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Many enterprises or smart mobile devices collecting user data (e.g. smart-watches and
wearable healthcare devices, etc.) are limited by their own computing power, so can’t mine
useful information from the data. To address this problem, this paper proposes a rational
delegation machine learning pattern. In the proposed pattern, we firstly construct a reliable
game model, and then build a formal model of delegation machine learning by delegation
computation thought. Finally, we design a rational delegation learning scheme (RDLS) for
decision tree model. The feasibility and reliability of the scheme are guaranteed by the
incentive and constraint mechanism of game model. Moreover, we analyze the security
and performance of the proposed scheme, the results show that the scheme reduces the
client’s computing costs and can not disclose any useful information. Last but not least, the
experimental result demonstrates that the scheme can obtain a decision tree model with high
accuracy in the case of ensuring the security of data.

Keywords: rational delegation learning, game theory, decision tree, machine learning, pri-
vacy protection

1. INTRODUCTION

With the rapid development of wireless mobile networks [1], machine learning [2]
and other related technologies, a large number of favorable information in the smart mo-
bile devices can be mined and utilized. Nevertheless, due to the complexity of machine
learning technology and the high demand for data-processing, many enterprises, individ-
uals or smart mobile devices are limited by their own computing power and can’t mine
useful information from the data, so they can only rely on the service provider which
has the computing power to mine and learn by machine learning technology. Such as
wearable healthcare devices collects user information and uploads it to the cloud through
wireless mobile network for machine learning model training [3], so as to classify or fore-
cast data. However, in the absence of feasible schemes and technical support, it is unsafe
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for an enterprise to directly entrust the data set to the untrusted cloud service provider for
processing.

All the aforementioned issues motivate the need to explore effective approaches for
privacy-preserving machine learning training. Lindel and Pinkas initiated the study of
privacy-preserving decision tree training [4]. Since then, many approaches have been
proposed [5-9]. Hoogh et al. [10] proposes a privacy protection decision tree training
scheme under the semi-honest model. Using Paillier cryptosystem [11] and Fairplay [12],
Kikuchi [13] proposed a privacy-preserving decision tree training (PPDT) scheme for ver-
tically partitioned datasets. However, this scheme can only be used for the boolean target
class. In particular, Li er al. [14] proposed an outsourced privacy-preserving ID3 deci-
sion tree (OPPID3) algorithm over encrypted datasets for two-party. The solution suitable
for data owners looking to outsource their data storage, i.e., data owners can outsource
their encrypted data and mining tasks to a semi-trusted (i.e., curious-but-honest) cloud in
a privacy-preserving manner. Two years later, they also proposed an outsourced privacy-
preserving C4.5 decision tree (OPPC4.5) algorithm over horizontally and vertically par-
titioned dataset among multiple parties [15]. Nonetheless, in their schemes, the users
should stay on-line during the training process. Roughly, these approaches mainly fall into
three types, i.e., randomization-based obfuscation, differential privacy, and cryptography-
based approaches. The randomization-based obfuscation and differential privacy are usu-
ally efficient but of low classification accuracy. Comparatively, the cryptography-based
approaches could provide desirable privacy with high accuracy. However, the comput-
ing costs is so high that it cannot be applied to large data sets. In addition, in above
researches, the server is usually assumed to be honest or semi-honest. But in reality, the
server is usually rational, that is, the behavior of the server is driven by interests. If the
server is assumed to be honest or semi-honest, the practical feasibility of the outsourced
privacy-preserving decision tree training protocol will definitely be reduced.

In this paper, we are mainly interested in privacy protection in the process of data
outsourcing and feasible outsourcing training schemes. It is of great theoretical signif-
icance and practical application value to design a new outsourcing service pattern that
rational participants are introduced based on the traditional delegation computation [16]
and machine learning, when the classification accuracy and user calculation cost need
to be considered at the same time. We name this machine learning model outsourcing
training as delegation learning pattern, as shown in the Fig. 1.
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Fig. 1. The delegation learning pattern.

The delegation learning pattern raises an important security requirement issue be-
tween the delegator and the server. Because there is a lot of sensitive information in the
data sent by the delegator to the service party, some malicious attackers may gather pri-
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vacy information of delegator. Consequently, it is necessary to hide or delete sensitive
information in the data set.
The design of the delegation learning scheme needs to consider the following factors:

I. The service party cannot access the real data. In other words, the service party
should use the encrypted data to train the machine learning model, and no sensitive in-
formation can be obtained from the mined results. Due to the service party may gain
the user’s privacy from the real data, or even secretly retain and use the trained model,
the more serious thing that the service party may resell the client’s data set, so it will be
insecure.

II. The method for removing sensitive information must be as simple as possible.
And the encrypted data must meet the requirements of model training. Because the
amount of data used for model training are usually large.

III. During the model training process, the service party should be prevented laziness
or forge model parameters to deceive the delegator. And the final model obtained by
the delegator must be correct and available. This is the basic purpose and meaning of
delegation learning.

In brief, even if the data set sent by the delegator is encrypted, the service party must
ensure that the model trained on the encrypted data set is correct and feasible. In other
words, if the design of the delegation learning scheme meets the requirements of I, IT and
II1, the client will be able to outsource the task of machine learning model training to the
service providers.

1.1 Related Works

The related research mainly includes two aspects: delegation computation and ma-
chine learning. The delegation computation can be roughly divided into two categories:
a complexity theory-based construction scheme and a cryptography-based construction
scheme. The interactive proof method [17, 18] and homomorphic encryption technol-
ogy [19-21] are commonly respectively used in the above two schemes. Regardless of
the category, however, traditional delegation computation protocols usually assume that
the participants are honest or malicious. Nevertheless, in practical applications, the par-
ticipants are mostly rational, and each participant may be driven by interests to make
dishonest behavior. Therefore, it has become current hotspot that use game theory [22]
to study the rational delegation computation and the relationship between participants.
Originally, Azar et al. [23] proposed a rational proof system according to the appropriate
scoring rules, in which the participants are neither honest nor malicious, but rational. Sub-
sequently, Azar et al. [24] construct anultra-efficient rational proof system by using the
idea of utility gaps. In [25-27], the researchers also studied from a rational perspective.
In addition, other works [28,29] studied the rational secret sharing and rational delegation
computing technology. Inspired by [30,31], we also establish incentive mechanism in the
proposed scheme.

