
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 903-921 (2019)
DOI: 10.6688/JISE.201907_35(4).0012

903

Efficient Spatial Keyword Search Methods
for Reflecting Multiple Keyword Domains

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

Department of Computer Science and Engineering
Sogang University

Seoul, 04107 Korea
E-mail: {bumjoonjo; junhongahn; jungsung}@sogang.ac.kr

In this paper, we propose multiple keyword domain-based spatial keyword search

queries, called the Multiple Keyword Domain based range (MKDR) query and k-Nearest
Neighbor (MKDkNN) query, and their query processing algorithms. The proposed que-
ries retrieve objects that satisfy the searching conditions for the given environmental
conditions of object as well as their spatial and textual relevance. The proposed queries
consist of two sub-queries. The first sub-query, called the primary query, identifies a
group of geo-textual objects that satisfy the requirements for spatial and textual relevance
of the query. The second sub-query, called the refining range query, identifies the geo-
textual objects that satisfy the requirement for environmental conditions of objects. Be-
cause the existing methods for spatial keyword queries cannot efficiently handle the pro-
posed queries, we first categorize the data according to their domains of keywords and
simultaneously search multiple indexes constructed for objects in each domain. Since our
methods prune the nodes that cannot satisfy environmental conditions in the earlier stage
of searching, they reduce the number of refining range queries for MKDR and MKDkNN.
Our experimental performance analyses show that our proposed query processing algo-
rithms significantly reduce the query response times of MKDR and MKDkNN.

Keywords: spatial keyword query, geo-textual object, multiple keyword domain based
range (MKDR) query, multiple keyword domain based kNN (MKDkNN) query, IR-trees
collaboration algorithm

1. INTRODUCTION

With the growing popularity of micro blogs in recent years, various services that
use geo-textual data have received significant attention. Geo-textual data refers to data
that contain both geographical information and textual contents. For example, tweets,
reviews, news comments, and other social media contents are tagged with their localities
and the keywords of their context. Unlike the spatial data retrieval and the document
retrieval, geo-textual data retrieval has a unique characteristic that requires spatial prox-
imity and textual relevance simultaneously. In order to satisfy various demands on geo-
textual data retrieval, a significant amount of research has been done to develop various
kinds of spatial keyword queries and their query processing methods.

However, in our observation, there is a lack of queries to search for objects satisfy-
ing requirements for the environmental conditions of the object. The environmental con-
dition refers to which other interested objects are located in the near the object. For ex-
ample, the existing spatial keyword query, Boolean range query, can be given as the fol-
lowing statement: “Find the hotels that provide ‘free Wi-Fi’ and ‘twin bed room’ within

Received January 30, 2018; revised May 15, 2018; accepted July 27, 2018.
Communicated by Jianliang Xu.

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

904

1km from the bus station.” In this example, ‘1km’ is a requirement for spatial relevance,
and the keywords ‘Wi-Fi’ and ‘twin bed room’ are requirements for textual relevance.
However, sometimes we need the additional filtering conditions for surrounding environ-
ment, such as “There should be a Chinese restaurant selling ‘Beijing roast duck’ nearby the
hotel.” Although the requirements for these search conditions are often used in our daily life,
the queries for filtering objects by their environmental conditions are not yet developed.

In order to deal with the requirements for these search conditions, we define two
types of novel spatial keyword queries, called the Multiple Keyword Domain based
range (MKDR) query and the Multiple Keyword Domain based k-Nearest Neighbor
(MKDkNN) query by extending the existing spatial keyword queries. The proposed que-
ries filter objects by environmental conditions of the object as well as query range and
query keywords. In the proposed queries, the search conditions for the environmental
conditions of an object are given as the sub query, in the form of the Boolean range que-
ry. This sub query, named refining range query, searches around the object to identify
whether the objects of the desired type are located nearby.

In order to effectively process our proposed queries, we present a query processing
method. Since the proposed queries should access various types of objects to evaluate the
environmental conditions of the target objects, the existing methods using a single spatial
keyword index are not efficient to process our queries. Suppose that we construct a sin-
gle IR-tree on a geo-textual database that covers all types of the objects used to evaluate
environmental conditions for these objects. Then the geo-textual objects which contain
the keywords of the query can be grouped together with unrelated objects, and we might
need to access a significant amount of node to find the objects of interest. Moreover,
increasing the size of index and inverted file makes the search process more inefficient.

In our query processing methods, we first divide the geo-textual database according
to keyword domain of objects and construct IR-trees [1] in each domain to construct
small sized index and grouping textual related objects. Based on this multiple keyword
domain based indexes, our query processing algorithms cooperatively search multiple
indexes to prune nodes that cannot satisfy the environmental conditions in the earlier
stage of search. The advantages of our methods are as follows. First, they can process
more efficiently because the size of indexes and inverted files of index are relatively
small. Second, they can prune the node that cannot satisfy the environmental condition in
the earlier stage of search. Finally, the proposed algorithms minimize the repeated search
for the same node of the indexes because multiple indexes share the intermediate result
for cooperative searching process.

