. Fig. 17 shows the reliability distribution among different operating tempera-
tures. It should be noticed that the distribution of intra-die HDs is more concentrated on
the ideal expected 0 than the common RO-PUFs. In addition, we then calculate the av-
erage intra-HDs of the CRO-PUFs and the common RO-PUFs.

Table 5 presents the comparison of reliability between them. From Table 5, we can
see that the CRO-PUFs have the higher average intra-die HDs which means that the
CRO-PUFs are much more reliability and reproducibility than the common RO-PUFs
with the changes of operating temperatures. In particular, the intra-die HDs will be 0%
under the ideal conditions.

(a) (b)

Fig. 17. The reliability distribution among a variety of operating temperature; (a) Intra-die HDs of
the CRO-PUFs; (b) Intra-die HDs of the common RO-PUFs.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 411

Table 5. Reliability comparison between common RO-PUF and configurable RO-PUF.

Reliability
Operating
Conditions

(Temperature)
Com. RO-PUF Config. RO-PUF

Average
Intra-die HDs

20 degree 16.4% 7.0%
30 degree 16.3% 7.0%
40 degree 17.1% 5.8%
50 degree 17.9% 6.7%
60 degree 17.0% 6.3%
70 degree 19.3% 5.9%
80 degree 18.2% 6.0%

6.3 Abnormal Event or Behavior Verification

To validate the practical application of MSIPS described in Section 5.4, we have
designed an instance of the proposed MSIPS scheme for this SoC benchmark system
model using the FPGA platform (as shown in Fig. 18). We configure the IP B and IP C
with the similar functionality, e.g. they are simple NIOS II embedded processors with
serial communication ports, while IP A could be configured as a memory IP, such as
RAM memory IP or FIFO IP, etc. All of these IPs (including the security IP) are inter-
connected through an Avalon-Memory Mapped (Avalon-MM) pipeline bridge. Ava-
lon-MM can provide a mechanism for simultaneous connection a slave interface to both
a processor master local to a subsystem and an external processor master elsewhere in
the hierarchy. Moreover, we also provide protection of mutually exclusive accessing
with respect to shared IP A. In this case, only one processor has ownership of the hard-
ware mutex at any time. In particular, we have created and implanted a hardware Trojan
into IP B, which runs at 50Mhz in the tested FPGA platform. After triggered, such a
Trojan circuit could incur DoS attacks to IP A, that is, will not release the hardware
mutex. Thus, IP C can never access IP A.

Avalon-MM Pipeline BridgeMutex

IP A

S

IP C

S
M

IP B

S
M

Security IP

M

UART Ports
Fig. 18. Block diagram of a SoC benchmark system instance.

(A) Test Steps
For security IPs performing anomalies verification, we first select IP B to receive

the data through UART ports and write them into IP A. Then, IP C reads the data from
IP A and transmits them via UART ports. In particular, the Trojan instance designed is a

ZHAO HUANG AND QUAN WANG

412

FSM circuit which is triggered after monitoring a continuous input string of “HTD”. Af-
ter that, it changes the values of a private register so as to incur the execution of a piece
of malicious code, thus IP B no longer releases the hardware mutex. The detailed proce-
dure can be presented as follows:

(1) Initialization. After power up, SoC system first completes the initialization according

to the predefined configuration and waits for receiving data;
(2) Normal execution verification. Then, we continuously send a series of strings to the

target SoC system through the serial ports of host PC. After a while, check whether
the host PC has received the sent strings. This step is intended to verify the normal
operation of the target SoC system;

(3) Trigger the hardware Trojan. A specific string which contains the piece of “HTD” is
sent to the target SoC system to trigger the hardware Trojan inside IP B;

(4) Abnormal behavior occurs. The host PC will receive the abnormal message due to
the reason that IP C fails to access and read IP A;

(5) Security policies launch. The security IP will launch the corresponding security pol-
icies and feature values to verify the abnormal behaviors and eliminate it;

(6) Anomalies recovery. The host PC will receive the handling results and begin to re-
ceive the strings normally.

