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In this paper, an improved DE is proposed to improve optimization performance by 

involving four searching strategies: current-to-better mutation, real-random-mutation, 
sharing mutation, and focused search. When evolution speed is standstill, sharing muta-
tion can increase the search depth; in addition, real-random mutation can disturb indi-
viduals and can help individuals diverge to local optimum, focused search can do large- 
scale searches around the best particle. When the evolution progresses well, current-to- 
better mutation will drive individuals to the correct evolution direction. Experiments 
were conducted on all of CEC 2005 test functions, include unimodal, multimodal and 
hybrid composition functions, to present performance of the proposed method and to 
compare with 5 variants of DE includes JADE, jDE, SaDE, DEGL and MDE_pBX. The 
proposed method exhibits better performance than other five related works in solving 
most the test functions.    
 
Keywords: differential evolution, sharing mutation, optimization, real random mutation, 
focused search    
 
 

1. INTRODUCTION 
 

In last four decades, various heuristic-based algorithms were proposed for solving 
numerical optimization and real-world applications, such as genetic algorithm (GA) [1] 
and particle swarm optimizer (PSO) [2], etc. In 1995, the concept of original differential 
evolution (DE) was proposed by Storn and Price [3, 4]. It’s a vector-based evolutionary 
algorithm with simple concept and high efficient. In recent years, more and more DE 
variants were proposed and have been applied for solving many real-world applications. 

In 2006, Brest et al. proposed a self-adapting method for DE [5] to adjust control 
parameters Fi and Cri correspond to each individual. Each individual in the population is 
extended with parameter values. In 2009, Qin et al. proposed a self-adaptive DE named 
SaDE [6]. It combined two mutation strategies “DE/rand/1” and “DE/current-to-best/1” 
and self-adjusted control parameter according to their previous experiences to generate 
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potential solutions. Later, Das et al. proposed a neighborhood concept for population 
member of DE, called DEGL [7]. It’s a similar idea from the community of the PSO al-
gorithms. The small neighborhoods defined over the index-graph of parameter vectors. 
Later, Zhang and Sanderson proposed a new mutation strategy “DE/current-to-pbest” 
with optional external archive named JADE [8]. The optional archive operation adopted 
historical data to provide evolutionary information of direction. The adoptive parameters 
concept was also involved to JADE. In 2012, Islam et al. proposed an interesting DE 
named MDE_pBX [9], which adopted better group (q% of the population size) of ran-
domly selected solutions from current generation to perturb the parent (target) vector.  

In this paper, an improved DE is proposed for solving global numerical optimiza-
tion. The proposed method is incorporated with focused search and three mutation 
schemes include current-to-better-mutation, real-random-mutation and sharing mutation 
for wide and deep searching in solution space. The proposed method can prevent the 
solutions from falling into the local minimum and enhance searching ability. 

2. RELATED WORKS 

2.1 Original DE 
 

Differential evolution (DE) is arguably one of the most powerful stochastic real- 
parameter optimization algorithms in the mainstream. DE is a population-based optimi- 
zation algorithm. The members of population in DE are called parameter vectors. There 
are four common mutation strategies of DE were developed [10, 11] and shown as 
follows. 

 
1. DE/best/1 

 
1 2( )ichild r rbest

n n n nv x F x x       (1) 

 
2. DE/rand/2 

 
3 51 2 4

1 2( ) ( )ichild r rr r r
n n n n n nv x F x x F x x         (2) 

 
3. DE/target/1 

 
1 2( )ichild r ri

n n n nv x F x x       (3) 

 
4. DE/target to best/1 

 
1( )ichild ri best

n n n nv x F x x       (4) 

 
where n and r1, r2, r3, r4, r5  (1, 2, …, P) denote the iteration index and the index of 
randomly selected particles respectively, P denote the population sizes. The scaling 
factor F  (0, 1) adjusts the ratio of the particles’ vector.  
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In DE algorithm, crossover will be is a performed after mutation. It will be active by 
crossover rate, it can prevent particle vector not to be convergent prematurely or too 
quickly, resulting in reducing capability for exploration. Regardless of change of the 
mutation mechanism, DE algorithm uses methods of uniform crossover. After mutation 
mechanism, DE algorithm randomly selected particles vector between current vector and 
donor vector for crossover and produce trial vector as follows: 