The rest of this paper is organized as follows. In Section 2, we discuss the related
work. In Section 3, we describe formal definitions for the MKDR query and MKDkNN
query. In Section 4, we propose a collaboration algorithm of multiple IR-trees for effi-
cient processing of the MKDR and MKDkNN queries. In Section 5, we evaluate the
performance of our method through experiments. Finally, Section 6 concludes this paper.

2. RELATED WORK

2.1 Spatial Keyword Queries

The query for geo-textual data is characterized by the spatial proximity used in the

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 905

spatial database and the textual relevance used in the information retrieval. In this view-
point, Gao Cong [2] defines standard queries of spatial keyword queries by combination
of information retrieval queries – such as Boolean queries and ranking based queries 
and spatial queries  such as range query and kNN query . The name of each standard
spatial keyword query and their definitions are as follows.

 Boolean range query

A Boolean range query returns all objects that are located in the query region and that
contain all the query keywords.

 Boolean kNN query
A Boolean kNN query returns up to k-nearest objects. Each of which contains all the
query keywords.

 Top-k range query
A top-k range query returns up to k objects with the most textual relevance. The result
objects must also be located within the query region.

 Top-k kNN query
A top-k kNN query returns k objects that have the highest textual and locational rele-
vance.

As the definition of each query, the keywords and location of objects, which are ex-

plicitly stored as attribute values of individual objects, are directly compared to the query
point and query keywords for query processing. However, the m-closest keywords
(mCK) query [3] and collective queries [4, 5] having implicit conditions as search condi-
tions, it becomes important what kinds of objects are located around the object. The
mCK query retrieves a set of the closest objects whose combined textual descriptions
cover m query keywords. In the case of mCK query, the similarity between individual
object and query keywords are less important than what objects are located in nearby
object. The collective keyword query is a query that combines the mCK query and spa-
tial range query. It retrieves a set of objects that their combined textual descriptions col-
lectively cover the query keywords, and are located closely each other as well as all of
them are located within the query region.

As the mCK query and collective spatial keyword queries, the relation between ob-
jects can be used as a third filtering condition together with spatial proximity and textual
relevance. However, in our observation, there is no query that simultaneously examines
all of these three conditions to search individual object. To satisfy this requirement, we
develop a new type of query that defines the environmental condition of the object as a
third search condition in section 3.

2.2 Indexing Techniques for Spatial Keyword Data

Most indexing techniques for geo-textual data are also designed to meet the re-

quirements of standard queries. The key idea of these methods is to allow objects to be
filtered by using keywords and spatial information simultaneously in the search process.
To achieve this goal, various techniques for combining inverted files with spatial index-
ing techniques have been developed [6-9]. For example, IR-tree [1] and other R-tree
based methods construct an R-tree using spatial information of the geo-textual data, and

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

906

combine each node with an inverted file and a document summary that describe the tex-
tual information for the objects in their sub-tree. The inverted file indicates which key-
word is associated with which child node, and the document summary provides a sum-
mary of textual information of the documents in the sub-tree of the node. The limitation
of these methods using inverted indexes is that they require a lot of resources to maintain
and retrieve large inverted files. Moreover, as the number of keywords increases, the
textual relevance of the data which are grouped together should decrease because there is
no consideration to preserve the textual relevance of grouped objects.

S2I [10] and I3 [11] pointed out these problems and proposed methods for decom-
posing objects by keyword and managing them individually. In these methods, the geo-
textual objects are decomposed into multiple key-value pairs, and indexes are only pro-
vided for objects containing frequently appearance keyword. These methods show supe-
rior performance for single keyword queries because the sizes of separate indexes are
relatively smaller than a single-domain-based database, and the textual relevance of
grouped objects are maximized. However, these methods are not suitable for processing
our proposed queries because they require refining process for duplicate searching for
the decomposed object.

3. PROBLEM DEFINITION AND MULTIPLE KEYWORD DOMAINS

3.1 Multiple Keyword Domains based Spatial Keyword Queries

Multiple Keyword Domains based Range Query

Geo-textual data can be viewed as a spatial object that contains a set of keywords.
Let O be a database consisting of a set of geo-textual objects. Each geo-textual object
oO is defined as a pair (o., o.), where o. is a two-dimensional geographical point
location and o. is a set of keywords. The MKDR query retrieves geo-textual objects
that satisfy three conditions: the objects are located within query range, contain a set of
query keywords, and must pass an environmental evaluation. Two sub-queries, called
primary range query and refining range query, are used to examine these conditions. The
primary range query takes three arguments, a set of keywords, query range, and query
point to retrieve the geo-textual objects that are located within query range and contain
the query keywords. The refining range query examines the environmental conditions of
objects. It takes a keyword-range pairs as arguments, and investigates each result of the
primary range query to identify whether there is an object with a refining keyword within
the given refining range. Note that an MKDR query may take multiple refining range
queries. We formally define the MKDR query and its sub-queries as follows.