The related research of privacy protection technology in machine learning mainly
includes decision tree [32], K-means clustering [33, 34], support vector machine clas-
sification [35, 36], linear regression [37-39] and logistic regression [40]. Early privacy
protection technologies can be divided into data-based perturbation methods and secure
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multi-party computing-based methods. In terms of data perturbation, Agrawal et al. [41]
proposed a privacy protection method which adds random noise to implement decision
tree mining. Let the real data be X, randomly generate noise r with known distribution,
and the disturbed data Y = X + r. The real data X is not public, and the users of the
data get the distribution of the disturbed data Y and noise r. Since r is a random num-
ber, the user only knows the distribution of » without knowing its specific value, so the
real data X cannot be obtained. However, this method of randomly adding noise is too
simple. Kargupta et al. [42,43] based on the random matrix theory, proposed a method
for estimating real data from perturbed data. Subsequently, Weiping et al. [44] designed
a privacy-preserving decision tree mining method for discrete attributes. They use a re-
versible transition probability matrix to perturb attributes. However, there is still a risk
that private data will be leaked because there is still a considerable portion of real data that
has not been disturbed. Bu et al. [45] presented a function-based perturbation method,
which uses inverse function transformation to restore the decision tree 7’ on the perturbed
data Y to the decision tree T on the real data X. In terms of secure multi-party computing,
Mohassel et al. [46] proposed a new and efficient confidential machine learning protocol
for linear regression, logistic regression and neural network training. This protocol be-
longs to two server model, in which the data owner allocates its private data to two non
collusive servers, which use secure two-party computing to train various models of joint
data. In [46], the researchers assume that the two servers are not collusive, however, the
service provider is rational in reality. A year later, Mohassel er al. [47] designed and
implemented a general machine learning framework for privacy protection, and used it
to obtain a new solution of training linear regression, logical regression and neural net-
work model. The framework includes three servers, in which data owners secretly share
their data among the three servers. Ma et al. [48] proposed a new secure multi-party
deep learning framework for cloud computing, which distributed a large number of train-
ing data to multiple participants, and allowed multi-party learning to generate the same
neural network model based on the aggregate data set on the cloud server. Compared
with [47,48], our proposed scheme contains only one server, which not only avoids col-
lusion between servers, but also reduces risk of privacy disclosure and extra cost caused
by communication between servers.

To the best of our knowledge, in the existing schemes, users should communicate
with the cloud server several times to get the final results. Therefore, these works cannot
support off-line users.

1.2 Our Contributions

In this paper, we introduce game theory and rational participants into delegation
learning for outsourcing model training to cloud service provider. Our main contributions
are as follows:

1. We introduce rational participants into the delegation learning pattern. In other
words, all participants are rational. In addition, based on the utility thought and the game
theory, we construct the game model and incentive function of rational delegation learn-
ing scheme. The scheme achieves the utility balance of both parties by inspiring and
restricting the participants, and can obtain a high accuracy model finally.

2. We derive the formal model of rational delegation learning based on the traditional
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delegation computation, and design a rational delegation learning scheme (RDLS) for the
decision tree model. This scheme not only ensures the security of user data but also has
the fairness and result concealment characteristic.

3. According to the thought of One-hot codes, we design a text data and discrete
data preprocessing method of outputting integer function-based perturbation (OIFP). In
this method, we replace the real data and adopt the piecewise function-based perturbation
(FP) method to encrypt the data set.

This article is organized as follows: Section 2 introduces the preliminary knowledge
required in this article; Section 3 analyzes the delegation learning game model; Section
4 proposes the rational delegation learning model; Section 5 designs rational delegation
learning scheme; Section 6 performs security analysis; Section 7 presents performance
evaluation; Section 8 concludes this paper.

2. PRELIMINARIES

2.1 Game

The basic game representation consists of three elements: participant set PS, strat-
egy space S and utility function u, namely G = {PS,S,u},S = {51,52,...,5 },u =
{u1,uz,...,un}. Utility function u; : S — R(R represents real space) represents the ul-
timate benefit of the i-th participant in selecting different combinations of strategies. For
detailed definitions, please refer to literature [22].

2.2 Statistical Machine Learning

Statistical machine learning (SML) is to build a probabilistic statistical model based
on data to predict and analyze the data. The basic representation of statistical machine
learning can be composed of three elements: model hypothesis space M , criterion set C,
and algorithm set A, namely SML = {M,C,A}.

o M ={M|,M,,...,M,}. Before model training, its possible parameters are multiple or
even infinite, so the possible models are multiple or even infinite. The set of these models
forms the model hypothesis space.

e C={C},C,,...,Cy}. The criterion set represents the method for selecting the model M;
with the best parameters from the hypothesis space.

e A={A,A,...,A,}. The algorithm set represents the method of selecting the model M;
from the hypothesis space.

2.3 Decision Tree Model

In machine learning, the decision tree model is usually applied in classification and
prediction. It represents a mapping relationship between object characteristics and label
value. Each node in the tree represents a feature, and each bifurcation path represents
a possible eigenvalue, and each leaf node represents the resulting value of the object
represented by the path from the root node to the leaf node. The essential to construct
decision tree is how to choose the optimal partition attribute. In general, as the partition
process progressing, ideally, the samples contained in the branch nodes of the decision
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tree belong to the same category as much as possible, in other words, the “purity” of the
nodes become more and more higher. As a rule, “information entropy”, “information
gain” and “gini index” are the most frequently-used indicators for measuring the “purity”
of a sample set. For a detailed description of the decision tree model, please refer to

literature [49].

