
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 911-924 (2012)

911

Efficient Detection of Malicious Web Pages Using
High-Interaction Client Honeypots*

HONG-GEUN KIM1, DONGJIN KIM2, SEONG-JE CHO2,+, MOONJU PARK3

AND MINKYU PARK4
1Korea Internet Security Agency

Seoul, 138-950 Korea
2Department of Computer Science

Dankook University
Gyeonggi, 448-701 Korea

3Department of Computer Science and Engineering
University of Incheon

Incheon, 406-772 Korea
4Department of Computer Engineering

Konkuk University
Chungbuk, 380-701 Korea

Drive-by-download attacks are client-side attacks that originate from web servers

clients visit. High-interaction client honeypots identify malicious web pages by directly
visiting the web pages and are very useful. However, they still have shortcomings that
must be addressed: long inspection time and possibility of not detecting certain attacks
such as time bombs. To address these problems, we propose a new detection method to
identify web pages with time bombs. The proposed method introduces a pattern-based
static analysis for detecting time bombs efficiently. A high-interaction client honeypot
performs the static analysis before carrying out execution-based dynamic analysis. The
static analysis classifies sample web pages into two groups, the first one assumed to be
time-bombs and the second one assumed to be no time-bombs. We then perform dy-
namic analysis for the first using sequential visitation algorithm with long classification
delay and for the second using divide-and-conquer visitation algorithm with short classi-
fication delay. Experimental results demonstrate that our method is more accurate and
costs less than conventional methods.

Keywords: high-interaction client honeypot, malicious web page, visitation algorithm,
logarithmic divide-and-conquer (LDAC) algorithm, detection method, time bombs, static
analysis

1. INTRODUCTION

Drive-by-download attacks have emerged as a new threat to the integrity of PC
systems [1-9, 11-13]. It is estimated that approximately 150 million malicious web pages
that launch drive-by-download attacks exist in 2010 [13]. Drive-by-download attacks are
client-side attacks that originate from web servers that web browsers visit. If a vulnerable
web browser retrieves a web page, a malicious web server can push malware to a client

Received May 31, 2011; accepted March 31, 2012.
Communicated by Jiman Hong, Junyoung Heo and Tei-Wei Kuo.
* This work was supported partly by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MEST) (No. 2011-0026301), and by the National IT Industry Promotion Agency (NIPA)
under the program of Software Engineering Technologies Development.

+ Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2012.28.5.6

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

912

system. This malware can be executed without the user’s notice or consent. The detection
of malicious web pages is one of main issues among many security researchers.

Client honeypots are active security devices that are able to detect a malicious
server’s web pages [1, 3, 5, 6-13]. Client honeypots directly visit a web page, and then
inspect state changes of the system on which they are running. A detection of unauthor-
ized changes to client honeypots may indicate the occurrence of an attack. Such changes
include a new file or process, an altered file, and the modification of registry file, etc. As
in the case of traditional server honeypots, client honeypots are mainly classified by their
interaction level: high or low. An interaction level denotes the level of functional inter-
actions a server can utilize on a client honeypot. We focus on high-interaction client ho-
neypots in this paper.

High-interaction client honeypots (HICHPs) are effective at detecting unknown
attacks and obfuscated patterns of malware because they use dynamic analysis. However,
they have challenges to overcome: they are inherently slow and miss attacks sometimes
[1, 5, 7, 10, 13]. One challenge of HICHPs is how they should visit web pages to reduce
total detection time. It takes very long time to crawl millions of web servers. Detection of
malicious web pages in those quantities would take very long time and cost millions of
US dollars [7, 13]. Therefore, detection speed is an important factor to HICHP’s opera-
ting costs. Detection accuracy is another factor that largely impacts on operating costs.
While an HICHP’s false positive rate is negligible, the false negative (FN) rate drives the
cost of identifying malicious web pages [7, 13]. The FN rate means a ratio of the failure
to detect a malicious web page when it is inspecting one. A malicious web page can
employ several evasion techniques that cause an HICHP to fail at detecting it. One of the
major evasion techniques is time bombs. Time bombs are exploits contained on a
malicious web page. These exploits trigger only after a predefined time has elapsed.