(B) Results
Collecting the relevant data based on the hardware behavior analysis is the first and

important step in the abnormal behavior verification. Each feature should be better cor-
relation between the result and feature, rather than themselves. Therefore, we do select
relevant features based on feature correlation analysis. Here we consider the following
features for anomalies verification:

 System Mode: Current Mode of SoC System
 Problem Core: Suspicious Core Number
 Current Status 1: Current Status of Source Core
 Event Log Record 1: Task Number of Problem Core
 Relevant Core: Relevant Core Number
 Current Status 2: Current Status of Distance Core
 Event Log Record 2: Task Number of Relevant Core
 Specific Features (if Needed): Specific Features relevant to each functional IP

Table 6 gives some examples of test records from the security IP in case of hard-

ware Trojan attacks and without Trojans. Observations 1, 3 and 4 show the DoS attacks
whereas observations 2 and 5 show the test and normal operation respectively.

We examine observation 3 as example. Here, we set the baud rate of UART to 9600
pbs. When a transfer and storage operation is completed, the time consumption is ap-
proximately 6.57 msec. During the verification, security IP find that IP B is now locking
IP A through the OWNER filed (generated by CRO PUF) of the hardware mutex register
and find a latest task (11: IP B writes to IP A) existed in the system logs. Till now, sus-
picious IP core cannot be inferred because this alarm may be caused by the normal oper-
ation which takes a bit more time than the threshold value of the interval time (Tinterval =
10 msec). So, we further verify the configure registers of each IP. For this, security IP

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 413

compare the current value of configure registers to the user- or pre- defined ones. Hence,
the mismatch reveals the existence of a Trojan horse that is triggered by external condi-
tions. In particular, the execution results are shown in Fig. 19.

Table 6. Observation results from security IP.
 Feature

Example
System
Mode

Problem
Core

Current
Status

Config.
Register

Task
ID

Relevant
Core

Current
Status

Task
ID

Config.
Register

Results

1 0 IP A 1 1 05 IP B 1 04 0101
2 1 IP A 1 1 08 SIP 1000
3 0 IP A 1 1 11 IP B 1 11 0 0110
4 0 IP A 1 1 13 IP B 0 11 0111
5 0 IP A 1 1 17 IP B 1 17 1 0100

* “System Mode” 0 normal mode, 1 test mode.
“Current Status” 0 standby, 1 busy.
“Config. Register” 0 mismatch, 1 match.
“Results” – result values. For example, “0110” means relevant core is executed under normal mode and inject-
ted by a DoS Trojan.

clock
rst_n
rx_dat
bps_reg

Trojan
Triggered

clock
rst_n
rx_dat
bps_reg

alarm
pro_id
tx_dat

DoS attack

(a) (b)

clock
rst_n
rx_dat
bps_reg

alarm
pro_id
tx_dat

alarm
pipeline

Alarm
problem IP

Receive Alarm
and problem IP

Security metadata

Threat
eliminate

Execution Time

(c)

Fig. 19. Simulation results of security IP against DoS attacks; (a) Trigger the Trojan instance; (b)
IP C fails to read IP A; (c) Alarm threats and eliminate them.

6.4 Overhead Analysis

(A) SoC Benchmark System Overhead
The estimated hardware overhead of the SoC benchmark system incurred by IIP and

MSIPS is presented in Table 7. It contains three functional IPs: an s1423, an s5378 and
an s9234 circuits. Moreover, we not only consider the micro-controller implementations
due to the fundamentally invariant characteristics with respect to the structures and secu-
rity policies in various security IPs, but also include implementing the security interface
wrappers for functional IPs to assist protection for SoC system against various attacks.
Most notable is the instruction and data memory, a 4K-Bytes RAM memory is added to
the base memory controllers to calculate the security IP overhead.

ZHAO HUANG AND QUAN WANG

414

Table 7. Hardware overhead of security IP with respect to SoC benchmark system (us-
ing TMSC 90nm CMOS Press Model).