2.4 Monochromatic Value and Monochromatic Piece

Suppose there are n instances in data set D, and each instance has d attributes (B =
{Bi1,Ba,...,B4}) and classification label Y. We express the range of attribute B; value
as set b;(i = 1,2,...,d), and put all instances in ascending or descending order with the
value of b;. If the label of all instances with value v on attribute B; are equal, then v is
a monochromatic value [45]. Namely, Vci,c; € D, if c;.Bi=c.Bi=vandc|.Y =¢,.7Y,
then v is a monochromatic value, where c is an instance. For example, in the following
Table 1, there are 8 instances in total. We put all instances in ascending order with the
value of age attribute. All values except 25 in the table are monochromatic values. If
the age attribute values of all instances in the same data piece are monochromatic and the
label values are equal, then this data block is called a monochromatic piece relative to age
attribute. In Table 1, p; and p3 are monochromatic pieces.

Table 1. The salary sample data.

Case: ¢ c c3 c4 cs c c7 cg
Age(By): 19 22 24 25 25 32 32 35
Sex(By): w m m w w m w m

Education(B3) :  junior bachelor bachelor master bachelor doctor bachelor master
Salary(Y): Low Low Low High Low  High High  High

Pieces : P1 P2 P3

2.5 Piecewise Function Perturbation

According to Section 2.4, we randomly insert (w—1) breakpoints to divide the data
that has been sorted according to the value of the attribute B; into w pieces, namely nb; =
01(nb;) U Sy (nb;)U---Ud,(nb;) and 8,(nb;) N O (nb;) = 0, r # k, where nb; represents the
value sequence of n instances on the attribute B;. Then w data pieces are respectively dis-
turbed by w different functions, namely nb} = { i (81 (nb;)), f>(62(nb;)), ..., fuw (0w (nb;)) }.
Suppose that the data is arranged in ascending order. In order to satisfy the global mono-
tonicity, if and only if, 1 < r < k < w,¥v € 8,(nb;),Yu € & (nb;), then f.(v) < fi(u).
According to [45], monochromatic pieces are suitable for any permutation function, but
non-monochromatic pieces are only limited to monotonic functions. Here, we can de-
fine the function family suitable for monochromatic piece as F;,;,,, and the function fam-
ily suitable for non-monochromatic piece as Fyopmon. Note that the Fppmon i closed in
combination, in other words, if f,g € Fyoumon, the combination of function f and g is
monotonic.
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3. THE GAME-ANALYSIS OF RATIONAL DELEGATION
LEARNING PATTERN

During the verification process of the machine learning model, the same model is
tested by different test set of the same distribution, the final results are biased. There-
fore, we introduce rational participants into the delegation learning pattern to ensure the
reliability of the delegation learning process by the utility function. Assume that the par-
ticipants include the delegator U and the learner L, and all of them are rational. The
delegator outsources the task of model M training to the learner. The game model of
rational delegation learning is defined as: G = {PS,S,u}, PS = {U,L}. The relevant def-
initions are as follows:

e V(M) represents the worth of the model;

e L(M) expresses the cost of the learner training model,

e U(M) means the cost that the delegator needs to pay to the learner for outsourcing the
training model;

e T(D) represents the transmission cost that the delegator sends the data set and the learn-
ing task to the learner;

o T (W) expresses the transmission cost of sending the parameter set W of the model to
the delegator after the learner trained the model.

The above definition must meet the following conditions,

V(M) >UM)>L(M), |

U(M) > L(M) +T(W). M
Otherwise, the model is not necessary to delegate learning.

Since the participants are rational, they may behave maliciously for their own ben-
efits. On the one hand, in general, the delegator doesn’t spend transmission cost to ma-
liciously deceive the learner. However, it is not excluded that the delegator deliberately
transmits meaningless data to maliciously occupy the computing resources of the learner.
On the other hand, in order to reduce calculation cost, the learner may choose to be lazy
and finally transmit a wrong result to the delegator. Therefore, both the delegator and the
learner have the same set of behavioral strategies S : {honest, malicious}.

During the delegation learning process, each participant will definitely act to maxi-
mize their own interests from the perspective of self-interest. In order to obtain a better
model, the delegator can motivate the learner by setting the incentive function Q and the
minimum required accuracy acc, of the actual application of the model. For simplicity,
suppose the delegator’s incentive budget is E and the incentive function is a quadratic
function:

O(acer) = 6(acer —ace,)? X E, (2)

where 0 and accr respectively represents the incentive coefficient and the actual accuracy
of the model, and the incentive coefficient satisfies 6(1 — accu)2 = 1. For example, the
minimum accuracy requirement set by the delegator is 80%, then 6 = 25. If and only
if acer — accy, > 0, the delegator will pay the incentive amount of money Q(accr). In
short, only when the higher the accuracy of the model trained by the learner, the more the
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learner will gain income. Of course, the reward, transmission cost and remuneration must
meet the following conditions,

V(M) > Q(accr)+T(D)+U(M). 3)

Otherwise, the model will lose the value of outsourcing training. The final utility functions
of the delegator and the learner are denoted by u; and u,, as shown in Table 2.

Table 2. The behavior utility matrix of participants.

Delegator U
Honest Malicious
3w =V(M)-UM)-T(D)-Nacc;) ju; ==T(D)
B | b, =UM) +Oace,)~ LIM) =T (V) b, =L~ T (W)
§ S |u, =-U(M)-T(D) u, ==T(D)
é‘ u, =U(M)—T(W) u, ==T(W)

In Table 2 above, because the delegator can not accurately verify the results using the
test set, the learner may not seriously complete the task of the delegator. Therefore, when
the learner makes malicious behavior (such as, learner lies that the accuracy of the model
has reached acc,), we do not consider the cost L(M) of model trained by the learner.
According to the above behavior utility matrix, it can be seen that the learner will prefer
to choose a malicious strategy in order to maximize his own interests. This shows that
the feasibility of delegation learning cannot be guaranteed. Therefore, we add a trusted
third-party platform P to the delegation learning pattern. It is to ensure that the interests
of the honest party are not harmed, so as to play a role in constraining both sides. The
third-party is similar to the government notarization agency, which has no model training
ability but only verification ability. Suppose that the cost of introducing a third-party
and the fee of third-party verification is Pg and Py respectively. The Pk should be paid
jointly by the delegator and the learner. If a party engages in malicious deception, the
verification fee P, will be paid by it. We provide that before the start of the delegation
learning process, the delegator and the learner respectively submits the deposit ¢ and / on
platform P. The deposits must meet the following conditions,

¢>U(M)+Py,1>U(M)+T(D)+ Py +Pg/2. 4)

We will explain the deposit setting in detail in Section 6. Of course, Eqs. (1) and (3)
should be changed to

U(M)>L(M)+T W)+ Pr/2,

V(M) > Q(accr) +T(D) +U (M) + Pg/2. )

The final utility game tree of participants is shown in the Fig. 2.