We propose a method for identifying a maliciou web page with time bombs effec-
tively. The method performs a static analysis before dynamic one by HICHPs. The static
analysis filters the suspicious web pages with the pattern assumed to be a time bomb
attack. The dynamic analysis is able to detect time bombs effectively by extending the
visitation time of the filtered pages. Moreover, we use a sequential visitation algorithm to
determine whether each filtered page is malicious or not. The sequential algorithm is
known to be excellent in an environment a ratio of malicious web pages is high. With a
cost-based evaluation method, we show that our method is better than the conventional
one in terms of detection accuracy and cost.

The remainder of this paper is organized as follows. In section 2, we describe
related works including an evaluation method of client honeypots, time-bomb attacks,
and the existing visitation algorithms. In section 3, we propose a new method to detect
effectively the malicious web pages with time bombs and evaluate the performance of
our method in section 4. We conclude and provide an outlook on our future research in
section 5.

2. RELATED WORKS

We describe an evaluation method of HICHPs, a time-bomb attack, and the existing
visitation algorithms.

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

913

2.1 Performance Evaluation of an HICHP

We need a method to evaluate and compare HICHPs in an environment in which
they operate. Seifert presented a cost-based evaluation method: the true positive cost
curve (TPCC) [7, 13]. It allows us to evaluate HICHPs against their primary purpose of
identification of malicious web pages. It takes into account the unique characteristics of
HICHPs, speed, detection accuracy, and resource cost. It provides a simple, cost-based
mechanism to evaluate and compare HICHPs.

The TPCC represents the cost per malicious web page identified (cURL) over the
base rate p, the percentage of malicious web pages in a set of web pages. Cost per mali-
cious web page identified indicates how efficiently HICHPs identify malicious web
pages and can easily be compared. As more pages that are malicious exist in the sample,
the cost is reduced, because an HICHP will naturally identify more pages that are mali-
cious.

The tAlgo is the time in seconds required for an HICHP to inspect a sample of n web
pages. If ability of two HICHPs is identical, the faster one will detect a greater number of
malicious web pages while consuming fewer resources at a lower cost.

The HICHP consumes resources while inspecting potentially malicious web pages.
These resources include hardware costs and costs associated with network and power
consumption. cr (resource cost) represents this resource consumption.

Detection accuracy also affects operating costs. The false negative (FN) expresses
the failure of an HICHP to detect a malicious web page when it is inspecting one. A ma-
licious web page can employ techniques that cause the HICHP to fail at detecting it.
These techniques include time bombs, IP tracking, etc. These are suspected to exist or
have been observed by various studies [7, 10-15]. The HICHP with the lower false nega-
tive rate will be able to identify more web pages that are malicious using the same re-
sources, resulting in an overall lower cost per malicious web page identified.

(1)
Algo r

URL

t c
c

np FN
=

−
 (1)

As a result, the cost associated with identifying a malicious web page cURL is calcu-
lated as Eq. (1) [7, 13]. The time to inspect the sample n, tAlgo, is multiplied by the re-
source costs per time unit cr. It is divided by the number of malicious web pages identi-
fied in the sample, which is the number of web pages in the sample multiplied by the
base rate and the true positive rate of the client honeypot: np(1 − FN).

Various factors influence the speed of HICHP to inspect a sample of n web pages [1,
7, 13]. How to detect state changes influences the speed. The network bandwidth and
average size of the request/response influence the time to retrieve a web page ti. Other
factors are as follows: the time to render and display a web page td, the overhead of start-
ing the client application ts, and the overhead of resetting the client honeypot into a clean
state after visiting a malicious web page tr, which overall is impacted by the base rate p,
and the classification delay tw.