, , ,

, ,
, ,

        if ( [0, 1]  or )

        otherwise 

j i G j i r rand

j i G
j i G

v rand C j j
u

x

  


    (5) 

 
where Cr  [0, 1] is a predefined value for crossover rate. If the random value is less 
than Cr, the trial vector will inherit mutation. Otherwise, trial vector will adopt current 
vector directly. If the trial vector obtained by crossover-stage is better than current vector. 
It will be adopted for next iteration. Otherwise, the trail vector will be updated and 
replaced in next iteration. Once particles are updated, DE process will keep in iterations 
until the termination condition is reached. For minimization problems, the DE selection 
can be presented as follows. 

1

        if ( ) ( )

        otherwise 

i i i
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2.2 Related Works of DE 
 

In this section, five typical DE algorithms will be further described. These DE 
algorithms will then be taken into comparison with the proposed method in the ex- 
periments.  

 
1. SaDE 

In SaDE [6], four effective trial vector generation strategies namely the DE/rand/ 
1/bin, DE/rand-to-best/2/bin, DE/rand/2/bin and finally DE/current-to-rand/1 are chosen 
to constitute a strategy candidate pool. In the SaDE algorithm, for each target vector in 
the current population, one trial vector generation strategy is selected from the candidate 
pool according to the probability learned from its success rate in generating individuals 
within a certain number of previous generations. The selected strategy is subsequently 
applied to the corresponding target vector to generate a trial vector. The performance of 
SaDE was compared with SDE [12], and jDE [5] over a suite of 26 bound constrained 
numerical optimization problems, and the authors reported that SaDE was more effective 
in obtaining better quality solutions with the relatively smaller standard deviations and 
higher success rates. 

 
2. jDE 

Brest et al. proposes a self-adaptation scheme for the DE control parameters, called 
Jde [5]. They encode control parameters F and CR with the individual and adjust them 
by introducing two new parameters τ1 and τ2. In their algorithm, a set of F and CR 
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values are assigned to each individual in the population, augmenting the dimensions of 
each vector. The better values of these encoded control parameters lead to better 
individuals that in turn, are more likely to survive and produce offspring and propagate 
these better parameter values. The new control parameters for the next generation are 
computed as follows: 

 

1 2 1

, 1
,

+         if 

                        otherwise 
l u

i G
i G

F rand F rand
F

F




 
 


    (7) 

 

3 4 2

, 1
,

       if 

        otherwisei G
i G

rand rand
CR

CR





 


    (8) 

where Fl and Fu are the lower and upper limits of F and both lie in [0, 1]. Brest et al. use 
τ1 = τ2 = 0.1. As Fl = 0.1 and Fu = 0.9, the new F takes a value from [0.1, 0.9] while the 
new CR takes a value from [0, 1]. As Fi,G+1 and CRi,G+1 values are obtained before the 
mutation is performed, they influence the mutation, crossover, and selection operations 
for the new vector 

, 1.i GX 


 

 
3. DEGL 

Das et al. [7] propose two kinds of topological neighborhood models for DE in 
order to achieve better balance between its explorative and exploitative tendencies called 
DEGL to improvement over the DE/target-to-best/1 scheme. For example, there is a DE 
population

1, 2, ,[ , ,  ..., ]G G G NP GP X X X
  

at generation G. The vector indices are sorted only 
randomly. Furthermore, for every vector

, ,i GX


a neighborhood of radius k (where k is a 
nonzero integer from 0 to (NP − 1)/2) is defined. Then, the vectors of

, ,, , ,...,i k G i GX X

 
  

,i k GX 


 are organized on a ring topology with their indices respectively. Such as vectors  