According to the above analysis, only when both the delegator and the learner choose
the honest strategy, the interests of both parties can reach the optimal, and this strategy
combination is Nash equilibrium of this game model.
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Delegator

u, =V(M)=UM)~T(D)—Qlace,)~P,/2 1, =1-B, ~U(M)=T(D)=P,/2 #=-T(D)=c=F,/2 u=-T(D)-c-F/2
1y =U(M)+Qlace,) ~L(M)=T(W)~F, /2 u, =UM)~TW)~1-P,/2  th=c=F ~LM)~T()~F/2 t,=-TW)~I-F/2

Fig. 2. The final utility game tree of participants.

4. THE PROPOSED RATIONAL DELEGATION
LEARNING MODEL

4.1 System Model

Delegation learning is different from the traditional delegation computation. The tra-
ditional delegation computation means that the delegator delegates the computing party to
compute the value of a specific function f(x) that it has no ability to compute. And finally
the computing party will return a verifiable result to the delegator. However, delegation
learning is a new pattern based on the traditional delegation computation and statistical
machine learning technology to fit the relationship model between features and targets.
The learner uses the data set given by the delegator to train a model that can deal with
classification or prediction problems. The basic form of the delegation learning pattern
can be expressed as:

TrS+VS+acc, <2 M(W), (6)

where TrS represents the training set, V'S represents the validation set, and W represents
the parameter set of model M. According to Section 2.2, the C and the A respectively
represents the criteria and algorithms of the parameter optimal model selected from the
hypothesis space. The reason why we introduce rational participants and construct a
game model in the delegation learning pattern is precisely to avoid the lazy and lying of
the learner. At the same time, it also motivates the learner to choose the most suitable
criterion and algorithm from the criterion set and the algorithm set for training.

According to the analysis in Section 3, we can see that all participants in the delega-
tion learning pattern are untrustworthy. Therefore, the trusted third-party P is introduced
into the delegation learning pattern. The rational delegation learning structure diagram is
shown in the Fig. 3.

In this structure, participants include the delegator U and the learner L, and all of
them are rational. After the two parties reach the entrustment agreement, they will respec-
tively deliver the corresponding deposits ¢ and [ to the third-party. Firstly, the delegator
respectively publishes acc, and D' to the learner and the third-party P, where D’ is the
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Return result M'and acc, : | —J
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Fig. 3. The rational delegation learning structure diagram.

encrypted data set. The third-party generates the training set, validation set and test set
from the data set D" and respectively distributes it to the delegator and learner. Secondly,
the learner uses the training set to train and obtain the model M’, and returns the model
and acc; to the delegator, where acc; represents the accuracy that the learner promises the
model can achieve. Finally, the delegator pays the remuneration or punishes the learner
according to the results of the model verification. If both parties adopt a honest strategy,
they can withdraw their deposits from the third-party after the entrustment process ends,
otherwise the third-party will help honest party to confiscate the deposit of the dishon-
est party for maintaining the rights of the honest party. The specific steps of the rational
delegation learning scheme are described in detail in the rest of this paper.

4.2 Formal Model

Based on the delegation computation thought, we derive a formal model of ratio-
nal delegation learning for decision tree model. Due to the each node selection in the
construction of the decision tree model is not affected by the true value of each feature
attribute, but depends on the information gain or gain rate of each feature attribute. There-
fore, the encrypted data set in the construction of the decision tree model has no effect on
the model training.

For the convenience of description, we assume that the delegator has a discrete or
text data set D, which contains n instances, as shown in the Table 3. Each instance has
attribute set B={B1, By, ...,B;} and alabel Y. The label value set and attribute B; value set
is represented by y and b; respectively, i.e. y = {y1,y2,..,¥s}, bi = {bi1,bi2,....bis}. Of
course, the number of each attribute value is not necessarily equal. It is temporarily set as s
for the convenience of description. In addition d,n € N*,i={1,2,....d}, j={1,2,...,s}.

The formal model of the rational delegation learning scheme (RDLS) for decision
tree consists of the following three parts, namely RDLS = {OIF P,Learning,Veri}.

I. The function-based perturbation encryption method OIF P includes the following
three parts:
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Table 3. The delegator’s data set.

B: Bl B2 B3 ce Bd Y
Case 1: by by b3 j by j Yj
Case?2: by by, j b3 ba, Yj
Casen: by by, j b3, ba,j Yi

1. One-hotGen(tab M taby): First of all, the delegator needs to extract the
attribute set, the attribute value set, label and label value set from data set D, and
represents them with B, b;, Y and y respectively. Then, the values in b; and y are arranged
in disorder to generate the basic information table tab, in which the data are replaced
by b; ;j and y;. Finally, tab is transformed by mapping function F{q ;) to obtain the basic
information table tab;, after boolean transformation.

2. IntegerGen(taby, On, Dy): The data in tab,, is converted to integers and sorted in
descending or ascending order. Then the actual value is replaced by the virtual value to
obtain the complete virtual data set Dy, namely Dy < traby < Oy(tab,). Where Oy is
the virtual conversion function.

3. FP(Dy ﬁ D’): Firstly, the delegator randomly inserts (w-1) breakpoints to
divide the sequence nb; of attribute B; value into w pieces, and secretly sets the function
families F,, and Fuonmon. Next, the delegator randomly select the conversion functions
from the function families F;,,,, and F,,umon, and combine them into conversion function
vector fBi =11, /2y S} ]?B,- € {Fnons Fronmon }- Finally, the delegator can obtain the
converted sequence nbg of attribute B; value, namely nbg = fgi (nb;). After the d-round
conversion, the disturbed data set D’ can be obtained. Note that in the transformation,
the delegator needs to secret preserve the breakpoint position and inverse function vector
fgj I = Iy b s L. f.!] of each attribute sequence, so as to restore the real decision tree
T from the decision tree T’ based on D'.