The classification delay tw is a period needed to classify a web page more accurately.
This is necessary because some time passes before many exploits trigger. This might be
due to the nature of the exploit or intentionally introduced by the attacker to avoid detec-

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

914

Table 1. Factors for performance evaluation of client honeypots.
Symbol Description

cURL The cost in US dollars to identify one malicious web page
p The base rate of malicious web page in a sample of n web pages

tAlgo
The time in seconds required for a client honeypot to inspect a sample of n
web pages

cr The resource costs, such as hardware costs, per period t in US dollars

Tq
The average time in seconds required to generate a list of n URLs to be in-
spected by a client honeypot

ti The average time in seconds required to retrieve a web page over the network

tw The classification delay in seconds introduced to give an exploit the opportu-
nity to trigger

tr The average time in seconds required to reset a virtual machine
td The average time in seconds required to render a web page
ts The average time in seconds required to start the client application

FN The false negative rate of a client honeypot
K The number of web pages in a buffer

tion. When HICHPs inspect web pages, the classification delay consumes most of the
time. In addition, the time of creating a queue of URLs Tq is added to the duration to in-
spect web pages. It is usually constant [1, 7, 13].

The TPCC can be used to tune an HICHP in a specific operating environment. We
use the TPCC in this way to tune an HICHP to identify malicious web pages that employ
time bombs or IP tracking functionality.

2.2 Time Bombs

A malicious web page can employ evasion techniques that cause HICHP to fail at
detecting it. Time bombs are one of the major evasion techniques. Time bombs are ex-
ploits embedded in malicious web pages that trigger only after a few seconds have
passed. Time bombs are the primary reason why an HICHP waits tw seconds after having
retrieved a web page. The value was generally set to 25 seconds, because the majority of
web pages seem to launch an attack during that period [7, 13]. If attackers change the
trigger time of their time bombs, the ability of an HICHP to identify malicious web pages,
and therefore the cost is affected.

According to Seifert’s study, cost is the greatest if the classification delay tw is in-
creased to counter the evasion technique employed [7, 13]. Therefore, if 10% of mali-
cious web pages trigger only after 35 seconds, it is best for the operator to ignore these
10% and continue to operate the HICHP unchanged with a classification delay tw of 25
seconds. In this case, there is a serious problem that the client honeypot cannot detect the
malicious web pages with time bombs.

To solve the above problem, we develop a better detection method with low cost
and high detection accuracy for time bombs.

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

915

2.3 Web Page Visitation Algorithms

HICHP use a visitation algorithm to find malicious servers on a network. We con-
sider four visitation algorithms: sequential, bulk, binary divide-and-conquer (BDAC), and
logarithmic divide-and-conquer (LDAC) [1, 7, 13, 16]. Assume that there is a sample of n
web pages to be inspected (Fig. 1). The sequential algorithm visits web pages sequen-
tially. After each visitation, the HICHP waits for tw seconds before checking for state
changes on the system to classify the web pages as malicious or benign. If the web page
was identified as malicious, the page is classified as malicious and the state of the system
is reset before the next web page is visited. If the page is benign, the page is classified as
benign and the next web page is visited.

Fig. 1. Web pages visitation sequences.

Fig. 2. Binary divide-and-conquer (BDAC) visitation.

The BDAC algorithm uses the divide-and-conquer design paradigm. It divides the
sample of n web pages into buffers of size k and state changes are only checked after one
classification delay per buffer. That is, the BDAC algorithm visits a buffer of k web pages
at the same time, waits for tw seconds, and makes a classification after the buffer has been
inspected. At this phase, this algorithm is not capable of pinpointing which web page
committed malicious activity. To determine which server attacked, the buffer of k web
pages is divided into two portions and recursively visited until the malicious web page or
pages are identified (see Fig. 2). Similar to the sequential algorithm, the state of the sys-

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

916

tem is reset if malicious web pages are encountered before continuing to visit the next set
of web pages.

Similar to the BDAC algorithm, the bulk algorithm visits a buffer of k web pages at
the same time, but it utilizes an enhanced state monitoring mechanism that allows it to
pinpoint the specific web page that caused the unauthorized state change. As a result, the
bulk algorithm does not need to visit web pages repeatedly. However, the load on the
system increases by causing an overall slowdown compared to the BDAC algorithm’s
shared process. The reason is why the enhanced state monitoring mechanism requires
each web page to be visited in its own process of the system using the bulk algorithm.
Like the sequential and BDAC algorithms, the state of the system is reset before the next
set of web pages is visited if malicious web pages were encountered.