,NP GX


 and 
2,GX


 are the two immediate neighbors of vector
1, .GX


 As a consequence, for 
each member of the population, a local donor vector is created by employing the best 
fittest vector in the neighborhood of that member and any two other vectors chosen from 
the same neighborhood. The model is defined as 
 

, , _ , , , ,( ) ( )
ii G i G n best G i G p G q GL X X X X X       

     
    (9) 

where the subscript n_besti indicates the best vector in the neighborhood of 
,i GX


and p, q 
 [i − k, i + k] with p  q  i. Similarly, the global donor vector is created as 
 

, , , , 1, 2,( ) ( )
besti G i G g G i G r G r Gg X X X X X       

         (10) 

where the subscript g_best indicates the best vector in the entire population at iteration G 
and r1, r2  [1, NP] with r1  r  i.  and  are the scaling factors. The local and global 
donor vectors are combined with a scalar weight w  (0, 1) to form the actual donor 
vector of the proposed algorithm  
 

, , ,(1 ) .i G i G i GV g L     
 

   (11) 
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Generally, neighborhood connections are independent of the positions of vectors 
pointed to. There is a delay in the information spread through the population regarding 
the best position of each neighborhood. Therefore, the attraction to specific points is 
weaker, which reduces the chance of getting trapped in local minimum. 

 
4. JADE 

The JADE [8] is proposed by Zhang and Sanderson. It can avoid attraction from the 
global best individual in population and improves convergence characteristics of DE. In 
JADE, a new mutation strategy is proposed which referred as DE/current-to-pbest and 
added an optional external archive to track the previous successes and failures. In ad- 
dition, the control parameters in an adaptive adjustment method within each generation 
are updated. The DE/current-to-pbest strategy is a less greedy generalization of the DE/ 
current-to-best/strategy. Instead of only adopting the best individual in the DE/current- 
to-best/1 strategy, the current-to-pbest/1 strategy utilizes the information of other better 
fitness solutions. Moreover, the recently explored inferior solutions are incorporated 
with this strategy. The DE/current-to-pbest/1 with external archive generates the donor 
vector is defined as 
 

1 2
, , , , , ,

( ) ( )i i

p
i G i G i best G i G i r G r G

V X F X X F X X      
     

    (12) 

,
p

best GX


 is randomly chosen as one of the top 100p% individuals of the current population 
with p  (0, 1]. The Fi is the scale factor associated with ith individual and updated 
dynamically in each generation. With the external archive A stored the recently explored 
inferior solution,

2 ,ir G
X


is randomly selected from P  A. The P is the current population. 
The external archive operation is made simply to avoid significant computation overhead. 
Initially it is empty. Then, after first generation, the parent solutions that fail in the 
selection process are added to it. If its size exceeds a certain threshold, then some 
solutions are randomly eliminated from it to keep the archive size fixed. 
 
5. MDE_pBX 

In 2012, Islam et al. propose a new mutation strategy, a fitness induced parent 
selection scheme for the binomial crossover of DE and a simple but effective scheme of 
adapting two of its most important control parameters, called MDE_pBX [9]. The new 
mutation operator named DE/current-to-gr_best/1 is a variant of the classical DE/current- 
to-best/1 scheme as follows.   
 

1 2
, , _ , , , ,

( )i ii G i G i gr best G i G r G r G
V X F X X X X    
     

    (13) 

where 
_ ,gr best GX


 is the best solution from 15% of individuals selected randomly in the 

current generation. Then, normal binomial crossover is performed between the donor 
vector and the randomly selected p-best vector to generate the trial vector at the same 
index. Parameter p is linearly reduced by generations as follows. 
 

max

1
2 (1 )pN G

Gp ceil     
    (14) 
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where G is the current generation number, Gmax is the maximum generations, and ceil(y) 
is the “ceiling” function returning the lowest integer greater than its argument y. Finally, 
the parameter adaptation schemes in MDE_pBX are inspired by JADE, the scale factor 
adaptation is independently generated as follows. 