. CA . .
1. Learning((D',acc,) —— (T',acc;)): According to the data set D’ given by the
delegator and the minimum accuracy requirement, the learner selects the appropriate cri-
terion and algorithm for mining, and returns the final decision tree 7’ and accuracy acc;.

1L Veri(accr RN acc;): The delegator verifies whether the accuracy of the decision tree
T approaches to acc;. Because there is a deviation when the test set verifies the accuracy
of the model, the result accy = acc; is usually not obtained. Of course, the degree of
“approaching” can be determined through negotiation between both parties. For exam-
ple, when the condition acc, < acc; — A < accr < acc;+ A is established, the delegator
considers that the result returned by the learner is acceptable, otherwise the delegator can
initiate a verification request to a third-party, where A represents the average deviation of
the model accuracy test.
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S. THE PROPOSED RATIONAL DELEGATION
LEARNING SCHEME

According to the above game-analysis and formal description of delegation learn-
ing, we design the following rational delegation learning scheme for decision tree model.
Assuming that the learner can accept the request of the delegator and reach a delegation
learning agreement. The proposed scheme is as follows:

5.1 Initialization Phase

I. Data processing

The delegator cleans the data set, only retains the necessary information to construct
the decision tree, and then disturbs the data set according to the OIF P method. Regarding
the setting of functions F(o 1) and Oy, as long as the function satisfies the data conver-
sion relationship, the delegator can set it arbitrarily. For the convenience of explanation,
we take the data in Table 1 as an example and design the following simple conversion
function:

Boolean Conversion: Fg 1)(b; ;) = oU~=N1ollbid =9, Fo)(yi) = 0(i=11obI=1, o
Integer Conversion: Oy (b; ;) = (|b:| — j)¥, On(yi) = |y —i.

The symbol () in the upper right corner of the above function expresses that the quantity
of 0 is %, the | x| expresses the quantity of elements in the set . The k expresses the index,
k € N*, k> 1. The value of k is determined by the delegator, and even the delegator can
take different values of k for each attribute. In the rest of this article, we will further
explain.

After the function conversion, the following basic information bijection table taby
can be obtained, as shown in the Table 4.

Table 4. The basic information bijection table raby.

B: B B, B3 Y

A-v: 24 35 25 22 19 32 w m ju ma ba do L H
bij: b1y bip b1z bia bis bie bay byo b3y b3p b3z bza oy o»
0-G: 10° 0'10* 02103 0%10% 0*10' 0°1 10' 0'1 10° 0'10% 0?10' 031 10! 0'1
I-G: 5k 4 3k ok 10 1 0 3% 2ok 10 1 0

In Table 4, the first row represents the substitute value of attribute name, the second
row is the actual value of each attribute, the third row is the substitute value of each
attribute value, the fourth row and the last row are the converted virtual values. It can
be seen that all the data in the original data, including text data, are converted into non-
negative integers, which not only avoids the leakage of real data, but also makes it easier to
perform the next step function perturbation operation. In addition, the data in the original
data set D can be replaced by the data in raby to obtain a virtual data set Dy, as shown in
the Table 5.
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Table 5. The virtual data set Dy.

Case : c1 (53 c3 c4 cs c6 c7 cg
B : 1 2k 5k 3k 3k 0 0 4k
By: 1 0 0 1 1 0 1 0
Bs: 3k 1 1 2k 1 0 1 2k

Y: 1 1 1 0 1 0 0 0

According to the descriptions in Section 2.4 and Section 2.5, we might as well ar-
range the attribute values of B; in descending order, and randomly select two breakpoints
to divide the data into three pieces. As shown in the Table 6.

Table 6. The monochrome pieces of attribute B;.

Case : 1 ) c3 cq Cs Co c7 cg

By : 5k 4k 3k 3k 2k 1 0 0

Y: 1 0 0 1 1 1 0 0
Pieces : P1 P2 P3

From Table 6, it is can be observed that the p, and p3 data pieces are monochro-
matic piece, and p; is a non-monochromatic piece. Firstly, we need to randomly se-
lect the conversion functions from the function families F;,,, and F,onmon, and com-
bine them into conversion function vector fBl = [f1, /2, 30 2,13 € Fnon> 1 € Fuonmon-
Then, three data pieces are respectively disturbed by three different functions, namely
nby = {f1(61(nb1)), f>(8(nb1)), f3(83(nby))}. It is worth noting that the global mono-
tonic invariant characteristic must be satisfied when performing piecewise function pertur-
bation, namely Vu € {f1(5%), £1(4%), £1(3)}, ¥ € { £2(2%), £2(1)}, must be u > v > £3(0).
The rest may be deduced by analogy, the final perturbed data set D' can be obtained after
the function vectors fBz and f33 respectively convert the values of B, and B3.

II. Creating test set, validation set and training set

Firstly, the delegator sends the data set D' to the third-party P. Then the third-
party randomly selects 20% and 10% of the data from the D’ as the test set TeS'
and the validation set V.S, and all the remaining data as the training set TrS’, namely
D' =TeS'+VS +TrS'. We assume that there are m instances in the training set and vali-
dation set, namely 7rS' + VS = {(X1,11), (X2,Y2), ..., (X, Ym) }, where X and Y represent
all attribute values and tag value of each instance respectively. It is worth noting that the
reason why the training set and the test set are extracted by the third-party from the data
set D' is to ensure that the data when building the model and testing the model have the
same distribution. At the same time, it is avoided to use different distribution data to test
model by delegator in testing phase.

III. Setting the time node and acc,

The delegator publishes the minimum requirement for the accuracy acc, of the
model, and negotiates with the learner to decide that the learner must return to the de-
cision tree T’ and its promised accuracy acc; within a limited time ¢. If the delegator
verifies that the result is correct, the U (M) and Q(accr) fee must be paid to the learner
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within a limited time ¢'.