 SoC benchmark system
Cores/SoC

(# of LUTs)
Functional IP cores

SoC IIPS MSIPS
S1423 Wrapper S5378 Wrapper S9234 Wrapper

Wang et al. [3] 728 25(+3.43%) 2192 43(+1.96%) 3376 30(+0.89%) 6394
1559

(+24.38%)

Our scheme 728 67(+9.20%) 2192 86(+3.92%) 3376 72(+2.13%) 6521
1561

(+23.94%)

From Table 7, we conclude that the implantation of a security IP, and wrappers, etc.,

in the SoC benchmark system makes the total area overhead increased by about 23.94%,
compared with the IIPS architecture incurring 24.38% increasing area overhead. How-
ever, from the sample values in Table 7, the overhead incurred by wrappers of MSIPS is
a little larger than that of IIPS, which reduces the proportion of security IP in SoC sys-
tem.

(B) Hardware Trojan Overhead

Area overhead of the hardware Trojan employed in the SoC benchmark system is
given in Table 8. The combinatorial hardware Trojan has an advantage in area overhead
over the sequential hardware Trojan. It is worth taking note that the combination of these
two hardware Trojan circuits may incur a slight increase in area overhead, but it will
produce a more concealed hardware Trojan which is more difficult to be detected by
current hardware Trojan detection methods. In particular, the Comb. HTH instance only
accounts for 3.16% of the total s1423 circuit.

Table 8. The hardware overhead of hardware trojans.
 Circuit

 Overhead
HTH benchmark IP Core

Comb. HTI S1423

Average
hardware
overhead

Area(# of LUTs) 23 728
Gates/Registers 14/17 490/74

Input Lines 4 17
Output Lines 1 22

(C) CRO-PUF Overhead

Furthermore, we make a comparison on the area overhead of common RO-PUF and
CRO-PUF in generating one 128-bit signature. For the common RO-PUF, it actually
includes 128 RO rings and two 128:1 MUXs. For the CRO-PUF, two CROs are con-
tained in it. In addition, it also requires two 32-bit counters and a 32-bit comparator for
each RO-PUF. The areas of each RO-PUF are listed in Table 9, which is acquired from
the FPGA compiler and synthesis. Since the 2:1 MUX is inserted into the RO rings to
form the configurable feature, the total logic elements of Configurable RO-PUF only
take up 15.29% of the common RO-PUF in the case of generating the same length of
signatures.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 415

Table 9. Area comparison between common RO-PUF and configurable RO-PUF.
 Com. RO-PUF Config. RO-PUF

of LUTs 1524 233
of Registers 74 74

7. DISCUSSION

This section mainly analyzes the characteristics of our proposed MSIPS approach.
The flexibility and scalability features of Security IPs are discussed in Sections 7.1 and
7.2, respectively. Integrity and security effectiveness are demonstrated in Section 7.3.
Section 7.4 anlyzes the exection time of the proposed MSIPS.

7.1 Flexibility

The MSIPS architecture presented in this article is established on a variety of secu-
rity IPs deployed through a distributed methodology. Flexibility is the primary charac-
teristic of security IPs, which is mainly reflected in the following aspects; (1) the diver-
sity of security primitives. Since the types of functional IPs are various, the corresponding
security primitives are also different. These defense measures can be integrated into the secu-
rity IPs, which could achieve system-level target security protection for SoC designs; (2) the
arbitrariness of deployment. As low-overhead on-chip modules, security IPs are implanted
into the SoC designs and reside outside the functional IPs. In particular, they resemble normal
functional IPs and act only when a security event occurs, making it a challenge for adversaries
to seek them; (3) the selectivity of protecting objects. Users can optionally choose to protect
for part or all function IPs in a SoC design.

Furthermore, MSIPS reflects good portability and compatibility. Since the security
IPs are connected to functional IPs through the test wrapper interfaces, the design and/or
integration of them can be adjusted accordingly. In case of SoCs with another test wrap-
pers, they can be extended to interface with them easily.

7.2 Scalability

The proposed MSIPS architecture exhibits good scalability in respects of integrating

more security primitives or defense policies at minimal extra overhead. It can be adjusted
to provide protection against other threats, e.g. scan-based attack or side-channel attack
on crypto cores, reverse engineering. For instance, a small noise injector can be embed-
ded so as to mask the critical information disclosed through electromagnetic, power
consumption, transient current [15]. Moreover, MSIPS can simultaneously employ mul-
tiple countermeasures for certain attacks to improve the overall security and trustworthi-
ness of SoCs [53]. For example, logic testing and side-channel analysis based method
can be incorporated to accomplish the hardware Trojan detection (see Section 3.1). In
addition, MSIPS can utilize the same information to achieve different verifications. An
on-chip current monitoring module can be integrated to detect hardware Trojans at the
test time [54], or to assist in supervising the abnormal behavior of functional IPs at the
run time. Finally, security functions can also be implemented in hardware (e.g. FPGA) or
software (e.g. microcontroller) programmable fabric so that it can be tailored dynamical-
ly according to the capabilities.