Definition 1: Multiple Keyword Domains based Range (MKDR) query An MKDR
query qMKDR = p, rP, wp, {(wR1, rR1), (wR2, rR2), …, (wRm, rRm)} takes four arguments;
query point p, query range rP, a set wP of keywords for primary range query, and a set of
keywords-range pairs (wRi, rRi) as refinement conditions for refining range queries. The
result of an MKDR query, qMKDR(O), is then the intersections of the results of primary
range query and the results of all the refining range queries corresponding to the given
refinement conditions.

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 907

Definition 2: Primary Range Query (PRQ) The primary range query qPRQ = p, rP, wP
takes three arguments, where p is a query point, rP is a range of query and wP is a set of
keywords. The result of PRQ, qPRQ(O), is a set of objects such that oqPRQ(O)(dist(p,
o.) < rp  wp  o.).

Definition 3: Refining Range Query (RRQ) A refining range query qRRQ = wR, rR ac-
cepts a set wR of keywords and range rR pair as arguments. The result of an RRQ, qRRQ(O),
is a subset of O containing objects such that oqPRQ(O)((oO\qRRQ(O))(dist(o., o.)
< rR)  wR  o.).

A running example of an MKDR query is shown in Fig. 1. For simplicity of exam-

ple, each keyword set for sub queries contains only a single keyword. The objects have a
one of three types of keyword, w1, w2, and w3. Suppose that the MKDR query qMKDR = q,
r1, w1, {(r2, w2)} is issued. In this example, the number of refining queries is one (i.e., m
= 1). For the primary range query, objects d1 and d9 are returned because they are located
within range r1 and contain the keyword w1. Then, the refining range query is processed
by using this result set. Object d1 satisfies the condition because an object d7 of keyword
w2 exists within the range r2. However, the object d9 does not satisfy the condition of the
refining query because there is no object within the query range r2. Therefore, object d1
is returned as the result of the MKDR query.

Fig. 1. A running example of an MKDR query.

Multiple Keyword Domains based k-Nearest Neighbor Query
The MKDkNN query retrieves the k geo-textual objects nearest from the user’s

current location. The objects in the result set of MKDkNN query must contain query
keywords and also satisfy the environmental conditions. The MKDkNN query can be
divided into two sub-queries  primary kNN query and refining range query. The prima-
ry kNN query takes three arguments, a set of keywords, the number of nearest neighbors,
and the query point. It finds the top-k closest geo-textual objects that contain the query
keywords. The refining range query, same as described in Definition 3, is also used to
examine the environmental evaluation of objects for the MKDkNN query. Formal defini-
tions of the MKDkNN query and its sub-queries are as follows.

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

908

Definition 4: Multiple Keyword Domain based k-Nearest Neighbor(MKDkNN) query
An MKDR query q = p, k, wp, {(wR1, rR1), (wR2, rR2), …, (wRm, rRm)} takes four argu-
ments; query point p, the number of neighbors k, a set wp of keywords for primary kNN
query, and a set of refinement conditions (wRi, rRi) for refining range queries. The result
of an MKDkNN query, q(O), is then the intersections of the result of primary kNN query
and the results of all the refining range queries corresponding to the given refinement
conditions.

Definition 5: Primary kNN Query (PkNNQ) The primary kNN query PkNNQ qkNNQ
= p, k, wP takes three arguments, where p is a query point, k is the number of neighbors
and wp is a set of keywords. The result of PkNNQ, qkNNQ(O), is a set of k objects, each of
which covers all the keywords in wp. The objects are ranked according to their distances
from p. Formally, oqkNNQ(O)((∄oO\qkNNQ(O))(dist(p, o.)  dist(p, o.))  wp 
o.).

A running example of an MKDkNN query is shown in Fig. 2. Similar to Fig. 1,

there are three types of keyword, w1, w2, and w3. For a given MKDkNN query qkNNQ = p,
2, w1, {r1, w2}, the 2-nearest objects of primary kNN Query are d4 and d8. However,
considering with environmental condition of refining query, d4 cannot be the result of
query because there is no corresponding object nearby of it. Therefore, the object d8 and
d7, that are located far away from q than d4, is selected result set of the query.

Fig. 2. A running example of an MKDkNN query.