IV. Submitting deposit and sending data set

After the delegator and the learner reach the delegation agreement, they respectively
submit the deposit ¢ and [ to the trusted third-party. Subsequent, the third-party P respec-
tively sends TrS’ + VS and TeS' to the learner and the delegator.

5.2 Learning Phase

Firstly, the learner selects the algorithm A; from the algorithm space A and learns
the data features in the TrS’ to obtain the model, namely TrS’ A, Secondly, itera-
tively optimize the model using different criterion C; to make the model optimal, namely

" A
7" GiVS
delegator.

(T',acc;). Finally, the learner returns the optimal model 7’ and acc; to the

5.3 Verification and Payment Phase

This phase is discussed into two situations:

o The first case: the learner does not return the result within the agreed time t;
e The second case: the learner returns the result within the agreed time t.

In the first case, it shows that the learner does not honesty implement according to
the delegation learning agreement. At this time, the delegator can contact P to recover his
deposit ¢ and confiscate the deposit / of the learner.

In the second case, the delegator decrypts T’ after receiving T’ and acc; by using
its own secretly saved inverse function vector ]?BT, !, bijection table raby and breakpoint
location of each attribute to obtain the real decision tree model 7. Then the delegator
verifies accuracy of 7. The specific steps are as follows:

L. The delegator uses f;’ ! the breakpoint locations of each attribute and the bijection table
taby to restore the test set TeS;
II. The delegator tests T by the TeS to get the accuracy acc of the model.

acc(T,TeS) =

Y (T (x) = %), ®)

where I(x) represents the indication function and takes a value of 1 or 0 when () is true
or false.

III. Of course, the delegator can evenly divide the TeS into h parts (TeS = {TeS|,
TeS,,...,TeSy}) to test the model and use the final average value acc as the accuracy
accr of the model. The value of & can generally define a minimum value. For example,
h>5.

h
accr = acc = Z acc;(T,TeS;),
=

S| =

h ©))
1
A= Z}; lacc;j —ace|.

IV. The delegator announce the result of comparing accr with acc; and discusses the
following situations:
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i. When acc, < acc; — A < accr, the delegator must pay remuneration and reward within
the time of ¢/, otherwise the learner can make a request to the third-party P to confiscate
the delegator’s deposit.

ii. When acc, < accr < acc; — A or acer < acey, if the learner questions the test result
announced by the delegator, it can initiate a verification request to a third-party P.

The third-party verification process is as following:

1. The third-party obtains 7’ and acc; from the learner.

2. The third-party uses the same method as the delegator to test the model with the
encrypted TeS'.

The verification results include the following three situations:

(1) When the result shows acc, < accr < acc; — A, it means that the delegator does
not deceive the learner during the test process, so the verification fee of the third-party
should be paid by the learner. But the delegator must pay the remuneration and reward
to the learner within a limited time according to the actual accuracy accr of the model,
otherwise the third-party helps the learner to confiscate the delegator’s deposit.

(2) However, when the result shows acc, < acc; — A < accr, it means that the delegator
deceives the learner during the test process, so the verification fee of the third-party should
be paid by the delegator. Not only that, the learner can request the third-party to confiscate
the delegator’s deposit.

(3) When the result shows accr < accy, it means that the learner deceives the delegator
during the learning process, so the verification fee of the third-party should be paid by the
learner. At the same time, the delegator can request the third-party to help him confiscate
the deposit of the learner.

6. SECURITY ANALYSIS

In this section, we analyze the security of the rational delegation learning scheme
from the characteristics of fairness and data concealment.

Theorem 1: If the deposits of both sides respectively meet the conditions ¢ > U (M) + Py
and ! > U(M)+T (D) + Py + Pr/2, the rational delegation learning scheme is fair.
Proof: In the proposed scheme, each participant may choose to make dishonest behavior
in order to maximize their own interests. In order to ensure the fairness of the scheme, at
the beginning of the scheme, the delegator U and the learner L respectively submit deposit
c and [ to the trusted third-party platform P. The Py in the deposit of all parties is used to
pay verification fee to third-party.

Suppose 1: The strategies chosen by the delegator and the learner are {malicious,
honesty}. According to the game-analysis in Section 3, the final utility of the delegator
and the learner is

uy = —c—T(D)—Pr/2, uy=c—Py —LM)—T(W)—Pg/2. (10)

In order to protect the interests of the learner from damage, there must be u; > 0. Let’s
recall Eq. (5) in Section 3, so there must be ¢ — Py > U (M).
Suppose 2: The strategies chosen by the delegator and the learner are {honesty,
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malicious}, the final utility of the delegator and the learner is
uy=1—P/—UM)—T(D)—Pr/2, up=UM)—T(W)—1—PFg/2. (11)

Similarly, in order to protect the interests of the delegator from damage, there must be
uj > 0. Therefore, there must be [ — Py > U (M) + T (D) + Pr/2.

In summary, when the deposits of the delegator and the learner meet the theorem 1
requirements, the interests of the honest party can not be harmed. In other words, any
party in the scheme will be severely punished as long as he chooses a malicious strategy,
so the proposed rational delegation learning scheme is fair.

Theorem 2: If the value width of the data piece 6,(nb;),r € [1,w] of each attribute is large
enough, the data set Dy of the delegator is hidden. That is to say, the rational delegation
learning scheme is safe.

Proof. In [45], the author has demonstrated data safety of the monochromatic pieces and
decision tree T’. However, concerning the defense sorting attack of non-monochrome
pieces, we do other improvements on the basis of it. To be more precise, we made a
simple virtualization replacement of the original data before the perturbation of the piece-

wise function, namely One-hotGen(tab) M (taby) and IntegerGen(taby) Oon, (Dy).
We make the value width of the data piece controllable, and also reduce the correlation
between attributes, which means that the leakage risk of related information between at-
tributes is further reduced. For a better explanation, we first give some simple definitions:
e g, : 8/(nb;) — &,(nb;) represents the attacker’s cracking function.

e [min*, max*] € §,(nb;), the max* — min® represents the value width of the r-th piece of
the attribute B;.

o If [g,(V/) — £, 1(v/)| < p, then we think the attacker cracked a numerical point R, =
[v—p,v+p], where v = £ (1), p represents the distance between the attacker’s guess
value and the real value.