ZHAO HUANG AND QUAN WANG

416

In addition, MSIPS shows also good scalability when applied in large complex
SoCs due to the reason that defenders could choose more security IPs to construct the
MSIPS scheme according their security demands. Though this policy increases the area
overhead, it can comprehensively protect for large complex SoCs from the system-wide
perspective.

7.3 Security of MSIPS

Security of MSIPS itself against various threats is also a critical issue which must

be considered. The trustworthiness of security IPs is important to ensure the effective-
ness of its security policies. Security IPs which are designed or integrated into a SoC can
be acquired from untrusted 3P vendors, and the MSIPS itself can be specifically created
by the security teams or SoC architects in untrusted environments. In particular, mali-
cious modification of MSIPS or security IPs can possibly be made in an untrusted
foundry. Hence, to enhance the security and trustworthiness of MSIPS, low-overhead
hardware obfuscation or camouflaging techniques could be employed here to resist the
security issues mentioned above [24, 25]. These solutions can also combat the reverse
engineering attacks.

On the other hand, the trusted matrix table stored in the data memory of security IPs
may also be compromised. Since the on-field upgrades of security policies are permitted,
any player who has the right to access it may illegally update or forge the trusted matrix
table, or even counterfeit the security IPs themselves. This can seriously affect the ro-
bustness of MSIPS, especially the security IPs. To effectively handle these threats, we
implement an authentication mechanism based on challenge-response keys (as shown in
Fig. 5). We avoid on-chip key storage for the reason that they could suffer reverse engi-
neering and be cloned. Instead, keys are generated at boot time using a PUF-based
standard technique. Then, the keys are exploited to complete security authentication.
Only authorized players are permitted to access or update the trust matrix table.

7.4 Execution Time Analysis

When protecting against various security issues, time is of the essence since they

can cause hardware Trojan attacks, thefts, or abnormal behaviors. In our MSIPS, the
execution of security policies for a certain threat is processed in parallel due to the dis-
tributed deployment of security IPs. Thus, the detection time is relied on the worst case
of the IPs. While in IIPS, due to the scan chain features, the total detection time is the
superposition of the time consumption of each IP. Although the advantages of our ap-
proach may not be reflected well in the single core test, it could greatly reduce the time
overhead when executed in the multiple cores detection. In particular, our scheme is a
typical space-for-time defense strategy.

8. CONCLUSION

In this paper, we proposed a centralized on-chip security architecture, referred as
Multi-tiered Security IPs (MSIPS), to provide adequate protection against diverse threats.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 417

It can effectively achieve the verification, test, and authentication of SoC during test time
and run time, and recover from abnormal states. Besides, it can also monitor the running
states of functional IPs in order to discover their abnormal behaviors. It features ease of
integration, low-overhead, flexibility, diversity, and scalability. We have validated the
functionality and security of MSIPS through experimental measurements on a FPGA
platform. FPGA implementations have shown the feasibility of integrating a PUF primi-
tive, a hardware Trojan detection primitive, and abnormal behavior or event validation
and monitoring primitive into security IP to provide security defense. The FPGA imple-
mentation shows that MSIPS incurs low hardware overhead. Based on this preliminary
study we conclude that much interesting work remains to be done in terms of the
achievement of MSIPS and its security validation. Future work will include: to integrate
the security IP with other bus topology; to supervise and identify the abnormal behavior
by machine learning; as well as to extend its capability so as to provide protection
against other attacks.

ACKNOWLEDGEMENT

This work was supported by a grant from the National Natural Science Foundation
of China Program (Program ID 61572385), and completed under the guidance of Pro-
fessor Quan Wang. Opinions, findings, conclusions and recommendations expressed in
this material are those of the authors and may not reflect the views of the funding entities.
Quan Wang is the corresponding author.