3.2 Multiple Keyword Domains based Spatial Keyword Data Indexing

The most time-consuming process of the multiple keyword domain based queries is

the refining process. If we first process a primary query, then a large number of refining
range queries would be processed to refine a result set of the primary query. In order to
reduce the search space for each sub queries, we categorize objects according to their
keyword relevance, and construct small-sized individual indexes for each group of ob-
jects. We call the keywords of each group as a keyword domain. If the domain of data is

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 909

ambiguous, the database is required to be artificially split into several domains. The ex-
isting keyword clustering techniques can be used to split domains. There are various
methods of keyword clustering, but we do not discuss each clustering method in this
paper because that is out of the focus of this paper.

Fig. 3 shows the overall structure of our multiple domain based spatial keyword in-
dexes. On top of the structure, keyword domain classification layer is implemented to
find the appropriate domains for query keywords. The keyword domain classification
layer contains a keyword index (such as B+ tree) for each keyword and a pointer to the
root node of the spatial keyword index of the corresponding domain. We used the IR-tree
as an index for the individual domains. When processing the query, the keyword classi-
fier first finds the domains of query keywords through the keyword index, and explores
the IR-trees of the corresponding domains. If the same keyword appears in multiple do-
mains at the same time, objects containing the keyword are replicated to each domain.

Fig. 3. The overall structure for multiple keyword domains based index.

Fig. 4. A naïve algorithm for multiple keyword domains based query.

Fig. 4 shows the naïve algorithm for processing MKD and MKDkNN queries based
our multiple keyword domain based index structure. The algorithm first finds the domain
of the primary query (abbreviated as DP) through the keyword domain classifier and
searches the index of the DP for the processing primary query. When the primary query

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

910

process is finished, the refining domain (abbreviated as DR) is searched in the same way,
and each object of the result set is used as a query point to process the refining.

4. MULTIPLE KEYWORD DOMAIN BASED SPATIAL KEYWORD
QUERY PROCESSING TECHNIQUES

4.1 Approximate Refinement for Multiple Domain based IR-trees

The multiple IR-trees not only reduce the search space of the database required to

process the primary and refining queries, but also give us additional pruning chance dur-
ing index searching. Notice that the number of refining range queries in the naïve algo-
rithm is equal to the size of the result set for the primary query. If the nodes or objects
that will be removed by the refining range query are filtered during primary query pro-
cessing, the number of refining range queries can be reduced. Based on this approach,
we define an approximate refinement range for cooperation among multiple IR-trees.
The basic idea of the approximate refinement range is to identify nodes that are not likely
to satisfy environmental conditions at an earlier stage of the search.

Fig. 5 illustrates an example of an expanded range for the approximate refinement.
Based on the size and position of the current node  to be traversed in DP, the expanded
range is derived from expanding the refinement range Ri to the MBR. If there is an over-
lapped node of IR-tree in the DR within the expanded range, the current traversed node
is classified as a node that is likely to satisfy the condition. If there is no object or node
within the expanded range in the DR, the current traversed node is removed from the
searching plan without waiting for the results of the primary range query. Fig. 6 illus-
trates an example of an approximate refinement for DR. In this example, MBR N2 is
considered to satisfy the environmental conditions because there are nodes of the re-
finement domain overlapping with the extended range.

Fig. 5. Expanded range of the node in DP.

(a) MBRs of IR-tree in the DP. (b) Extended Range ER based on N2 for

approximate refinement.
Fig. 6. Example of an approximate refinement.

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 911

Even if the approximate refinement provides additional pruning opportunities, per-
forming an approximate refinement whenever we visit a node is still costly. The reason is
that, when we try to perform refining query on adjacent objects, we should perform a
large number of repetitive search on the same node, for example, the root of the refining
domain. In order to eliminate this inefficiency, we simultaneously traverse multiple IR-
trees and record intermediate result for approximate refinement for each node. Because
the geo-textual objects are already grouped by their spatial proximity, adjacent objects
that have the same parent node can share intermediate results of the refining process.
Therefore, we store the nodes that are searched in the DP in the stack with the list of DR
nodes overlapped the approximate refining range. This allows the refining query for the
child node to start searching from the node list stored in the parent node instead of
searching for a common ancestor node. Fig. 7 illustrates the node stack for search pri-
mary query and a list of associated nodes in DR when we search node R5 in depth first
search order. In next iteration of the example, the refining process of objects contained in
node R5 is started from R6 of DR directly.

Fig. 7. An example for stack to search the node R5.