In terms of defense against sorting attacks, as a matter of fact, when 8/ (nb;) contains
some discontinuous values, the attacker can only crack the value v € §/(nb;) to a limited
width R, = [vi,v2] € O,(nb;). Assume that there are respectively m values and n values
in front of and behind the value v/ in piece p/,, the width that the attacker can attack is

Rg = [min® 4 m, max* — n]. The probability that the value v’ is cracked can be defined as
. IRy MR, |
Bolle () =/ 0] < p) = ==t (12)
g

According to the above analysis, it is clear that when k is larger, the range of R, is wider
and the probability P, is smaller. If the value of k is large enough, the probability P,
is negligible, so the data set Dy of the delegator is safe. Of course, the delegator can
determine the value of k according to the characteristics of each data piece p,. When the
number of discrete values in the piece is large, k can take a larger value to make the width
of the R, sufficiently large. However, assume that although an expert-level attacker cracks
and obtains a complete data set Dy, it will not help the attacker to obtain the original data
set D. For example, in Table 6 , knowing rows 2 and 3 can not help the hacker to crack
actual value of row 2 in Table 1.
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Regarding the leakage of association information between attributes, we take age
attribute and label as example, and compare the data in Table 1 and Table 6. The Pearson
correlation coefficient values of the age attribute and the label respectively in these two
tables are 0.8114 and 0.2917. This shows that the age attribute in the original data Table
1 has a strong correlation with the label. Of course, we can also see from the original data
that older people generally have higher salaries. However, after we converted the original
correlation in the data was destroyed. Therefore, the leakage risk of relevant information
between data is also reduced.

To sum up, the data is safe in the proposed rational delegation learning scheme.

Theorem 3: The proposed rational delegation learning scheme does not disclose any in-
formation about the final verification results.

Proof: On the one hand, according to the third-party verification process in Section 5.3,
it can be seen that malicious participants not only need to pay verification fee but also its
deposit is confiscated. Consequently, from a rational point of view, rational participants
will not risk losing their deposits to choose malicious strategies. In other words, the
third-party verification function will not be called in the end.

On the other hand, in the model verification process of this scheme, there is no
need for any interaction between the delegator and the learner, and the model verification
is completely completed by the delegator independently. Therefore, the risk of being
attacked is reduced. Although the attacker intercepted the model T’ from the results
returned by the learning party, according to theorem 2 above, the attacker cannot obtain
any useful information from the model.

In summary, the proposed scheme do not disclose real and useful information.

7. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed RDLS, we used a 110MB car
insurance prediction claim data set! as the training set to conduct experimental tests on the
encryption efficiency of the proposed scheme, the time cost of model outsourcing training
and the final accuracy of the model. A total of three Linux devices are used, one of which
plays the role of user U, and the other two play the roles of server L and trusted third party
P respectively. The test environment is as follows:

I. Hardware Environment

(1) CPU: Intel(R) Core(TM) i15-7500 3.4GH; (2) RAM: 8GB; (3) SSD: 256GB; (4) Band-
width: 20Mbps

II. Software Environment

(1) OS: Linux(Ubuntu19.10); (2) Database software: MySQLS8.0.18; (3) IDE: PyCharm;
(4) Programming language: python3

First of all, in terms of data encryption efficiency, we conducted a comparative ex-
perimental test for the encryption method OIFP designed by us and the existing work
[5,9,14,15,45]. The outsourcing protocols proposed in work [5,9, 14, 15] use Distributed
Two Trapdoors, Circuit Private, Li’s symmetric and BCP Homomorphic Encryption (HE)

Data Set: https://www.kaggle.com/priyasd/portoseguro?select=train.csv
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to encrypt the private data respectively. The OIFP designed in this paper and the encryp-
tion method FP proposed in work [45] are based on piecewise function perturbation. In
this experiment, we used python to establish a homomorphic cryptographic systems with a
security parameter € of 1024 for each of the above homomorphic encryption algorithms,
and use the car insurance prediction claim data set to test the encryption efficiency, as
shown in Fig. 4.
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r PPDT[5]
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Fig. 4. Encryption time costs.

Although the homomorphic encryption algorithm can provide high-intensity data
privacy, it can be seen from the Fig. 4 that the method based on piecewise function per-
turbation in terms of encryption time costs is much lower than that of the homomorphic
encryption algorithm. However, because the method FP based on piecewise function per-
turbation directly inserts breakpoints on the private data set and uses the inverse function
perturbation, it is not enough to provide the required data privacy and will affect the ac-
curacy of the final decision tree model. For this reason, the OIFP method we designed
has been improved and enhanced on the basis of the FP method. That is, before the
private data is inserted into the breakpoint and the inverse function is used to perturb,
OIFP pre-encrypts the private data set and generates a virtual data set, and uses the virtual
data set instead of the private data set to perform the perturbation operation. Although
OIFP’s preprocessing of private data sets increases the time costs on data encryption, it
also reduces the risk of leakage of correlations between data attributes and does not affect
the accuracy of the final decision tree model. Therefore, we believe that such improve-
ments and enhancements are worthwhile. Although the time costs of data encryption is
increased compared with FP, the encryption efficiency is still much higher than that of
homomorphic encryption algorithms, and it can provide the required data privacy.