Fig. 3. Logarithmic divide-and-conquer (LDAC) visitation.

The LDAC algorithm is an enhanced version of the BDAC algorithm. If any mali-
cious server attack is detected after interacting with a buffer of k web pages, we divide
the buffer into several portions similarly to the BDAC algorithm to identify malicious
servers. However, the algorithm divides the buffer in a logarithmic way to enhance the
performance. Fig. 3 shows the search tree constructed by the LDAC algorithm when the
bulk size is 32. Traversing down the tree, the algorithm divides each bulk of size x into
⎣log2x⎦ portions, and is recursively applied to each portion. In the example of Fig. 3,
since the bulk size is 32 at the root, the bulk is divided into ⎣log232⎦ = 5 portions with
size 6. At the level 1 of the tree, the size of the divided portion is 6, so it is again divided
into ⎣log26⎦ = 2 portions with size 3. In some cases, like the portions at the level 2, a por-
tion can be divided into different sizes of pieces. When the size of a piece is 3 or 2, we
have ⎣log2size⎦ = 1.

According to [16], the LDAC algorithm shows better performance than BDAC al-
gorithm with respect to tAlgo.

3. EFFECTIVE DETECTION OF TIME BOMBS

In this section, we propose a new test method to detect malicious web pages with
time bombs effectively. The method employs static analysis before dynamic analysis

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

917

Fig. 5. Example of time-bomb script.

with HICHP. By the static analysis, we can classify suspicious web pages into one with
or without time bombs.

3.1 Detection Model for Time Bombs

As shown in Fig. 4, the proposed detection method consists of three stages. At the

first stage, a dedicated system collects suspicious web pages for a certain period. The
static analyzer classifies the collected web pages into the web pages suspected to be
time-bomb attacks or ones suspected not to be time-bomb attacks at the second stage.
Finally, the third stage performs in parallel the dynamic analysis using appropriate strate-
gies to each classified group of pages and determines which page is malicious.

3.2 Classification of Web Pages with Time Bombs through Static Analysis

The second stage, static analysis, is intended to minimize the classification delay tw
for detecting malicious web pages that are time bomb suspects or not. The classification
delay is introduced to detect malicious web pages including time-bombs in previous
work too. The static analyzer scans the suspicious web pages and filters web pages with
scripts or time operations, which delay the loading time or an attack, such as the JavaS-
cript codes shown in Fig. 5.

Fig. 4. Detection model for time bombs.

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

918

The function setTimeout() in this example is seldom used in ordinary web pages.
Even when the function is used in some cases, if it is used without any hostile intent, the
delay would not longer than 25-30 seconds. Using this information, the static analyzer
classifies web pages calling setTimeout() with longer than 30 seconds (Fig. 5 (a)) or us-
ing repetition of short-period delays (Fig. 5 (b)) into time-bombs suspects.

3.3 A Strategy for Analyzing Web Pages with Time Bombs

To analyze web pages classified as time-bomb suspect, we perform dynamic analy-
sis using a dedicated virtual machine of an HICHP. In case of web page suspicious to
have time bombs, the web page may be malicious with high probability. Thus, we in-
crease tw for interacting with the web pages suspected to be time bomb attacks and use
the sequential visitation algorithm. The sequential visitation algorithm shows comparable
performance to the BDAC when the base rate p = 0.1 and outperforms the BDAC when p
> 0.1 [1].

3.4 A Strategy for Analyzing Web Pages without Time Bombs

We use the BDAC or LDAC visitation algorithm for analyzing the web pages as-
sumed not to have time bombs because two algorithms show better performance than the
sequential algorithm when p is low [1]. The performance of the BDAC and LDAC algo-
rithms is affected by the size buffer k. In [17], they measured the optimal k for various
values of p. We use the optimal value shown in Table 2 in our experiments.

Table 2. Optimum values for buffer size k depending p (from [17]).

k p
LDAC BDAC

0.005 61 62
0.015 29 32
0.025 22 17
0.035 22 16
0.045 16 8
0.055 6 8
0.065 6 8
0.075 6 4
0.085 6 4
0.095 6 4

4. PERFORMANCE EVALUATION OF THE PROPOSED METHOD

To evaluate the performance of the proposed method, we simulated and analyzed
the following four models from the previous studies [1, 7, 13].