4.2 Multiple IR-trees Collaboration Algorithm for the MKDR

An effective strategy for searching the IR-trees for the primary and refining range
queries is through the cooperation of multiple IR-trees using an approximate refinement.
To simplify the problem, we assume that we already know what domains are required for
the refining query. Algorithm 1 shows the collaboration technique-based MKDR query
processing algorithm. The stack S contains candidate nodes derived from the primary
range query and nodes in DR overlap with the approximate refining range. Q is a set of
node lists. Each node list Qi  Q contains the intermediate result for approximate refining
query in ith domain. Set V is a final result of MKDR query.

Algorithm 1: Generate a set of Multiple Keyword Domain based Range Query result
Input: Query point q, primary query range rP, primary query keywords kP, set K of

keywords-range pairs <kRi, rRi> for ith refining domain .
Output: A set of geo-textual objects
V = 
Q = 
for each domain i

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

912

Add a root node of IR tree for DRi to Qi

// The element of S is a pair <node, Set of node list for refining query>
S.push(root node of IR tree for DP, Q)
while S is not empty do

<node n, Set of node list Q> = S.pop()
 if n is not a leaf node then
 for each child node c of n
 if (dist(c, q) < r && ContainsKeywords(c, k)) then
 for each domain i

window range W = expand(c.MBR, ri)
Qi = (ApproximateRefining(W, ki, Qi))

 if (all of Qi is not empty) then
 S.push(c, Q)
 else if n is a leaf node then
 for each object o in n
 if(dist(o, q) < r && ContainsKeywords(o, k))

for each domain i
 if(RefiningRangeQuery(o, ri, ki, Qi) returns true) then
 continue process to next domain
 if all of refining range queries return true

V = V{o}
return V

In initial stage of algorithm, S stores the root node of IR tree in primary domain,

and set of the root nodes for multiple DR. If the candidate node in S is not a leaf node,
the approximate refinement is processed by expanding the range of the MBR. A function
ApproximateRefining() represented in Algorithm 2 traverses the IR-trees for DR, and
returns a set of nodes overlapped with the expanded window range. If there is no node or
object which overlapped by the expanded range, the algorithm returns an empty list and
current node is not inserted into search plan.

If the candidate node is a leaf node, the algorithm examines the objects by using the
function RefiningRangeQuery() shown in Algorithm 3. This function evaluates the envi-
ronmental condition of object and returns a result as a Boolean value. After processing
refining range queries, the algorithm inserts the object that passed refining range query
into the result set V. As a result, the result set of MKDR query contains elements within
query range r, contains the keywords of k, and satisfies the conditions of the refining
range queries.

Algorithm 2: Approximate Refining
Input: Query window W, keywords k of ith domain, list L of node for IR tree
Output: A node list S contains nodes overlapped with the query window for each
node n in L

 if n is not a leaf node then
for each child node c of n

if W overlap with c.MBR && ContainsKeywords(c, k) then
 add c to node list S

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 913

 else if n is a leaf node
 add n to node list S

return S

Algorithm 3: Refining Range Query
Input: Geo-textual object o, query range r, keywords-range pairs

<kRi, rRi>for ith refining domain, a node lists Qi
Output: Boolean value for each node n in Qi

if n is not a leaf node then
delete n in Qi
for each child c of n do

 if (dist(o, c) <= r && ContainsKeywords(c, k)) then
 Add c to Qi

else if n is a leaf node then
 for each object b of n
 if (dist(o, b) <= r && ContainsKeywords(b, k)) then
 return true
return false

Fig. 8 illustrates an example of an MKDR query. The algorithm starts by inserting
the root node of the IR-tree constructed in the DP. There are two children, R2 and R3,
which overlap the query range. Therefore, the algorithm expands the range of the MBR
for R2 and R3, and processes the approximate refinement. Because the expanded range of
R2 overlaps that of R3 in the DR, the children of R2 are inserted into the searching queue.
However, node R3 is removed from the searching queue because there are no nodes
overlapping with R3 in the DR. In the next iteration, the children of R2, R7 and R8 are
examined using the primary query range and keywords. R7 is located outside of the range.
Therefore, only node R8 is evaluated through the refining range query. As a result, the
result of refining range query on R8 is inserted into the result set, and the algorithm is
terminated because there are no more nodes to traverse.

(a) IR-tree and primary range query in the DP. (b) IR-tree in the DR.

Fig. 8. Example of an MKDR query.

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

914

4.3 Multiple IR-trees Collaboration Algorithm for the MKDkNN

The algorithm for MKDkNN query processing is similar to the MKDR query pro-

cessing algorithm. For effective querying, we search IR-trees in the order of best-first
search (BFS) and maintain two priority queues: P, R. First, P stores nodes in ascending
order of the minimum distance from the query point to their MBRs and R stores the can-
didate set of kNN in descending order by distance. The algorithm explores multiple
IR-trees simultaneously for filtering nodes using an approximate refinement. Algorithm
4 shows the collaboration technique-based MKDkNN query processing algorithm. In
each iteration, the algorithm explores the closest node among the nodes stored in P. If
the candidate node is not a leaf node, the approximate refinement is processed by ex-
panding the range of the MBR. The ApproximateRefining() function represented in Al-
gorithm 2 also used in MKDkNN query processing algorithm. In this process, if the
window query does not satisfy the approximate refinement, the child node is removed
from P. On the other hand, when it satisfies the approximate refinement, the algorithm
inserts its child nodes into P.