Secondly, in terms of model outsourcing training time and communication costs,
we also compared the proposed RDLS with the privacy protection outsourcing protocols
and schemes proposed by work [5,9, 14, 15]. Among them, the work [15] proposed the
privacy protection outsourcing decision tree C4.5 protocol, and other work proposed the
privacy protection outsourcing decision tree ID3 protocol. In addition, the outsourcing
protocol proposed by work [14, 15] is oriented to multi-user and dual-server scenarios. To
this end, we simulated two users on the device playing the user role and evenly divided
the training set into two parts, simulated dual servers on the device playing the server
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Fig. 5. The model training time and communication costs.

role, and performed outsourcing ID3 and C4.5 experiment for different protocols. As
shown in Fig. 5. We use the time spend on the client and server to represent the comput-
ing costs of the client and server during the entire process of model outsourcing training
(where the computing costs of the client includes the costs of assisting server calculation,
encrypting the private data set and decrypting the final result), and use the communica-
tion volume (in order to more directly reflect the interaction degree of the collaborative
computing between the client and the server in the model outsourcing training process,
so the communication volume of encrypted data set is not included.) between the client
and the server to represent the intermediate computing communication costs of the entire
outsourcing protocol. Because in the privacy protection decision tree outsourcing training
protocol proposed by Akavia et al. [9] and Li et al. [14,15], the client needs to coordinate
with the server to calculate, that is, in the protocol, the server only undertakes part of the
calculation tasks, some critical and sensitive computing tasks are still borne by the client,
so the computing costs of the client is relatively high. The same reason causes frequent
interactions between the client and the server or between the server and the server, so the
communication costs is relatively high. But it is worth noted that the privacy protection
decision tree outsourcing training protocol proposed by Liu et al. [5] is similar in the form
of privacy data outsourcing to our proposed RDLS, that is, private data sets are encrypted
and outsourced to the server at one-time. In the model outsourcing training process, the
client and the server do not need to calculate collaboratively, so the computing costs of
the client is lower. However, compared with our proposed scheme, Liu et al. [5] use the
Distributed Two Trapdoors Homomorphic Encryption system to encrypt private data sets,
so the computing costs of the client is higher. At the same time, they use dual-server
coordination to perform model training on the encrypted data set, which leads to frequent
interactions between the servers. In contrast, in our proposed solution, the client and the
server only need to deposit and withdraw their respective deposits and transport the final
result. Therefore, the communication costs is lower. It can be seen from Fig. 5 that our
proposed RDLS significantly reduces the client’s computing costs and the communication
costs during the protocol execution.

In addition, according to the incentive function Q in Section 3, we analyze the re-
lationship between the reward obtained by the learner and the accuracy of the model.
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Fig. 6. The relationship between reward and accuracy.

Generally speaking, during model training, the higher the accuracy of the model is, the
more difficult it is to further improve the accuracy of the model. Here, it is assumed that
the minimum accuracy requirement set by the delegator is 90%, and the reward amount
of E is 100,000 yuan, i.e.

6(1-0.9)7>=1 = 6 =100,

(13)
O(acer) = 100(accr — 0.9)? x 100000, (accr > 0.9),

then, we can get the relationship between reward and model accuracy, as shown in the Fig.
6. It can be seen that when the learner further improves the accuracy of the model, the
reward given by the delegator is more abundant. This shows that the incentive function
we set is reasonable, that is to say, the incentive function has an incentive effect on the
learner. Subsequently, in terms of model accuracy, we also conducted a comparative test,
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Fig. 7. The decision tree model accuracy.

as shown in Fig. 7. In the protocol proposed in the work [5,9, 14, 15], the server is usually
assumed to be honest or semi-honest, that is, the server is assumed to try its best to train
the model. But in reality, the server is usually rational. In order to make the proposed



GAME-BASED THEORY RATIONAL DELEGATION LEARNING SCHEME 77

scheme more realistic, we introduce rational participants into the proposed scheme, that
is, the behavior of the server for model training is driven by interests, so we stress the case
of setting the incentive function (IF) and without the incentive function (NIF). It can be
seen from the Fig. 7 that when the incentive function is not set, the learner improves the
accuracy of the model to 90% and no longer trains. However, when the incentive function
is set, the learner tries his best to improve the accuracy of the model in order to obtain
more benefits. Compared with the above work, when setting the incentive function, the
scheme we proposed is not only more practical and feasible, but also a high-accuracy
decision tree model can be obtained in the end.

Finally, we also conducted a more detailed comparative analysis from other aspects,
as shown in Table 7. Because in the outsourcing protocol proposed by Akavia et al. [9]
and Li er al. [14, 15], the client needs to assist the server to calculate, so off-line users
are not supported, in addition, the communication complexity and client complexity are
generally higher. That is to say, the computing costs on the client side is still relatively
large. The outsourcing protocol proposed by Liu ef al. [5] supports off-line users, but it
adopts a dual-server pattern, and the server needs to have prior knowledge such as data
set attribute names and attribute value information, which may lead to the decision tree
model be inferred by the server. In addition, the trusted third party P plays an important
role in the our proposed scheme. In order to restrain rational servers, the trusted third
party adopts the method of confiscating the deposit of malicious servers to protect the
interests of honest users. Therefore, we stress that the trusted third party in the RDLS
scheme is essential.

Table 7. Protocols comparison summary.

Protocols Client Server Communication  Server Has  SupportNeed Trusted
Complexity  Complexity Rounds Prior Knowledge off-line Third Party
PPDT[5] O(n|B|') O(|b]*|B|logs|B|) |y|*]|b]+|B] v v v
PPDT[9] O(|B||y|s*®)  O(|B||y|stn) d® X X X
OPPID3[14] O((n)In(n)) O((|B|n)In(|B|n)) |B|n X X X
OPPC4.5[15] O(|Ble) O(|B|log>|B|) 2|B| v X X
RDLS O(|B||p|])  O(|Blloga|B)) 7 X v v

!|B| represents the number of attributes.

ZW represents the average number of attribute values quantity.
3)y| represents the number of label values.

45 represents the threshold of the decision tree node.

5t represents the number of decision tree nodes.

6d represents the depth of the decision tree.

In summary, the rational delegation learning scheme we proposed can reduce the
client’s computing costs and the communication costs during the protocol execution pro-
cess while providing sufficient security, and the client can finally obtain a high-accuracy
decision tree model. It is particularly noteworthy that we have introduced rational partic-
ipants to make the proposed scheme more practical.
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8. CONCLUSIONS

This paper proposes a rational delegation learning pattern and designs an outsourcing
scheme for decision tree model, which reduces the leakage risk of delegator’s data, the
client’s computing costs and the communication costs during the protocol execution. We
establish the incentive function in learning process, which makes the rational learner to try
his best to improve the model accuracy. Therefore, the feasibility of the rational delegation
learning scheme is improved. Finally, we evaluate the proposed scheme, the results show
that the delegator can get a high-accuracy model.
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