REFERENCES

1. Z. Huang and Q. Wang, “MSIPS: Multi-tiered security IPs architecture for secure
SoC design,” in Proceedings of International Conference on Networking and Net-
work Applications, 2017, pp. 203-208.

2. A. Basak, S. A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for
system-on-chip designs with untrusted IPs,” IEEE Transactions on Information Fo-
rensics and Security, Vol. 12, 2017, pp. 1515-1528.

3. X. M. Wang, Y. Zheng, A. Basak, and S. Bhunia, “IIPS: Infrastructure IP for secure
SoC design,” IEEE Transactions on Computers, Vol. 64, 2015, pp. 2226-2238.

4. A. Antonopoulos, C. Kapatsori, and Y. Makris, “Trusted analog/mixed-signal/RF
ICs: A survey and a perspective,” IEEE Design and Test, Vol. 34, 2017, pp. 63-76.

5. Y. Q. Lv, Q. Zhou, Y. C. Cai, and G. Qu, “Trusted integrated circuits: Problem and
challenges,” Journal of Computer Science and Technology, Vol. 5, 2014, pp. 918-
928.

6. S. Narasimhan, D. D. Du, R. S. Chakraborty, et al., “Hardware trojan detection by
multiple-parameter side-channel analysis,” IEEE Transactions on Computers, Vol.
62, 2013, pp. 2183-2195.

7. Y. X. Lu, M. P. O’Neill, and J. V. McCanny, “FPGA implementation and analysis
of random delay insertion countermeasure against DPA,” in Proceedings of Interna-
tional Conference on ICECE Technology, 2008, pp. 201-208.

ZHAO HUANG AND QUAN WANG

418

8. Y. Q. Zhao, J. L. He, S. Yang, and S. F. Liu, “Research on defense technology
against hardware trojans in integrated circuits,” Computer Engineering, Vol. 42,
2016, pp. 128-137.

9. P. Bernardi, M. Rebaudengo, and M. S. Reorda, “Exploiting an I-IP for in-field SoC
test,” in Proceedings of IEEE Internatioinal Symposim on Defect and Fault Toler-
ance in VLSI Systems, 2004, pp. 404-412.

10. B. Zhou, W. Zhang, S. Thambipillai, et al., “Cost-efficient acceleration of hardware
trojan detection through fan-out cone analysis and weighted random pattern tech-
nique,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 35, 2016, pp. 792-805.

11. L. A. Guimaraes, R. P. Bastos, and L. Fesquet, “Detection of layout-level trojans by
monitoring substrate with preexisting built-in sensors,” in Proceedings of IEEE
Computer Society Annual Symposium on VLSI, 2017, pp. 290-295.

12. B. Liu and B. Wang, “Reconfiguration-based VLSI design for security,” IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, Vol. 5, 2015, pp. 98-
108.

13. A. Johnson, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-enabled secure ar-
chitecture for FPGA-based IoT applications,” IEEE Transactions on Multi-Scale
Computing Systems, Vol. 1, 2015, pp. 110-122.

14. U. Juin, K. Huang, D. DiMase, et al., “Counterfeit integrated circuits: A rising threat
in the global semiconductor supply chain,” in Proceedings of the IEEE, Vol. 102,
2014, pp. 1207-1228.

15. X. Wang, W. Yueh, D. B. Roy, S. Narasimhan, Y. Zheng, S. Mukhopadhyay, D.
Mukhopadhyay, and S. Bhunia, “Role of power grid in side channel attack and pow-
er-grid-aware secure design,” in Proceedings of the 50th ACM/EDAC/IEEE Design
Automation Conference, 2013, pp. 1-9.

16. S. Karmakar and D. R. Chowdhury, “Scan-based side channel attack on stream ci-
phers and its prevention,” Journal of Cryptographic Engineering, Vol. 8, 2017, pp.
327-340.

17. Y. Jin, D. Maliuk, and Y. Makris, “A post-deployment IC trust evaluation architec-
ture,” in Proceedings of IEEE 19th International On-Line Testing Symposium, 2013,
pp. 224-225.