Algorithm 4: Generate a set of Multiple Keyword Domain based kNN Query result
Input: Query point q, number of nearest neighbor K, primary query keywords k,
keywords ki of ith domain, query range ri for ith domain
Output: A set of geo-textual objects
Q =  // Q is a set of list of nodes. Each element Qi contains intermediate result for
approximate refining query in ith domain
PCreatePriorityQueue()
RCreatePriorityQueue() /*capacity of queue is k*/
for each domain i

Qi = Qi{root node of IR tree for DRi}
P = P{root node of IR tree for DP, Q}

r = MAX_VALUE
while P is not empty do
 node n = Dequeue(P)
 if (dist(n, q) > r) then
 continue
 if n is not a leaf node then
 for each child node c of n
 if (dist(c, q) < r && ContainsKeywords(c, k)) then
 for each domain i

window range W = expand(c.MBR, ri)
 Qi = ApproximateRefining(W, ki, Qi))

 if(Qi is not empty) then
 Enqueue(P, c)
 else if n is a leaf node then
 for each object o in n
 if (dist(o, q) <= r && ContainsKeywords(o, k)) then
 for each domain i
 if (RefiningRangeQuery(o, ri, ki, Qi) returns true) then

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 915

 Enqueue(R, o)
 if (size of R > K)
 Dequeue(R) until size of R is equal to k
 Update r to farthest distance of candidates
 return R

If the candidate node is a leaf node, the algorithm inserts the object into the candi-

date set R if it satisfies the conditions of the refining queries. If the number of current
candidate objects exceeds k, the farthest candidates are dropped from the queue. The
query range r is updated to the distance of the farthest candidate whenever each insertion
R occurs. If there is no node or object that is closer than current range r, the algorithm is
terminated and current candidates are returned to answer.

Fig. 9 illustrates an example of an MKDkNN query. We will find a single nearest
neighbor in this example. The algorithm starts with inserting the root node of the IR-tree
constructed in the DP. The algorithm examines the child nodes, R1, R2 and R3, and inserts
R1 and R2 into the priority queue P with the corresponding refinement nodes R1 and R3.
Because the minimum distance of R1 is smaller than R2, R1 is explored first. The nodes R5
and R6, the child of R1, are evaluated by approximate refinement queries, and inserted
into the queue with their overlapped node in DR. The priority queue P has three nodes at
this iteration, in order of R6, R5 and R2. Now the objects containing in R6 are evaluated by
refining query from R6 and an object is inserted into a result set. After inserting the can-
didate object into a result set, the range r is updated to the distance of candidate result,
and search the remaining node stored in P. However, because the minimum distance for
remaining nodes R5 and R2 are farther than current candidate result, the algorithm is ter-
minated and returns the result set.

(a) IR-tree and primary query point in the DP. (b) IR-tree in the DR.

Fig. 9. Example of an MKDkNN query.

5. PERFORMANCE EVALUATION

In this chapter, we describe the experimental evaluation of the proposed algorithm.
We compare two different methods by measuring the average response time for 100
randomly generated queries. First, our baseline algorithm, tagged IRTreeSeq in the fig-
ures, refers to the naïve algorithm presented in section 3.2. It first processes primary

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

916

queries and then processes the refining range query for refining result set of primary
query. The second method, tagged CMIRTree in the figures, refers to our collaboration
algorithm for multiple IR-trees. The experiments were performed on a physical machine
consisting of a 3.60 GHz quad-core processor, 16 GB RAM, and a 1 TB HDD that oper-
ates on a 64-bit Linux operating system. Three of datasets are used in our experiments.
The first dataset is synthetically generated one million objects with uniform distribution.
It divided into 10 domains, and contained 100,000 geo-textual objects per domain. The
second dataset, named Euro dataset, is a real dataset that contains points of interest in
Europe. The last dataset, named Korean building dataset contains a list of buildings
classified according to building purpose. This dataset has 10,000,000 objects for build-
ings in the Republic of Korea, and objects are categorized according to 270 kinds of do-
mains. The summarization of properties for each dataset is described in Table 1.