 
Fi = Cauchy(Fm, 0.1)    (15) 

where Cauchy(Fm, 0.1) is a random number sampled from a Cauchy distribution with 
location parameter Fm and scale parameter 0.1. Denote FSUCCESS as the set of the success- 
ful scale factors based on the last generation, FSUCCESS influences the current generation 
to generate better trial vectors that are likely to advance to the next generation. 

Location parameter Fm of the Cauchy distribution is initialized to be 0.5 and up- 
dated at the end of each generation by following manner. 

 
Fm = wF  Fm + (1  wF)  meanPOW(FSUCCESS)    (16) 

The weight factor wF varies randomly between 0.8 and 1 by following equation. 
 
wF = 0.8 + 0.2  rand(0, 1)    (17) 

and meanPOW stands for the power mean is given by 
 

11.5
1.5

| |( ) ( ) .
SUCCESSSUCCESS

x
POW SUCCESS Fx F

mean F


      (18) 

The crossover probability adaptation is similar with scale factor adaptation except 
the Gaussian instead of Cauchy. 

3. THE PROPOSED METHOD 

In this section, two new mutation methods are proposed to prevent solutions from 
falling into the local minimum. In addition, sharing mutation is also involved to increase 
particles’ searching ability. Finally, the focused search is used to fine tune the searching 
direction around the global best particle. 

 
3.1 DE/current-to-better/1 

 
The original DE mutation schemes is DE/rand/1/bin, introduced by Storn and Price 

[3, 4], it is widely used scheme in the literature [13]; However, some papers [14, 15] in- 
dicate that DE/best/2 and DE/best/1 may have some advantages over DE/rand/1. Recent- 
ly, Islam et al. [9] proposed a scheme, which called DE/current-to-gr_best/1; Although 
this new mutation method performs better results than many recent methods, the popula- 
tion may lose its diversity and global exploration abilities within a relatively small 
number of generations; furthermore it is getting trapped to some locally optimal point in 
the search space. In this paper, the new scheme, which we call DE/current-to-better/1, 
can be expressed as 



 ADAPTIVE SEARCH RANGE AND MULTI-MUTATION STRATEGIES FOR DIFFERENTIAL EVOLUTION 

 

755

 

1 2
, , , , , ,

( ).i ii G i G i better G i G r G r G
V X F X X X X    
     

    (19) 

In Eq. (19),
,i GX


is known as the target vector,
,i GV


is known as the donor vector, the 
scaling factor F is a positive control parameter for scaling the difference vectors. The 

1 ,ir G
X


 and 
2 ,ir G

X


 are two distinct vectors picked up randomly from the current popu- 
lation, and none of them is equal to

,better GX


 or the target vector. 
,better GX


 is chosen from 

top q% individual of current population. This method is similar with the mutation 
method in MDE_pBX, but the 

,better GX


 for every individuals will be differed, it drives 
the popupulation to the better direction instead of convergence to the best individual, so 
this mutation scheme force DE not to fall into local optimum quickly. 
 
3.2 DE/real-random/1 
 

When the population falls into the local optimum, that is, most individuals in the 
same dimension are very similar. This causes the second term of right side in function 
(19) to be close to zero, which will lose the capabilities of search. In the scheme of Real 
Random Mutation, mutation function is defined as follows: 

 

, , ,( ).i G i G i n i GV X F X X  
   

    (20) 

In (20), nX


 is a new born particle and not belongs to current population. The 
contents of this particle are random generated between upper and lower bound of search 
range. The difference between nX


and ,i GX


will be diverged significantly. Thus, the new 

born particle can provide useful information to help clustered particles escape local 
optimum. Fig. 1 shows the particle’s movement, driven by Eq. (20) in a two-dimensional 
search space. 

 

 
Fig. 1. Particles’ movement by real random mutation. 