18. Y. Jin, D. Maliuk, and Y. Makris, “Post-deployment trust evaluation in wireless
cryptographic ICs,” in Proceedings of Conference on Design, Automation and Test
in Europe and Exhibition, 2012, pp. 965-970.

19. K. Guha, D. Saha, and A. Chakrabarti, “RTNA: Securing SoC architectures from
confidentiality attacks at runtime using ART1 neural networks,” in Proceedings of
the 19th International Symposium on VLSI Design and Test, 2015, pp. 1-6.

20. A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic mplementa-
tion of SoC security policies,” in Proceedings of IEEE/ACM International Confer-
ence on Computer-Aided Design, 2015, pp. 536-543.

21. L. W. Kim and J. D. Villasenor, “Dynamic function verification for system on chip
security against hardware-based attacks,” IEEE Transactions on Reliability, Vol. 64,
2015, pp. 1229-1242.

22. B. Vermueulen, “Design-for-debug to address next-generation SoC debug concerns,”
in Proceedings of IEEE International Test Conference, 2007, p. 1.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 419

23. A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for flexible SoC se-
curity architecture,” in Proceedings of the 53rd ACM/EDAC/IEEE Design Automa-
tion Conference, 2016, pp. 1-6.

24. M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security: Models,
methods, and metrics,” in Proceedings of the IEEE, Vol. 102, 2014, pp. 1283-1295.

25. M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware security: Threat
models and metrics,” in Proceedings of IEEE/ACM International Conference on
Computer-Aided Design , 2013, pp. 819-823.

26. P. Mishra, S. Bhunia, and S. Ravi, “Tutorial T2: Validation and debug of security
and trust issues in embedded systems,” in Proceedings of the 28th International
Conference on VLSI Design and the 14th International Conference on Embedded
System, 2015, pp. 3-5.

27. Y. Y. Zhang, Y. L. Shen, H. Wang, et al., “On secure wireless communications for
IoT under eavesdropper collusion,” IEEE Transactions on Automation Science and
Engineering, Vol. 13, 2016, pp. 1281-1293.

28. S. Krstic, J. Yang, D. W. Palmer, et al., “Security of SoC firmware load protocol,”
in Proceedings of IEEE International Symposium on Hardware-Oriented Security
and Trust, 2014, pp. 70-75.

29. S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and security at odds: Post-
silicon validation of modern SoC designs,” in Proceedings of the 52nd ACM/EDAC/
IEEE Design Automation Conference, 2015, pp. 1-6.

30. M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design & Test of Computers, Vol. 27, 2010, pp. 10-25.

31. Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” in
Proceedings of IEEE International Workshop on Hardware-Oriented Security and
Trust, 2008, pp. 51-57.

32. K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication for preventing
hardware trojan insertion,” in Proceedings of IEEE International Symposium on
Hardware-Oriented Security and Trust, 2013, pp. 45-50.

33. D. Agrawal, S. Baktir, D. Karakoyunlu, et al., “Trojan detection using IC finger-
printing,” in Proceedings of IEEE Symposium on Security and Privacy, 2007, pp.
296-310.

34. S. Yao, X. M. Chen, J. Zhang, et al., “DeTrust: Defeating hardware trust verification
with stealthy implicitly-triggered hardware trojans,” in Proceedings of IEEE Inter-
national Test Conference, 2015, pp. 1-10.

35. D. Mukhopadhyay and R. S. Chakraborty, “Testability of cryptographic hardware
and detection of hardware trojans,” in Proceedings of Asian Test Symposium, 2011,
pp. 517-524.

36. M. Abramovici and P. Bradley, “Integrated circuit security – New threats and solu-
tions,” China Gems & Jades, 2009, pp. 1-3.

37. V. V. D. Leest and P. Tuyls, “Anti-counterfeiting with hardware intrinsic security,”
in Proceedings of Design, Automation and Test in Europe Coference and Exhibition,
2013, pp. 1137-1142.

38. X. X. Sun, H. Wang, J. Y. Li, and Y. Zhang, “Injecting purpose and trust into data
anonymisation,” Computer and Security, Vol. 30, 2011, pp. 332-345.