Table 1. Dataset properties.
Dataset Name Type #Domain #Object

Synthetic Synthetic, Uniform 10 1,000,000

Euro Real 29 184,612

Korean Building Real 270 10,000,000

5.1 Performance Studies for MKDR Query

Effect of the Primary Query Range

To evaluate the effect of the range of the primary range query, we increased the
range from 3% to 7% of the space. In this experiment, the refining query range is fixed
to 20% of the primary query range. In Fig. 10, the experimental results of IRTreeSeq and
CMIRTree are plotted in terms of the average response time. As shown in the figure, the
collaboration algorithm not only demonstrated better performance, but was also less af-
fected by the primary query range. This is because when the primary query range is in-
creased, the number of refining query for false positives also increases in the sequential
algorithm. However, our collaboration algorithm prunes the false positives that do not
satisfy the environmental conditions in earlier stage of the algorithm. The reduction in
the number of refining queries reduces the overall processing time for querying.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 10. Effect of the primary query range on the query execution time.

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 917

Effect of the Refining Query Range
To evaluate the effect of the refining query range, we increased the range from 10%

to 40% of primary query range. In this experiment, the primary query range is fixed to
5% of the space. In Fig. 11, the experimental results of IRTreeSeq and CMIRTree are
plotted in terms of the average response time. As the range of the refining query increas-
es, each refining queries can terminate in earlier stage of searching because the refining
query range can easily covers the node of IR-tree in DR. Therefore, the performance of
both algorithms show slightly better performance when extend the refining query range.
However, our algorithm still performs better for the overall condition because the effi-
ciency of search for the refining query.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 11. Effect of the refining query range on the query execution time.

Effect of the Number of the Domain for MKDR Query
To evaluate the effect of the number of domains used for the refining query, we in-

creased the number of domains from two to eight. In this experiment, the primary query
range is fixed to 5% of the space, and refining query range is fixed to 1% of the space. In
Fig. 12, the experimental results of IRTreeSeq and CMIRTree are plotted in terms of the
average response time for the given parameters. When the refining conditions become
more complex, our collaboration algorithm has more chance for pruning nodes during
approximate refining query. Therefore, the gap in the performances increases when the
number of domains for the refining queries is increased.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 12. Effect of the number of the DR on the query execution time.

Effect of the Database Size
To evaluate the effect of the size of the data, we increased the number of data from

20,000 to 100,000 per domain. The number of domains used in the query was fixed at

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

918

four, and primary query range is 5% of the space, and refining query range is 1% of the
space. In Fig. 13, the experimental results of the effect of the number of data on query
execution time are shown. The performance gap is not clear in the case of a small data-
base. Because the IR-trees in small and sparse databases have relatively low depth and
large sized MBR, our approximate refining process has fewer chances for filtering nodes.
Therefore, because the number of refining queries is nearly the same, both algorithms
yield identical performance. However, as the size of data increases, the proposed algo-
rithm exhibits better performance because of the increased number of data located within
the fixed primary query range and the number of visited nodes for refining process is
also increased.

Fig. 13. Effect of the number of data on query execution time.

5.2 Performance Studies for MKDkNN Query

Effect of the Number of Nearest Neighbor

To evaluate the effect of the number of nearest neighbor of the primary kNN query
in MKDkNN, we increased the number of neighbor from 10 to 60. The refining query
range is fixed to 5% of the space, and the number of refining domain is fixed to three. In
Fig. 14, the experimental results of IRTreeSeq and CMIRTree are plotted in terms of the
average response time. Unlike the MKDR query, the difference in performance is rela-
tively constant even if the k value slightly increases. Comparing to MKDR query, kNN
has a relatively narrow search range. Therefore, even if the k value slightly increases, the
number of visited nodes is not significantly different. But our algorithm still shows better
performance because it can avoid the searching for unnecessary nodes in DP and reduce
the search for redundant nodes in DR.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 14. Effect of the number of neighbors on the query execution time.

R
e

sp
o

n
se

 T
im

e
 (

se
c

)
R

e
sp

o
n

se
 T

im
e

 (
se

c
)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 919

Effect of the Refining Query Range
To evaluate the effect of the range of refining range query in MKDkNN, we in-

creased the refining range from 1% to 5% of the space. In Fig. 15, the experimental re-
sults of IRTreeSeq and CMIRTree are plotted in terms of the average response time. The
number of nearest neighbor k is fixed to 10, and the number of domains for refining
query is fixed to three. When the refining query range is increased, the performance gap
between the two methods decreases. This is attributed to the fact that as the refining
query range is increased, the filtering power of our approximate refining query weakens
owing to almost all nodes passing the environmental evaluations.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 15. Effect of the refining query range on the query execution time.

Effect of the Number of the DR
To evaluate the effect of the number of domains used for the refining query in

MKDkNN, we increased the number of domains from 2 to 8. The number of nearest
neighbor k is fixed to 10, and the refining query range is fixed to 5% of the space. Fig.
16 shows the experimental results of IRTreeSeq and CMIRTree in terms of the average
response time. Similar to MKDR query results, we can observe that the filtering power
of our collaboration algorithm increases if the refining conditions become more complex.