 

3.3 Sharing Mutation 
 
In order to increase efficiency while exploring the solution space, the Sharing 

Mutation (SM) [16] is adopted. For the SM, one of the dimensions will be picked 

 

,i GX


 

Population Individuals 

Random Generated Particle 
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randomly; the mutating individual corresponding to this dimension is perturbed and 
restricted as this dimension’s solution for all chromosomes. For example, a randomly 
selected dimension (d) of the individual i gets perturbed in the range between [Sdmin, 
Sdmax], where Sdmin and Sdmax are the minimal and maximal solution of d of all individuals 
respectively. In other words, it is the sharing of searching ranges of selected dimensions 
among chromosomes to efficiently generate new solutions. 
 
3.4 Focused Search 
 

According to DE’s search behavior, it can be found that DE can perform well 
performance on widely search for exploring unsearched solution space but weakly on 
perform deeply search. In order to make particles more efficient to approach potential 
global best solution, in this paper, the focused search strategy is proposed to gradual 
reduce the scale of searching vector of the global best particle.  

 

 
Fig. 2. Pseudo code of focused search. 

 

After mutation and crossover, the best particle will then be selected. Each dimen- 
sion’s moving vector is according to of current previous moving vector. In first stage, the 
moving is according to initial search range. For example, if the initial search range is 
[60, 100], the moving vector will be (100  (60))/2 = 80. Thus, the moving vector will 
be added to one of dimensions of the best particle. If the particle’s new position is better 
than original position, thus, the particle’s new position will be kept and this moving 
vector will be applied in next iteration. In other words, if the particle’s new position is 
worth than original position or over the searching boundary, the applied moving vector 
will be change to negative, i.e. 80. Similar to previous step, if the particle’s new 
position is better than original position, thus, the particle’s new position will be kept. The 
moving vector will be applied in next iteration. In other words, if the particle’s new 
position is worth than original position or over the searching boundary, the applied 
moving vector will be reduce to as half previous moving vector, i.e. 40. If this moving 
vector can help particle find better solution, it will be kept. On the contrary, moving 
vector will be change to negative, i.e. 40. The rest steps of moving vector adjustment are 
the same previous. Thus, the moving vector will gradual reduce according to current 
search state. The pseudo code of focused search strategy is shown in Fig. 2. The focused 

The initial moving vector vm
d = (Initial_range_max -Initial_range_min)/2  

For each dimension d of the global best particle x 
If (fitness(xd + vm

d) < fitness(xd)) 
  xd = xi + vm

d; 
elseif (fitness(xd + (vm

d)) < fitness(xd)) 
  xi = xi  vm

d; 
else 

  vm
d = vm

d / 2; 
Endif 

Endfor  
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Fig. 3. Flowchart of the proposed method.

search will help particle to search the area getting closer to itself once a dimension. It 
seems waste much time on single dimension search but it will fine tune the searching 
direction for finding global best solution.  

 
3.5 Flowchart of Proposed Method 
 

The complete flowchart of the proposed method is given in Fig. 3. After initializing, 
the DE/current-to-better is the first performed mutation for all particles of the population. 
Then, the crossover is to combine particles’ information. If there is no better solution can 
be found after continuous G generations, the T% elements of donor vectors will perform 
DE/real-random/1 mutation and sharing mutation. The rest particles will also perform 
DE/current-to-better mutation.  
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Once any better solution is found, T value will be set as zero. All the particles will 
be moved by DE/current-to-better. After selection and fitness evaluation, the global best 
particle will be pickup to perform focused search. The previous steps will repeat multiple 
iterations until the stop criteria are reached. 

4. EXPERIMENT RESULTS 

4.1 Test Functions 
 

In order to test the proposed method and to compare it with DE related works, CEC 
2005 benchmarks [17] were selected, which include five unimodal, seven basic multi- 
modal, two expanded multimodal and eleven hybrid composition multimodal functions. 
The global optimum (equal to function bias), search range, initialization range and 
function types of each test function are presented in Table 1. 