ZHAO HUANG AND QUAN WANG

420

39. J. Zhang, X. Tao, and H. Wang, “Outlier detection from large distributed databases,”
Journal of World Wide Web, Vol. 17, 2014, pp. 539-568.

40. J. L. Zhang, G. Qu, Y. Q. Lv, and Q. Zhou, “A survey on silicon PUFs and recent
advances in ring oscillator PUFs,” Journal of Computer Science and Technology,
Vol. 4, 2014, pp. 664-678.

41. M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design and imple-
mentation of secure reconfigurable PUFs,” ACM Transactions on Reconfigurable
Technology and Systems, Vol. 2, 2009, pp. 1-33.

42. W. Stallings and L. Brown, Computer Security: Principles and Practice, 3rd ed.,
2016, pp. 81-95.

43. A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access control in
IoT: Survey & state of the art,” in Proceedings of the 5th International Conference
on Multimedia Computing and Systems, 2016, pp. 272-277.

44. E. Sahafizadeh and S. Parsa, “Survey on access control models,” in Proceedings of
the 2nd International Conference on Future Computer and Communication, Vol. 1,
2010, pp. v1-1-v1-3.

45. F. N. Shang, W. M. Wu, and Y. H. Gu, “A unified model of RBAC and DAC,” in
Proceedings of the 2nd International Conference on Artificial Intelligence, Man-
agement Science and Electronic Commerce, 2011, pp. 4547-4550.

46. M. A. Aftab, M. A. Habib, N. Mehmood, M. Alsam, and M. Irfan, “Attributed role
based access control model,” in Proceedings of Information Assurance and Cyber
Security, 2015, pp. 83-89.

47. M. E. Kabir, H. Wang, and E. Bertino, “A role-involved purpose-based access con-
trol model,” Information Systems Frontiers, Vol. 14, 2012, pp. 809-822.

48. X. Sun, M. Li, H. Wang, and A. Plank, “An efficient hash-based algorithm for mi-
nimal K-anonymity,” in Proceedings of the 31st Australasian Conference on Com-
puter Science, 2008, pp. 101-107.

49. M. Mustapa, M. Niamat, M. Alam, and T. Killian, “Frequency uniqueness in ring
oscillator physical unclonable functions on FPGAs,” in Proceedings of IEEE 56th
International Midwest Symposium on Circuits and Systems, 2013, pp. 465-468.

50. A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-friendly se-
cure primitive,” Journal of Cryptology, Vol. 24, 2011, pp. 375-397.

51. D. Bryan, “The ISCAS’85 benchmark circuits and netlist format,” in Proceedings of
International Symposium on Circuits And Systems, 1985, pp. 1-4.

52. F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits
and a target translator in fortran,” in Proceedings of International Symposium on
Circuits And Systems, 1985, pp. 695-698.

53. F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal submodular
integrated circuits trojan detection,” IEEE Transactions on Information Forensics
and Security, Vol. 6, 2011, pp. 162-174.

54. S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, and S. Bhunia, “Improving
IC security against trojan attacks through integration of security monitors,” IEEE
Design & Test of Computers Special Issue on Smart Silicon, Vol. 29, 2012, pp. 37-
46.

55. Synopsys security IP: https://www.synopsys.com/designware-ip/security-ip.html.

MULTIPLE SECURITY IPS STRATEGIES FOR SECURING SOC 421

56. Synopsys Verification IP: http://www.synopsys.com/Tools/Verification/Functional
Verification/VerificationIP/Pages/default.aspx.

Zhao Huang (黃釗) received the M.S. degree in Computer
System Architecture from Xidian University, Xi’an, China. He is
currently pursuing the Ph.D. degree in the School of Computer
Science and Technology, Xidian University, Xi’an, China. His re-
search interests include embedded system security, hardware Tro-
jan detection and design for security of integrated circuits.

Quan Wang (王泉) received the B.S., M.S. and Ph.D. de-
grees in Computer Science from Xidian University in 1992, 1997
and 2008 respectively. He is now a Professor at the School of
Computer Science and Technology and the Director of the Institute
of Computer Peripheral Equipment. His research interests include
wireless embedded system, 3-D printing, and wireless networks.