(a) Result for a synthetic dataset (b) Result for a Euro dataset (c) Result for a Korean Building dataset

Fig. 16. Effect of the number of the DR on the query execution time.

Effect of the Database Size

To evaluate the effect of the size of the data in MKDkNN, we increased the number
of data from 20,000 to 100,000 per domain. The number of domains used in the query is
fixed at four, and the number of nearest neighbor k is fixed to 10, and the refining query
range is fixed to 5,000. In Fig. 17, the experimental results of IRTreeSeq and CMIRTree

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

BUMJOON JO, JUNHONG AHN AND SUNGWON JUNG

920

Fig. 17. Effect of the number of data on query execution time.

in terms of the average response time are shown. The result obtained is similar those of
the above experiments. The performance of the approximate refining query can be con-
firmed not only by the query argument but also by the structure of the IR-tree. The small
IR-tree resulting from small and sparse databases degrades the filtering power of ap-
proximate refining.

6. CONCLUSION

In this paper, we propose the MKDR and the MKDkNN queries. The proposed que-
ries additionally filter the geo-textual objects by considering requirements for environ-
mental conditions of the objects. Therefore, these queries realize a more selective search
than the existing spatial keyword queries. To explore objects belonging to different do-
mains efficiently during search processing, we propose algorithms that use the collabora-
tion of multiple IR trees. The proposed scheme simultaneously traverses multiple IR-
trees constructed in each domain. Our collaboration algorithm allows additional pruning
during the processing of the primary spatial keyword query. The proposed algorithms
significantly reduce the query execution times by reducing the number of refining que-
ries and the number of nodes to be searched in refining processing. Experimental results
demonstrate that the proposed algorithms outperform the conventionally used sequen-
tially processing algorithm.

REFERENCES

1. Z. Li, K. C. K Lee, B. Zheng, W. Lee, D. Lee, and X. Wang, “IR-tree: An efficient
index for geographic document search,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 23, 2011, pp. 585-599.

2. G. Cong and C. S. Jensen, “Querying geo-textual data,” in Proceedings of Interna-
tional Conference on Management of Data, 2016, pp. 2207-2212.

3. T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering the m-closest
keywords query,” in Proceedings of International Conference on Management of
Data, 2015, pp. 405-418.

4. X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial keyword query-
ing,” in Proceedings of International Conference on Management of Data, 2011, pp.
373-384.

5. X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi, “Efficient processing of spa-
tial group keyword queries,” ACM Transactions on Database Systems, Vol. 40,
2015, pp. 1-48.

R
e

sp
o

n
se

 T
im

e
 (

se
c

)

SPATIAL KEYWORD SEARCH FOR MULTIPLE KEYWORD DOMAINS 921

6. G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most relevant spatial
web objects,” in Proceedings of the VLDB Endowment, Vol. 2, 2009, pp. 337-348.

7. R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems,” in Proceedings of the
19th International Conference on Scientific and Statistical Database Management,
2007, p. 16.

8. I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial databases,” in
Proceedings of International Conference on Data Engineering, 2008, pp. 656-665.

9. S. Vaid, C. B. Jones, H. Joho, and M. Sanderson, “Spatio-textual indexing for geo-
graphical search on the web,” in Proceedings of the 9th International Symposium on
Spatial and Temporal Databases, 2005, pp. 218-235.

10. J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient processing
of top-k spatial keyword queries.” in Proceedings of International Symposium on
Spatial and Temporal Databases, 2011, pp. 205-222.

11. D. Zhang, K.-L. Tan, and A. K. H. Tung, “Scalable top-k spatial keyword search,” in
Proceedings of the 16th International Conference on Extending Database Technol-
ogy, 2013, pp. 359-370.

Bumjoon Jo (趙範俊) is a Ph.D. candidate in the Computer
Science at Sogang University. He received the BS and MS degrees
in Computer Science from Sogang University in 2010 and 2012,
respectively. His research interests include spatial databases, LBS
and NoSQL.

Junhong Ahn (安埈弘) received the BS and MS degrees in
Computer Science from Sogang University in 2014 and 2017, re-
spectively. His research interests include spatial databases and spa-
tial keyword search.

Sungwon Jung (鄭盛元) received the BS degree in computer

science from Sogang University, Seoul, Korea in 1988. He re-
ceived the M.S. and Ph.D. degrees in Computer Science from
Michigan State, in University, East Lansing, Michigan in 1990 and
1995, respectively. He is currently a Professor in the Computer
Science and Engineering Department at Sogang University. His
research interests include spatial and mobile databases, data min-
ing, and blockchain technology.