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

919

(1) n = 5000, tw = 25 seconds, ‘percentage of time bombs = 0.
(2) n = 5000, tw = 25 seconds, ‘percentage of time bombs = 20% of p, trigger time of

time bomb = 40 seconds.
(3) n = 5000, tw = 40 seconds, ‘percentage of time bombs = 20% of p, trigger time = 40

seconds.
(4) n = 5000, ‘percentage of time bombs = 20% of p, trigger time = 40 seconds.

(a) tw = 25 seconds for one without time bombs.
(b) tw = 40 seconds for one with time bombs.

We set tq = 0, ts = 0.5, ti = 4.3, td = 1.3, tr = 5 seconds for all models as in [1]. We

assume True-Positive (1 − FN) is 1 for malicious activities occurring within tw and set p
and k according to Table 2. For model 1~3, we use the BDAC and LDAC visitation algo-
rithms to visit the sample of n web pages. For model 4, we use the BDAC and LDAC al-
gorithms to visit web pages classified as without time bombs and the sequential algo-
rithm to visit ones classified as with time bombs. For model 1, 2, and 4 (a), we set tw = 25
seconds because malicious web servers without time bombs is likely to do some harmful
acts within 25 seconds. With this tw, an HICHP cannot detect malicious web pages with
time bombs in model 2. We set tw = 40 seconds for model 3 and 4.b in order to detect
time bombs triggering after 40 seconds.

We simulated each models 1000 times and calculate average tAlgo and TPCC. Dis-
tribution of malicious web pages affects performance of HICHP and eventually tAlgo.
Therefore, locations of malicious web pages are randomly determined. TPCC incorpo-
rates tAlgo and other factors such as detection accuracy, resource cost, and a proportion of
malicious web servers. When calculating TPCC, we assumed resource cost cr 0.125 US
dollars per hour [7, 13, 18].

4.1 Total Inspection Times

The performance of four models in terms of tAlgo is shown in Figs. 6 and 7. Total
inspection time of model 3 is longest among the models. The reason is that model 3
lengthens tw from 25 seconds to 40 seconds for all n pages, despite that only 20% of ma-
licious pages may have time bombs.

Fig. 6. Simulation results in terms of tAlgo (BDAC).

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

920

Fig. 7. Simulation results in terms of tAlgo (LDAC).

Note that model 2 has the shortest tAlgo because 20% of malicious web pages are not
detected. In other words, HICHP in model 2 did not detect pages with time bombs be-
cause its tw is 25 seconds and time bombs need 40 seconds to trigger. As a result, the
number of reverts is minimum among the four models and therefore the time associated
with tr decreases. However, true positive rate of model 2 decreases to 0.8. Unfortunately,
the tAlgo does not reflect this effect of FN.

In model 4, an HICHP uses different visitation algorithms for each two groups of
suspicious web pages (see Fig. 4). For the web pages suspected to be time bombs, it uses
the sequential visitation algorithm and consumes ‘ts + ti + td + tw + tr’. For the web pages
assumed no time bombs, it uses the BDAC or LDAC visitation algorithm. The sequential
and BDAC or LDAC algorithms are concurrently executed. Our model shows better total
inspection time than model 1 and 3 because of appropriate visitation algorithms and clas-
sification delays. The tAlgo is reduced by 37.8% (BDAC), 38.1% (LDAC) compared to
model 3. The detection accuracy (1 − FN) is 1, which is the same as model 3. Further-
more, an HICHP using LDAC algorithm performs better by 3.7% on average with re-
spect to tAlgo than one using BDAC.

Performance comparison in terms of tAlgo does not consider detection accuracy and
consumption of other additional system resources. Thus, we must use more effective
performance evaluation criterion, cURL.