Table 1. Related parameter settings of the CEC 2005 test functions. 
Functions Global Optimum Initial Range Search Range Function Types 

F1 450 [100, 100]D [100, 100]D Unimodal 
F2 450 [100, 100]D [100, 100]D Unimodal 
F3 450 [100, 100]D [100, 100]D Unimodal 
F4 450 [100, 100]D [100, 100]D Unimodal 
F5 310 [100, 100]D [100, 100]D Unimodal 
F6 390 [100, 100]D [100, 100]D Basic multimodal 
F7 180 [0, 600]D No Boundary Basic multimodal 
F8 140 [32, 32]D [32, 32]D Basic multimodal 
F9 330 [5, 5]D [5, 5]D Basic multimodal 
F10 330 [5, 5]D [5, 5]D Basic multimodal 
F11 90 [0.5, 0.5]D [0.5, 0.5]D Basic multimodal 
F12 460 [π, π]D [π, π]D Basic multimodal 
F13 130 [5, 5]D [5, 5]D Expanded multimodal 
F14 300 [100, 100]D [100, 100]D Expanded multimodal 
F15 120 [5, 5]D [5, 5]D Hybrid Composition 
F16 120 [5, 5]D [5, 5]D Hybrid Composition 
F17 120 [5, 5]D [5, 5]D Hybrid Composition 
F18 10 [5, 5]D [5, 5]D Hybrid Composition 
F19 10 [5, 5]D [5, 5]D Hybrid Composition 
F20 10 [5, 5]D [5, 5]D Hybrid Composition 
F21 360 [5, 5]D [5, 5]D Hybrid Composition 
F22 360 [5, 5]D [5, 5]D Hybrid Composition 
F23 360 [5, 5]D [5, 5]D Hybrid Composition 
F24 260 [5, 5]D [5, 5]D Hybrid Composition 
F25 260 [2, 5]D No Boundary Hybrid Composition 

 
4.2 Parameters Settings 

 
In the experiments, twenty five test functions with 50 dimensions are conducted for 
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comparing the proposed method with five related works jDE [5], SaDE [6], DEGL [7], 
JADE [8] and MDE_pBX [9]. The parameters of these methods are according to their 
original settings. Except the initial population size of proposed method is set as 100 and 
the scale factor (F) and crossover probability (Cr) adaptation of proposed method are 
referring to MDE_pBX [9]. Each algorithm is executed for 25 times independently. The 
maximum fitness evaluation (FEs) is set as 500,000. G, T and q are set to 3, 5 and 15 in 
proposed method. The mean values and standard deviation of are calculated. If the value 
is less than 10-12, the value is deemed to 0.  
 
4.3 Experimental Results 

 
The experiments results, which include the mean and standard deviation, 25 runs of 

the six optimizers on the 25 test functions with 50 dimensions, are listed in Table 2. The 
best results among the six approaches are shown in bold. 

Table 2. Experiment results of the CEC 2005 test functions. 
Methods Results F1 F2 F3 F4 F5 

JADE 
Mean 
Std. 

0.0000E+00
0.0000E+00

5.6310E-04
7.8233E-06

8.7156E+04
3.6847E+04

3.1600E+03 
4.1340E-01

3.0550E+03 
5.4850E+02 

jDE 
Mean 
Std. 

3.1544E-09
4.9946E-09

5.2020E+03
1.4860E+03

2.9770E+07
5.7440E+06

1.0194E+04 
2.1828E+00 

4.2060E+03 
5.0880E+02 

SaDE 
Mean 
Std. 

1.4872E-11
2.8335E-12

2.2800E-03
8.5450E-03

7.1790E+05
1.0070E+06

9.7780E+04 
9.8350E+01 

5.9920E+03 
4.4640E+02 

DEGL 
Mean 
Std. 

6.4679E-10
9.8640E-11

1.2960E-05
9.5612E-06

2.3110E+05
1.0320E+05

2.8851E+04 
1.8932E+01 

6.0930E+03 
6.8400E+02 

MDE_pBX 
Mean 
Std. 