4.2 True Positive Cost Curve (TPCC)

Figs. 8 and 9 compares the performance of four models in terms of TPCC cost
model. Note the difference between Figs. 6-9. In Figs. 6 and 7, model 2 shows better
performance than model 1, but in Figs. 8 and 9, vice versa. This is because TPCC incor-
porates detection accuracy and resource cost as performance factor, but tAlgo does not. In
model 2, detection accuracy (1 – FN) is 0.8 because model 2 cannot identify malicious
web pages with time-bombs (20% of total malicious web pages). Model 1 assumes no
time bomb and so (1 – FN) is 1. Model 1 performs better than model 2 in terms of detec-
tion accuracy and overall costs.

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

921

Fig. 8. Simulation results with TPCC cost model (BDAC).

Fig. 9. Simulation results with TPCC cost model (LDAC).

Our model shows the best performance among the simulation models. The model
has introduced static analysis before dynamic analysis. Moreover, the model uses a sepa-
rate visitation algorithm and classification delay to detect web pages with time bombs
effectively. This approach raises the value (1 – FN) to 1 and lower overhead of tAlgo. This
model improves TPCC of model 3 by 37.8% (BDAC), 38.1% (LDAC) on average, and
that of model 2 by 16.9% and 16.7%. Furthermore, an HICHP using LDAC algorithm
performs better by 3.7% on average with respect to cURL than one using BDAC.

5. CONCLUSIONS

A high-interaction client honeypots (HICHP) is a useful device to detect drive-by-
download attacks. An HICHP, however, has limitations such that they need long time to
identify the malicious web pages and tend to miss some attacks such as time bombs. To
address these limitations, we presented a new method to detect malicious web pages with
time bombs effectively. Our detection method carries out static analysis before applying
dynamic analysis. The static analysis filters suspicious web pages with patterns assumed
time-bomb attacks. By extending the waiting time in visitation on only the filtered pages
in the dynamic analysis, we have enhanced the detection accuracy of time bombs. More-
over, we used the sequential visitation algorithm for the filtered pages, known to be su-
perior in case the ratio of malicious web pages is high. With a cost-based performance

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

922

evaluation method, the proposed method reduced costs of identifying the malicious web
pages using HICHPs.

We plan to investigate additional means to detect malicious web pages with IP
tracking and client honeypot detection effectively. IP tracking is a technique to launch an
attack just once. Repeated interaction with the same page would make the examiner con-
sider the web server hiding the attack benign falsely, because the malicious web server
serves a false benign page. Therefore, an HICHP would fail to detect the malicious na-
ture of the web server. Client honeypot detection is another evasion technique a mali-
cious web page can use to identify an HICHP and selectively serve a benign web page
instead of its usual malicious web page.

REFERENCES

1. C. Seifert, I. Welch, and P. Komisarczuk, “Application of divide-and-conquer algo-
rithm paradigm to improve the detection speed of high interaction client honeypots,”
in Proceedings of ACM Symposium on Applied Computing, 2008, pp. 1426-1432.

2. M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending browsers against
drive-by downloads: Mitigating heap spraying code injection attacks,” http://www.
iseclab.org/papers/driveby.pdf, 2008.

3. B. Endicott-popovsky, J. Narvaez, C. Seifert, D. A. Frincke, L. R. O’Neil, and C.
Aval, “Use of deception to improve client honeypot detection of drive-by-download
attacks,” in Proceedings of the 5th International Conference on Foundations of
Augmented Cognition, 2009, pp. 138-147.

4. N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. “The ghost
in the browser: Analysis of web-based malware,” in Proceedings of USENIX Work-
shop on Hot Topics in Understanding Botnets, 2007.

5. M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download
attacks and malicious JavaScript code,” in Proceedings of the 19th international
conference on World Wide Web, 2010, pp. 281-290.

6. J. Narvaez, B. Endicott-Popovsky, C. Seifert, C. U. Aval, and D. A. Frincke “Drive-
by-downloads,” in Proceedings of Hawaii International Conference on System Sci-
ences, 2010, pp. 1-10.

7. C. Seifert, P. Komisarczuk, and I. Welch, “True positive cost curve: A cost-based
evaluation method for high-interaction client honeypots,” in Proceedings of the 3rd
International Conference on Emerging Security Information, Systems and Technolo-
gies, 2009, pp. 63-69.