0.0000E+00
0.0000E+00

4.4563E-06
8.7963E-11

3.5438E+04
1.7823E+04

1.2075E+02 
2.3453E-06 

2.0758E+03 
1.9111E+02 

Proposed 
Method 

Mean 
Std. 

0.0000E+00
0.0000E+00

4.4862E-10
6.9845E-10

1.8787E+05
1.2100E+05

8.7260E+03 
4.4927E+03 

1.9887E+03 
4.6488E+02 

Methods Results F6 F7 F8 F9 F10 

JADE 
Mean 
Std. 

1.5413E+01
1.0642E+01

6.1932E+03
1.8400E+00

2.1136E+01
3.2510E-02

1.3520E+02 
2.5910E+00 

1.9350E+02 
2.0600E+01 

jDE 
Mean 
Std. 

4.1758E+01
8.9100E+00

6.3114E+03
1.5960E+01

2.1132E+01
3.8070E-02

1.7160E+02 
1.4090E+01 

1.9597E+02 
5.6236E+01 

SaDE 
Mean 
Std. 

1.1337E+01
1.0440E+01

6.1951E+03
4.5940E-12

2.1132E+01
3.4580E-02

1.1480E+02 
1.2660E+01 

6.3420E+01 
1.2870E+01 

DEGL 
Mean 
Std. 

1.3452E+01
1.1080E+01

6.1953E+03
4.5940E-12

2.1131E+01
3.9170E-02

1.6200E+02 
1.7430E+01 

1.0217E+02 
3.5590E+01 

MDE_pBX 
Mean 
Std. 

7.9745E-01
1.0112E+00

6.1835E+03
2.0912E+00

2.0422E+01
3.1241E-02

1.0642E+02 
1.2346E+01 

3.6818E+01 
1.3496E+01 

Proposed 
Method 

Mean 
Std. 

3.4166E+00
5.0378E+00

5.6102E-03
1.0000E-02

2.0173E+01
2.7679E-01

2.1838E+01 
8.2991E+00 

7.8880E+01 
1.7897E+01 

Methods Results F11 F12 F13 F14 F15 

JADE 
Mean 
Std. 

6.2080E+01
1.7440E+00

1.7680E+05
7.1050E+04

2.3112E+01
4.7840E-01

2.2840E+01 
2.5486E-01

3.7690E+02 
8.7640E+01 

jDE 
Mean 
Std. 

7.3300E+01
1.0080E+00

1.4730E+05
1.9280E+05

2.5603E+01
1.3220E+00

2.3090E+01 
2.8437E-01

4.0000E+02 
0.0000E+00 

SaDE 
Mean 
Std. 

6.6340E+01
1.4850E+00

8.7810E+03
7.0920E+03

2.7710E+01
4.1120E+00

2.2840E+01 
2.0634E-01

3.8827E+01 
1.0755E+02 
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Table 2. (Cont’d) Experiment results of the CEC 2005 test functions. 

DEGL 
Mean 
Std. 

6.2900E+01
1.3600E+01

5.7810E+04
4.5660E+04

3.0630E+01
4.3610E+00

2.2620E+01 
3.3750E-01

3.8982E+02 
4.9284E+01 

MDE_pBX 
Mean 
Std. 

4.1328E+01
1.5450E+00

1.0779E+04
8.4902E+03

2.0628E+01
1.2654E+00

2.1720E+01 
2.0801E-01

3.6670E+02 
6.1264E+01 

Proposed 
Method 

Mean 
Std. 

3.0107E+01
5.7684E+00

7.6800E+03
8.9040E+03

4.2014E+00
9.2838E-01

2.1715E+01 
7.9225E-01 

2.7579E+02 
9.1441E+01 

Methods Results F16 F17 F18 F19 F20 

JADE 
Mean 
Std. 

1.4370E+02
5.2267E+01

1.8960E+02
3.8745E+01

9.2060E+02
1.8930E+00

9.6031E+02 
2.5236E+01 

9.8672E+02 
1.8675E+02 

jDE 
Mean 
Std. 