8. R. Steenson and C. Seifert, “Capture − Honeypot client,” http://www.nz-honeynet.org,
2007.

9. Y. M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King,
“Automated web patrol with strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities,” in Proceedings of the 13th Annual Network and Distributed
System Security Symposium, 2006.

10. K. Wang, “HoneyClient,” http://www.honeyclient.org/trac, 2007.
11. C. Seifert, “Know your enemy: Malicious web servers,” The Honeynet Project, KYE

paper, http://www.honeynet.org, 2007.

EFFICIENT DETECTION OF MALICIOUS WEB PAGES USING HIGH-INTERACTION CLIENT HONEYPOTS

923

12. A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A crawler-based study of
spyware on the web,” in Proceedings of the 13th Annual Network and Distributed
System Security Symposium, 2006.

13. C. Seifert, “Cost-effective detection of drive-by-download attacks with hybrid client
honeypots,” Ph.D. Thesis, Computer Science Department, Victoria University of Well-
ington, 2010.

14. J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou, “Studying malicious web-
sites and the underground economy on the Chinese web,” Managing Information
Risk and the Economics of Security, 2009, pp. 225-244.

15. N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your iFRAMEs
point to us,” in Proceedings of the 17th Conference on Security Symposium, 2008,
pp. 1-15.

16. H. Kim, D. Kim, S. Cho, M. Park, and M. Park, “An efficient visitation algorithm to
improve the detection speed of high-interaction client honeypots,” in Proceedings of
ACM Research in Applied Computation Symposium, 2011, pp. 266-271.

17. D. Kim, H. Kim, M. Park, and S. Cho, “An improvement of visitation algorithm for
analyzing suspicious web-pages using a client honeypot,” in Proceedings of the 38th
KIISE Fall Conference, Vol. 38, 2011, pp. 47-50.

18. S. Shankar, “Amazon elastic compute cloud (EC2) running Microsoft Windows
server and SQL server,” Amazon.com, 2008.

Hong-Geun Kim received the B.E., the M.E. and the Ph.D.
in Computer Engineering from Seoul National University in 1985,
1987 and 1994 respectively. He works for Korea Internet and
Security Agency from 1996. His current research interests include
information security, critical infrastructure protection, and system
vulnerability analysis.

Dongjin Kim received the B.E. and M.E. degree in Com-
puter Science from Dankook University in 2009 and 2011, re-
spectively. He is a Ph.D. student in Dankook University, Korea.
His current research interests include computer security and sys-
tem software.

HONG-GEUN KIM, DONGJIN KIM, SEONG-JE CHO, MOONJU PARK AND MINKYU PARK

924

Seong-Je Cho received the B.E., the M.E. and the Ph.D. in
Computer Engineering from Seoul National University in 1989,
1991 and 1996 respectively. He was a visiting scholar at Depart-
ment of EECS, University of California, Irvine, USA in 2001,
and at Department of Electrical and Computer Engineering, Uni-
versity of Cincinnati, USA in 2009 respectively. He is a Professor
in Department of Computer Science and Software Science,
Dankook University, Korea from 1997. His current research in-
terests include computer security, operating systems, software
protection, real-time scheduling, and embedded software.

Moonju Park received the B.E. in Naval Architecture and
Ocean Engineering, and the M.E. and the Ph.D. in Computer En-
gineering from Seoul National University in 1995, 1996, and 2002
respectively. He was with LG Electronics as a chief research engi-
neer from 2002 to 2006, and with IBM Ubiquitous Computing
Laboratory as an advisory software engineer from 2006 to 2007.
He is an Assistant Professor in Department of Computer Science
and Engineering, University of Incheon from 2007. His current
research interests include operating systems, real-time systems,
and embedded systems.

Minkyu Park received the B.E. and M.E. degree in Com-
puter Engineering from Seoul National University in 1991 and
1993, respectively. He received Ph.D. degree in Computer Engi-
neering from Seoul National University in 2005. He is now an As-
sociate Professor in Konkuk University, Korea. His research in-
terests include operating systems, real-time scheduling, embed-
ded software, computer system security, and HCI.