2.7160E+02
4.7190E+00

3.0590E+02
1.1630E+01

9.1450E+02
3.1630E+01

9.2090E+02 
1.0406E+01 

9.9121E+02 
1.5365E+01 

SaDE 
Mean 
Std. 

1.5420E+01
6.1686E+01

1.9340E+02
2.9679E+00

9.0410E+02
5.2080E+01

9.3493E+02 
1.9639E+01 

9.3167E+02 
2.0137E+01 

DEGL 
Mean 
Std. 

1.3153E+02
1.9986E+01

1.7659E+02
2.3653E+01

9.6067E+02
2.8458E+01

9.1430E+02 
2.0105E+01 

9.2196E+02 
4.5874E+01 

MDE_pBX 
Mean 
Std. 

1.1142E+02
3.5706E+01

1.2502E+02
1.8344E+01

8.2640E+02
8.5217E+01

9.0496E+02 
2.8204E+01 

9.0280E+02 
2.5078E+01 

Proposed 
Method 

Mean 
Std. 

7.0344E+01
6.9722E+01

1.0729E+02
1.0058E+02

8.5957E+02
4.3799E+01

8.3812E+02 
1.0016E+00 

8.4738E+02 
3.0807E+01 

Methods Results F21 F22 F23 F24 F25 

JADE 
Mean 
Std. 

8.5230E+02
3.5175E+02

9.1370E+02
2.4356E+01

8.1030E+02
2.4572E+02

2.0000E+02 
0.0000E+00 

1.6632E+03 
5.5842E+00 

jDE 
Mean 
Std. 

8.0619E+02
1.0896E+02

9.7960E+02
1.4851E+01

8.3044E+02
1.0787E+02

2.0000E+02 
0.0000E+00 

1.7280E+03 
6.2562E+00 

SaDE 
Mean 
Std. 

8.6400E+02
1.5779E+02

9.7245E+02
3.3383E+01

8.6405E+02
1.5266E+02

2.0000E+02 
0.0000E+00 

1.7586E+03 
3.1453E+00 

DEGL 
Mean 
Std. 

8.3600E+02
2.1772E+02

9.4242E+02
3.5647E+01

8.3934E+02
1.6620E+02

7.2465E+02 
8.3066E+01 

1.6710E+03 
6.5096E+00 

MDE_pBX 
Mean 
Std. 

5.0000E+02
0.0000E+00

8.9870E+02
9.0750E+00

5.0000E+00
0.0000E+00

2.0000E+02 
0.0000E+00 

9.6149E+02 
6.0040E+00 

Proposed 
Method 

Mean 
Std. 

6.0916E+02
1.1598E+02

5.0008E+02
8.1383E-02

6.3911E+02
9.8057E+01

3.6558E+02 
3.4886E+02 

4.8622E+02 
4.2724E+02 

From the results, it can be observed that the proposed method performs better 
results than related works. JADE, MDE_pBX and proposed method archive the same 
results which real optimum solutions are found in function 1. To sum up, in 25 test 
functions, the proposed method leads in 15 functions, and JADE, jDE, SaDE, DEGL and 
MDE_pBX lead in 2, 1, 3, 0 and 9 functions respectively. 

5. CONCLUSIONS 

In this paper, an improved differential evolution (DE) is proposed for solving global 
numerical optimization problems. The proposed method performs better results on most 
test functions. The proposed method contains three major parts which are differentiates 
from the original DE. The current-to-better mutation will pick up better particles for 
guiding other particles toward to potential solution space. Then, the sharing mutation 
will find tune to evolution direction for depth search. Also, the real-random mutation can 
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prevent particles from falling into the local optimum. Finally, the focused search can fine 
tune the searching direction around the global best particle.  

In experiments, twenty five test functions of CEC 2005 benchmark with 50 dimen-
sions were selected for testing performance of proposed method and related works. From 
the results, it can be observed that the proposed method exhibit better performance on 
unimodal, multimodal and hybrid composition functions than other related works. 
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